CS249: GRAPH NEURAL NETWORKS

Graph Basics

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

January 14, 2021

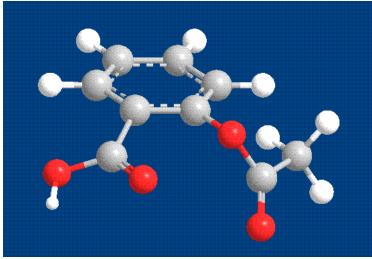
Content

Spectral analysis

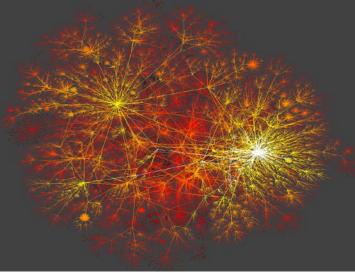
Shallow Embedding

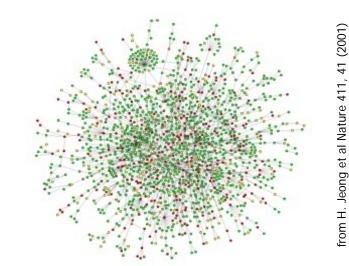
• Graph Neural Networks

Graph, Graph, Everywhere

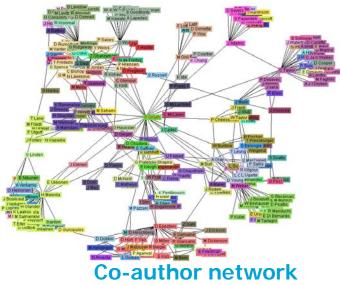


Aspirin

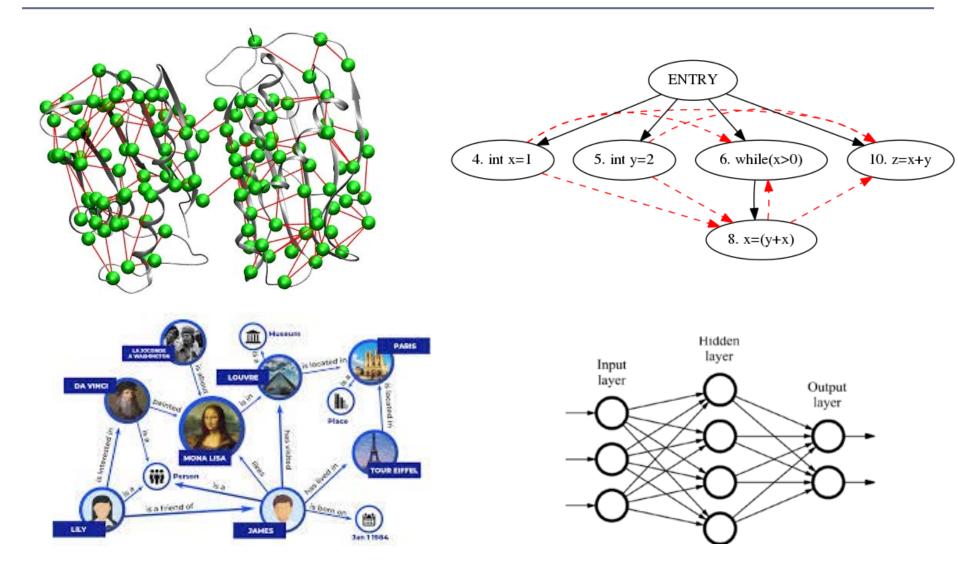




Yeast protein interaction network



More ...



Why Graph Mining?

- Graphs are ubiquitous
 - Chemical compounds (Cheminformatics)
 - Protein structures, biological pathways/networks (Bioinformactics)
 - Program control flow, traffic flow, and workflow analysis
 - XML databases, Web, and social network analysis
- Graph is a general model
 - Trees, lattices, sequences, and items are degenerated graphs
- Diversity of graphs
 - Directed vs. undirected, labeled vs. unlabeled (edges & vertices), weighted vs. unweighted, homogeneous vs. heterogeneous
- Complexity of algorithms: many problems are of high complexity

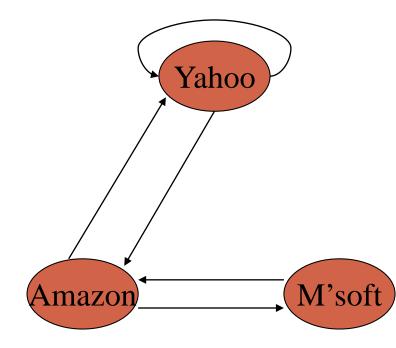
Representation of a Graph

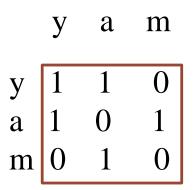
- $G = \langle V, E \rangle$
 - $V = \{u_1, \dots, u_n\}$: node set
 - $E \subseteq V \times V$: edge set
- Adjacency matrix

•
$$A = \{a_{ij}\}, i, j = 1, ..., N$$

- $a_{ij} = 1, if < u_i, u_j > \in E$
- $a_{ij} = 0$, if $\langle u_i, u_j \rangle \notin E$
- Undirected graph vs. Directed graph
 - $A = A^{\mathrm{T}} vs. A \neq A^{\mathrm{T}}$
- Weighted graph
 - Use W instead of A, where w_{ij} represents the weight of edge $< u_i, u_j >$

Example





Adjacency matrix A

Typical Graph Tasks

Node level

- Link prediction
- Node classification
- Similarity search
- Community detection
- Ranking

Graph level

- Graph Prediction
- Graph similarity search
- Frequent pattern mining
- MCS detection
- Clustering

Node level, Graph Property

- Betweenness score prediction
- Travelling salesman problem
- Network attack problem
- Set cover problem
- Maximum clique detection

Graph Techniques

- Approaches before GNNs
 - Heuristics
 - Graph signal processing
 - Graph Kernels
 - Graphical models

Content

Introduction to Graphs

Shallow Embedding

• Graph Neural Networks

Spectral Analysis

- Graph Laplacians are keys to understand graphs
 - Unnormalized graph Laplacians
 - Normalized graph Laplacians
- Spectral clustering
 - Leverage eigenvectors of graph Laplacians to conduct clustering on graphs
 - Has close relationship with graph cuts
- Label propagation
 - Semi-supervised node classification on graphs
 - Also related to graph Laplacians

What are Graph Laplacian Matrices?

 They are matrices defined as functions of graph adjacency or weight matrix

• A tool to study graphs

 There is a field called spectral graph theory studying those matrices

Examples of Graph Laplacians

- Given an undirected and weighted graph G = (V, E), with weight matrix W
 - $W_{ij} = W_{ji} \ge 0$
 - n: total number of nodes
 - Degree for node $v_i \in V: d_i = \sum_j w_{ij}$
 - Degree matrix *D*: a diagonal matrix with degrees on the diagonal, i.e., $D_{ii} = d_i$ and $D_{ij} = 0$ if $i \neq j$
- Three examples of graph Laplacians
 - The unnormalized graph Laplacian

• L = D - W

- The normalized graph Laplacians
 - Symmetric: $L_{sym} = D^{-1/2} L D^{-1/2}$
 - Random walk related: $L_{rw} = D^{-1}L$

The Unnormalized Graph Laplacian

- Definition: L = D W
- Properties of *L*
 - For any vector $f \in \mathbb{R}^n$

$$f'Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2.$$

- *L* is symmetric and positive semi-definite
- The smallest eigenvalue of *L* is 0, and the corresponding eigenvector is the constant one vector **1**
 - 1 is an all-one vector with n dimensions
 - An eigenvector can be scaled by multiplying a nonzero scalar α
- *L* has n non-negative, real-valued eigenvalues: $0 = \lambda_1 \le \lambda_2 \le \ldots \le \lambda_n$

• Will self loops in graph change *L*?

Number of Connected Components

- The multiplicity k of the eigenvalue 0 of L equals the number of connected components
 - Consider k = 1, i.e., a connected graph, and f, the corresponding eigenvector for 0

$$0 = f'Lf = \sum_{i,j=1}^{n} w_{ij}(f_i - f_j)^2$$

• Every element of *f* has to be equal to each other

K connected components

• The graph can be represented as a block diagonal matrix, and so do matrix *L*

$$L = \begin{pmatrix} L_1 & & & \\ & L_2 & & \\ & & \ddots & \\ & & & L_k \end{pmatrix}$$

- For each block L_i , it has eigenvalue 0 with corresponding constant one eigenvector
- For *L*, it has k eigenvalues with 0, with corresponding eigenvectors as indicator vectors
 - 1_{Ai} is an indicator vector, with ones for nodes in Ai,
 i.e., the nodes in component i, and zeros elsewhere

The normalized graph Laplacians

• Symmetric:

• $L_{sym} = D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2}$

Random walk related:

•
$$L_{rw} = D^{-1}L = I - D^{-1}W$$

Properties of L_{sym} and L_{rw}

• For any vector $f \in \mathbb{R}^n$

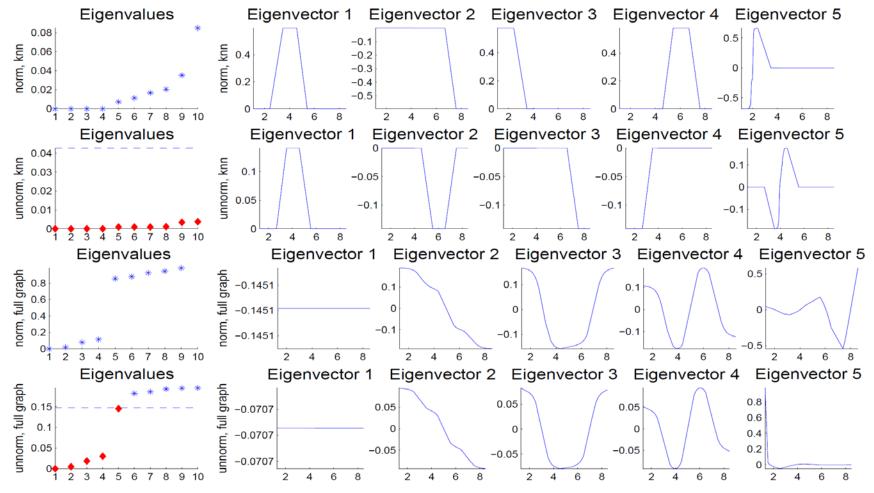
$$f'L_{sym}f = \frac{1}{2}\sum_{i,j=1}^{n} w_{ij} \left(\frac{f_i}{\sqrt{d_i}} - \frac{f_j}{\sqrt{d_j}}\right)^2$$

- λ is an eigenvalue of L_{rw} with eigenvector $v \Leftrightarrow \lambda$ is an eigenvalue of L_{sym} with eigenvector $w = D^{1/2}v$
- λ is an eigenvalue of L_{rw} with eigenvector $\nu \Leftrightarrow \lambda$ and ν solves the generalized eigen problem $Lv = \lambda Dv$
- 0 is an eigenvalue of L_{rw} with eigenvector **1**. 0 is an eigenvalue of L_{sym} with eigenvector $D^{1/2}$ **1**
- L_{sym} and L_{rw} are positive semi-definite, and have n non-negative real-valued eigenvalues

$$0 = \lambda_1 \le \ldots \le \lambda_n$$

Example

Graph built upon Gaussian mixture model with four components

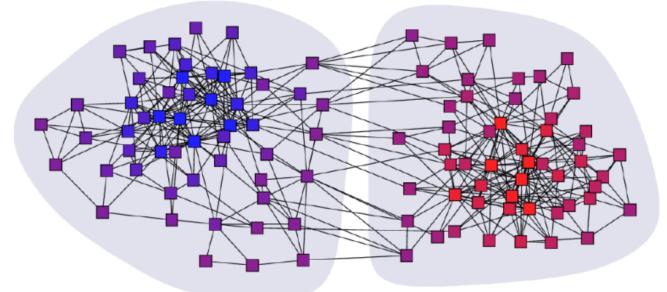


20

Spectral Clustering

Clustering Graphs and Network Data

- Applications
 - Bi-partite graphs, e.g., customers and products, authors and conferences
 - Web search engines, e.g., click through graphs and Web graphs
 - Social networks, friendship/coauthor graphs



Clustering books about politics [Newman, 2006]

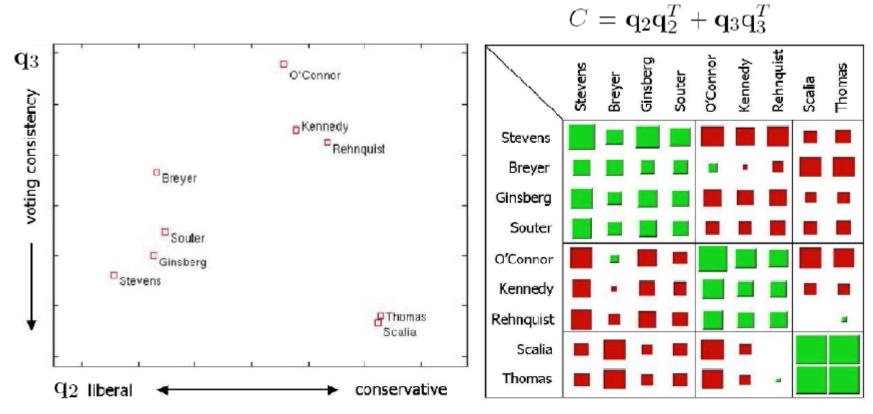
Example of Graph Clustering

- Reference: ICDM'09 Tutorial by Chris Ding
- Example:
 - Clustering supreme court justices according to

	Ste	Bre	Gin	Sou	O'Co	Ken	Reh	Sca	Tho
Stevens	_	62	66	63	33	36	25	14	15
Breyer	62	_	72	71	55	47	43	25	24
Ginsberg	66	72	_	78	47	49	43	28	26
Souter	63	71	78	_	55	50	44	31	29
O'Connor	-33	55	47	55	_	67	71	54	54
Kennedy	36	47	49	50	67	_	77	58	59
Rehnquist	25	43	43	44	71	77	_	66	68
Scalia	14	25	28	31	54	58	66	_	79
Thomas	15	24	26	29	54	59	68	79	_

Table 1: From the voting record of Justices 1995 Term – 2004 Term, the number of times two justices voted in agreement (in percentage). (Data source: from July 2, 2005 New York Times. Originally from Legal Affairs; Harvard Law Review)

Example: Continue



• Three groups in the Supreme Court:

- Left leaning group, center-right group, right leaning group.

Spectral Clustering Algorithms

- Goal: cluster nodes in the graph into k clusters
- Idea: Leverage the first k eigenvectors of L
- Major steps:
 - Compute the first k eigenvectors, $v_1, v_2, ..., v_k$, of L
 - Each node i is then represented by k values $x_i = (v_{1i}, v_{2i}, \dots, v_{ki})$
 - Cluster x_i 's using k-means

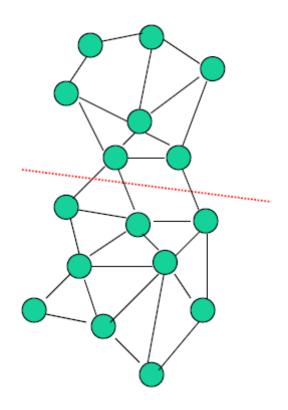
Variants of Spectral Clustering Algorithms

- Normalized spectral clustering according to Shi and Malik (2000)
 - Compute the first k eigenvectors, $v_1, v_2, ..., v_k$, of L_{rw}
- Normalized spectral clustering according to Ng, Jordan, and Weiss (2002)
 - Compute the first k eigenvectors, $v_1, v_2, ..., v_k$, of L_{sym}
 - Normalizing x_i to have norm 1

Connections to Graph Cuts

Min-Cut

• Minimize the # of cut of edges to partition a graph into 2 disconnected components



Objective Function of Min-Cut

2-way Spectral Graph Partitioning

Partition membership indicator:
$$q_i = \begin{cases} 1 & \text{if } i \in A \\ -1 & \text{if } i \in B \end{cases}$$

$$J = CutSize = \frac{1}{4} \sum_{i,j} w_{ij} [q_i - q_j]^2$$
$$= \frac{1}{4} \sum_{i,j} w_{ij} [q_i^2 + q_j^2 - 2q_i q_j] = \frac{1}{2} \sum_{i,j} q_i [d_i \delta_{ij} - w_{ij}] q_j$$
$$= \frac{1}{2} q^T (D - W) q$$

Relax indicators q_i from discrete values to continuous values, the solution for min J(q) is given by the eigenvectors of

$$(D-W)q = \lambda q$$

(Fiedler, 1973, 1975)

(Pothen, Simon, Liou, 1990)

Algorithm

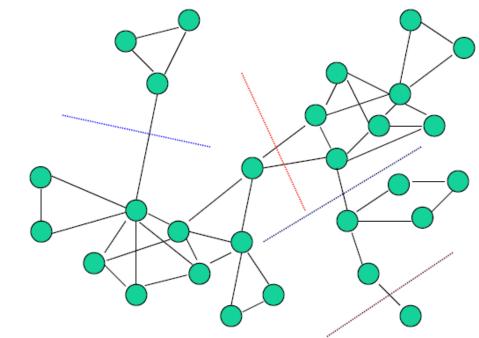
•Step 1:

- Calculate Graph Laplacian matrix: L = D W
- Step 2:
 - Calculate the second eigenvector q
 - Q: Why second?
- •Step 3:
 - Bisect q (e.g., 0) to get two clusters

Minimum Cut with Constraints

minimize cutsize without explicit size constraints

But where to cut ?



Need to balance sizes

Other Objective Functions

• Ratio Cut (Hangen & Kahng, 1992)

$$J_{Rcut}(A,B) = \frac{s(A,B)}{|A|} + \frac{s(A,B)}{|B|}$$

Normalized Cut (Shi & Malik, 2000)

$$d_A = \sum_{i \in A} d_i$$

 $s(A,B) = \sum \sum w_{ij}$

 $i \in A \ j \in B$

$$J_{Ncut}(A,B) = \frac{s(A,B)}{d_A} + \frac{s(A,B)}{d_B}$$

= $\frac{s(A,B)}{s(A,A) + s(A,B)} + \frac{s(A,B)}{s(B,B) + s(A,B)}$

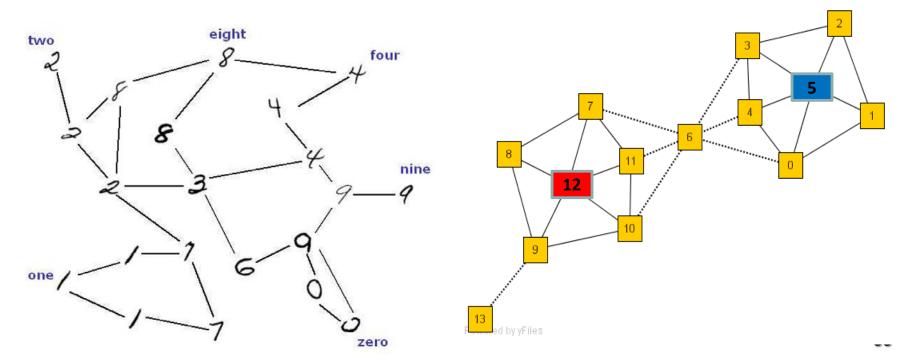
Min-Max-Cut (Ding et al, 2001)

$$J_{MMC}(A,B) = \frac{s(A,B)}{s(A,A)} + \frac{s(A,B)}{s(B,B)}$$

Label Propagation

Label Propagation in the Network

- Given a network, some nodes are given labels, can we classify the unlabeled nodes by using link information?
 - E.g., Node 12 belongs to Class 1, Node 5 Belongs to Class 2



Problem Formalization for Label Propagation

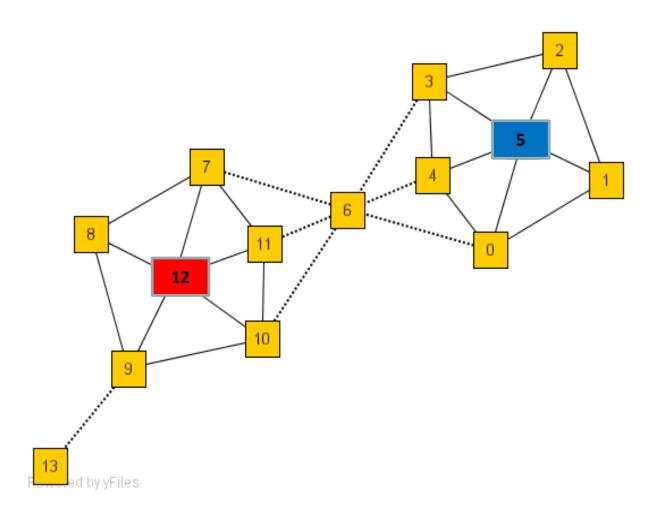
- Given n nodes
 - l with labels (e.g., Y_1, Y_2, \dots, Y_l are known)
 - u without labels (e.g., $Y_{l+1}, Y_{l+2}, \dots, Y_n$ are unknown)
 - Y is the n × K label matrix
 - K is the number of labels (classes)
 - Y_{ik} denotes the probability node i belonging to class k
- The weighted adjacency matrix is W
- The probabilistic transition matrix T

•
$$T_{ij} = P(j \rightarrow i) = \frac{w_{ij}}{\sum_{i'} w_{i'j}}$$

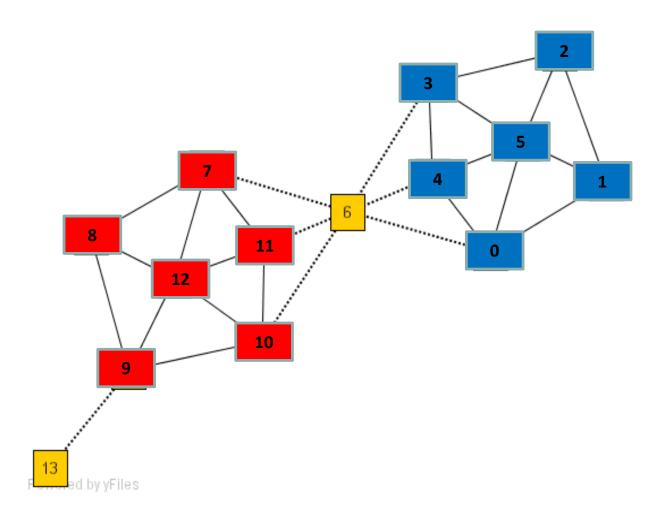
The Label Propagation Algorithm

- Step 1: Propagate $Y \leftarrow TY$
 - $Y_i = \sum_j T_{ij} Y_j = \sum_j P(j \to i) Y_j$
 - Initialization of Y for unlabeled ones is not important
- Step 2: Row-normalize Y
 - The summation of the probability of each object belonging to each class is 1
- Step 3: Reset the labels for the labeled nodes. Repeat 1-3 until Y converges

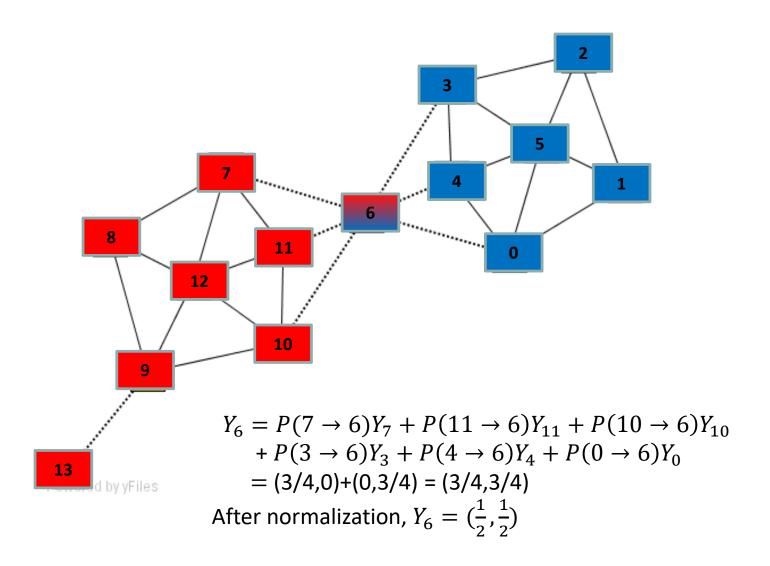
Example: Iter = 0



Example: Iter = 1



Example: Iter = 2



Other Label Propagation Algorithms

- Energy minimizing and harmonic function
 - Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions
 - By Xiaojin Zhu et al., ICML'03
 - <u>https://www.aaai.org/Papers/ICML/2003/ICML03-</u> <u>118.pdf</u>
- Graph regularization
 - Learning with Local and Global Consistency
 - By Denny Zhou et al., NIPS'03
 - <u>http://papers.nips.cc/paper/2506-learning-with-local-and-global-consistency.pdf</u>

From Energy Minimizing Perspective

- Consider a binary classification problem
 - $y \in \{0,1\}$
- Let $f: V \to R$, which maps a node to a real number • $f(i) = v_i$ if i is labeled
 - $f(i) = y_i$, if i is labeled

•
$$f = \begin{pmatrix} f_l \\ f_u \end{pmatrix}$$

The energy function

•
$$E(f) = \frac{1}{2} \sum_{i,j} w_{ij} (f(i) - f(j))^2$$

• Intuition: if two nodes are connected, they should share similar labels

Minimizing Energy Function Results in Harmonic Function

• Note E(f) = f'(D - W)f = f'Lf!

Goal: find f such that E(f) is minimized,
 and f_l is fixed

• Solution:

$$\bullet (D - W)f = 0$$

Solve
$$f_u$$

Consider W as a block matrix

$$W = \left[\begin{array}{cc} W_{ll} & W_{lu} \\ W_{ul} & W_{uu} \end{array} \right]$$

- Closed form solution of f_u : $f_u = (D_{uu} - W_{uu})^{-1} W_{ul} f_l = (I - P_{uu})^{-1} P_{ul} f_l$
 - Where $P = D^{-1}W$
- Iterative solution of f_u :
 - $f_u = (\sum_{t=0} P_{uu}^t) P_{ul} f_l \Rightarrow f_u^t = P_{uu} f_u^{t-1} + P_{ul} f_l$
 - $As (I P_{uu})^{-1} = I + P_{uu} + P_{uu}^2 + \cdots$

From Graph Regularization Perspective

- Let F be n*K matrix with nonnegative entries
 - For node i, pick the label k such that F_{ik} is the maximum on among all the k
- Let Y be n*K matrix with $y_{ik} = 1$, if node i is labeled as class k, and 0 otherwise.
- Cost function:
- Smoothness constraint + fitting constraint

$$\mathcal{Q}(F) = \frac{1}{2} \left(\sum_{i,j=1}^{n} W_{ij} \left\| \frac{1}{\sqrt{D_{ii}}} F_i - \frac{1}{\sqrt{D_{jj}}} F_j \right\|^2 + \mu \sum_{i=1}^{n} \left\| F_i - Y_i \right\|^2 \right)$$

Solve F

- Note the first component is related to $trace(F'L_{sym}F)$
- Closed form solution:

•
$$\left. \frac{\partial \mathcal{Q}}{\partial F} \right|_{F=F^*} = F^* - SF^* + \mu(F^* - Y) = 0$$

•
$$\Rightarrow F^* = (1 - \alpha)(I - \alpha S)^{-1}Y$$

- Where $S = D^{-1/2}WD^{-1/2}$, $\alpha = \frac{1}{1+\mu}$ is a value between 0 and 1
- Iterative solution:

•
$$F(t+1) = \alpha SF(t) + (1-\alpha)Y$$

References

- A Tutorial on Spectral Clustering by U. Luxburg <u>http://www.kyb.mpg.de/fileadmin/user_upload/files/public</u> <u>ations/attachments/Luxburg07_tutorial_4488%5B0%5D.pdf</u>
- Learning from Labeled and Unlabeled Data with Label Propagation
 - By Xiaojin Zhu and Zoubin Ghahramani
 - <u>http://www.cs.cmu.edu/~zhuxj/pub/CMU-CALD-02-107.pdf</u>
- Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions
 - By Xiaojin Zhu et al., ICML'03
 - <u>https://www.aaai.org/Papers/ICML/2003/ICML03-118.pdf</u>
- Learning with Local and Global Consistency
 - By Denny Zhou et al., NIPS'03
 - <u>http://papers.nips.cc/paper/2506-learning-with-local-and-global-consistency.pdf</u>

Content

Introduction to Graphs

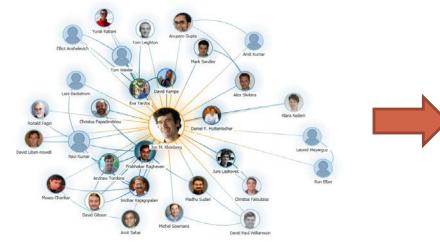
Spectral analysis

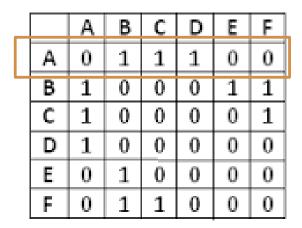
Shallow Embedding

Graph Neural Networks

Representing Nodes and Graphs

- Important for many graph related tasks
- Discrete nature makes it very challenging
- Naïve solutions



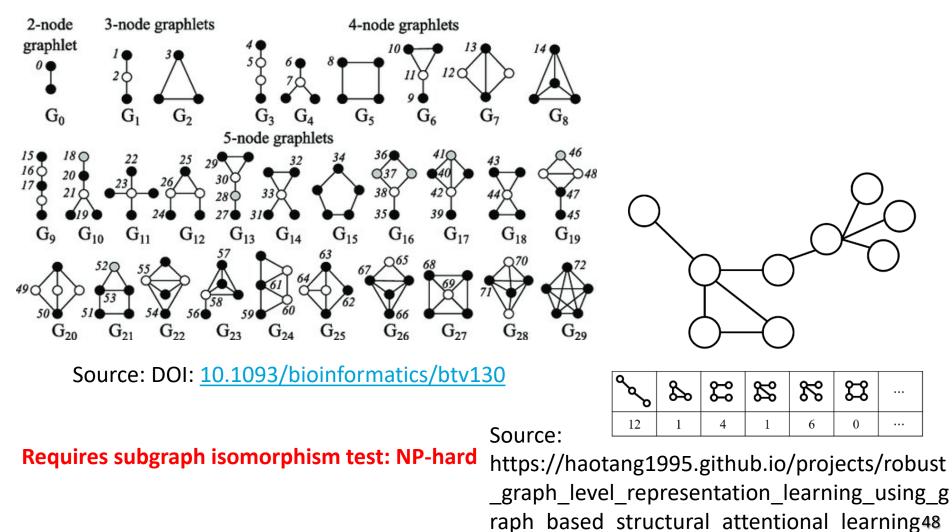


Limitations:

Extremely High-dimensional No global structure information integrated Permutation-variant

Even more challenging for graph representation

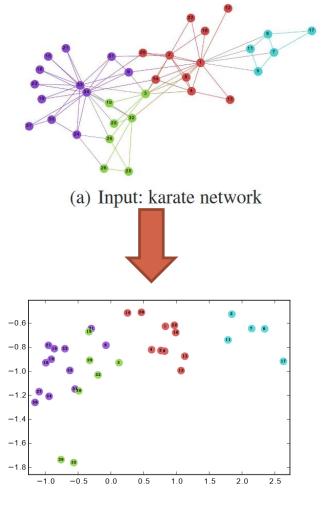
Ex. Graphlet-based feature vector



Automatic representation Learning

- Map each node/graph into a low dimensional vector
 - $\bullet \phi \colon V \to R^d \text{ or } \phi \colon \mathcal{G} \to R^d$
- Earlier methods
 - Shallow node embedding methods inspired by word2vec
 - DeepWalk [Perozzi, KDD'14]
 - LINE [Tang, WWW'15]
 - Node2Vec [Grover, KDD'16]

 $\phi(v) = U^T x_v$, where U is the embedding matrix and x_v is the one-hot encoding vector

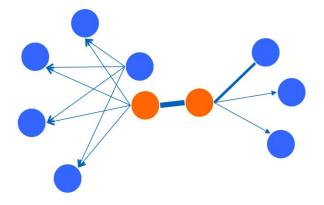


(b) Output: representations

Source: DeepWalk

LINE: Large-scale Information Network Embedding

• First-order proximity



• Assumption: Two nodes are similar if they are connected

$$p_1(v_i, v_j) = \frac{\exp(\vec{u}_i^T \vec{u}_j)}{\sum_{(m,n)\in V\times V} \exp(\vec{u}_m^T \vec{u}_n)}$$

 u_i : embedding vector for node i

• Limitation: links are sparse, not sufficient

Objective function for first-order proximity

 Minimize the KL divergence between empirical link distribution and modeled link distribution

$$\hat{p}_1(v_i, v_j) = \frac{w_{ij}}{\sum_{(m,n)\in E} w_{mn}}$$

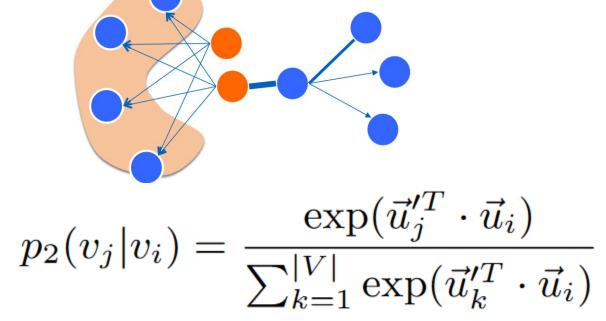
$$O_1 = KL(\hat{p}_1, p_1) = -\sum_{(i,j)\in E} w_{ij} \log p_1(v_i, v_j)$$

 w_{ij} : weight over edge(i, j)

Second-Order Proximity

•Assumption:

• Two nodes are similar if their neighbors are similar



 u_i : target embedding vector for node i u'_j : context embedding vector for node j

Objective function for second-order proximity

 Minimize the KL divergence between empirical link distribution and modeled ink distribution • Empirical distribution $\hat{p}_2(v_j | v_i) = \frac{w_{ij}}{\sum w_{ik}}$

Objective function

$$O_2 = \sum_{i} KL(\hat{p}_2(\cdot | v_i), p_2(\cdot | v_i)) = -\sum_{(i,j)\in E} w_{ij} \log p_2(v_j | v_i)$$
$$\overset{i}{\mathbf{d}_i} = \sum_{k} w_{ik}$$

k∈V

Negative Sampling for Optimization

- For second-order proximity derived objective function
 - For each positive link (i, j), sample K negative links (i, n)
 - An edge with weight w can be considered as w binary edges

$$\log \sigma(\vec{u}_{j}^{\prime T} \cdot \vec{u}_{i}) + \sum_{i=1}^{K} E_{v_{n} \sim P_{n}(v)} [\log \sigma(-\vec{u}_{n}^{\prime T} \cdot \vec{u}_{i})]$$
negative distribution: $P_{n}(v) \propto d_{n}^{3/4}$

Limitation of shallow embedding techniques

- Too many parameters
 - Each node is associated with an embedding vector, which are parameters
- Not inductive
 - Cannot handle new nodes
- Cannot handle node attributes

From shallow embedding to Graph Neural Networks

- The embedding function (encoder) is more complicated
 - Shallow embedding
 - $\phi(v) = U^T x_v$, where U is the embedding matrix and x_v is the one-hot encoding vector
 - Graph neural networks
 - $\phi(v)$ is a neural network depending on the graph structure

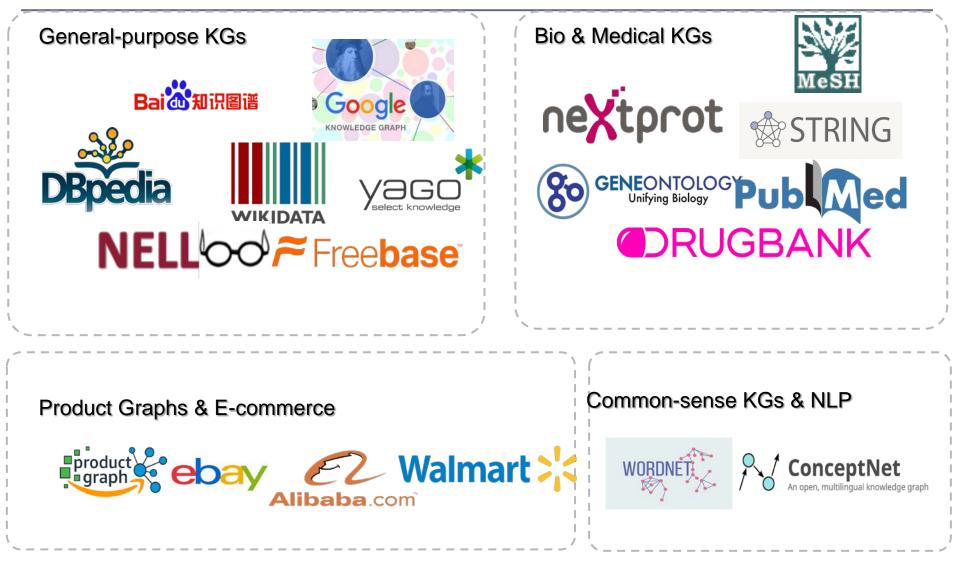
Knowledge Graph Embedding

Knowledge Graph

- What are knowledge graphs?
 - Multi-relational graph data
 - (heterogeneous information network)
 - Provide structured representation for semantic relationships between real-world entities

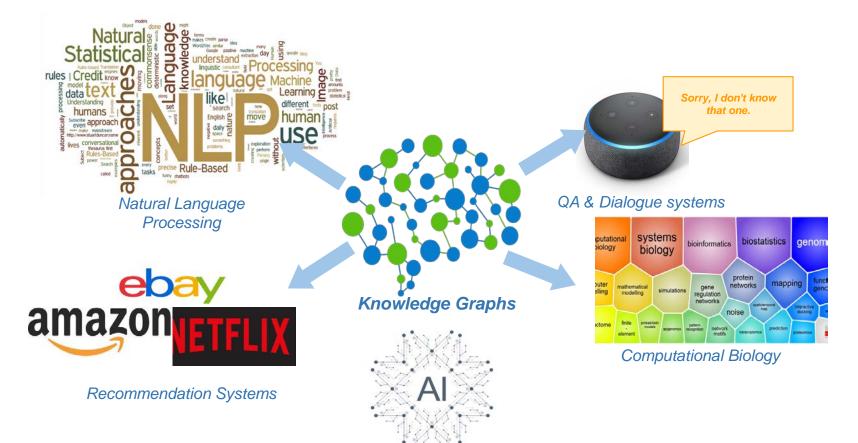


Examples of KG



Applications of KGs

- Foundational to knowledge-driven AI systems
- Enable many downstream applications (NLP tasks, QA systems, etc)



Knowledge Graph Embedding

•Goal:

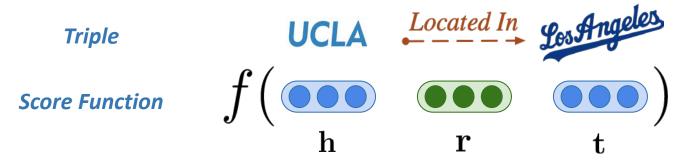
• Encode entities as low-dimensional vectors and relations as parametric algebraic operations

•Applications:

- Dialogue agents
- Question answering
- Machine comprehension
- Recommender systems

Key Idea of KG embedding algorithms

- Define a score function for a triple: $f_r(h, t)$
 - According to entity and relation representation



- Define a loss function to guide the training
 - E.g., an observed triple scores higher than a negative one

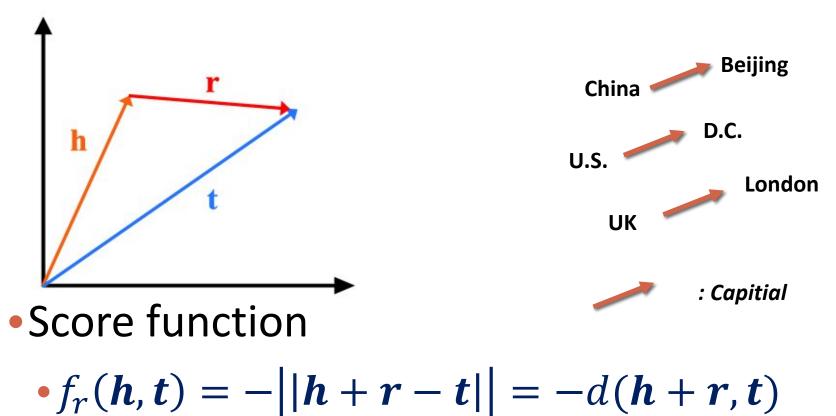
Summary of Existing Approaches

Model	Score Function	
SE (Bordes et al., 2011)	$\ - \ oldsymbol{W}_{r,1} \mathbf{h} - oldsymbol{W}_{r,2} \mathbf{t} \ $	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^k, oldsymbol{W}_{r,\cdot} \in \mathbb{R}^{k imes k}$
TransE (Bordes et al., 2013)	$\ \mathbf{h} + \mathbf{r} - \mathbf{t}\ $	$\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^k$
TransX	$\ - \ g_{r,1}(\mathbf{h}) + \mathbf{r} - g_{r,2}(\mathbf{t}) \ $	$\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^k$
DistMult (Yang et al., 2014)	$\langle {f r}, {f h}, {f t} angle$	$\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^k$
ComplEx (Trouillon et al., 2016)	$\operatorname{Re}(\langle \mathbf{r}, \mathbf{h}, \overline{\mathbf{t}} angle)$	$\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{C}^k$
HolE (Nickel et al., 2016)	$\langle {f r}, {f h} \otimes {f t} angle$	$\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^k$
ConvE (Dettmers et al., 2017)	$\langle \sigma(\operatorname{vec}(\sigma([\overline{\mathbf{r}},\overline{\mathbf{h}}]*\mathbf{\Omega})) \boldsymbol{W}),\mathbf{t} angle$	$\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^k$
RotatE	$\ \mathbf{h}\circ\mathbf{r}-\mathbf{t}\ ^2$	$\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{C}^k, r_i = 1$

Source: Sun et al., RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space (ICLR'19)

TransE: Score Function

Relation: translating embedding



Bordes et al., Translating embeddings for modeling multi-relational data, NeurIPS 2013

TransE: Objective Function

- Objective Function
 - Margin-based ranking loss
 - $L = \sum_{(h,r,t)\in S} \sum_{(h',r,t')\in S'_{(h,r,t)}} [\gamma + d(h +$

TransE: Limitations

- One-one mapping: $t = \phi_r(h)$
 - Given (h,r), t is unique
 - Given (r,t), h is unique
- Anti-symmetric
 - If r(h,t) then r(t,h) is not true
 - Cannot model symmetric relation, e.g., friendship
- Anti-reflexive
 - r(h,h) is not true
 - Cannot model reflexive relations, e.g., synonym

DistMult

- Bilinear score function
 - $f_r(\boldsymbol{h}, \boldsymbol{t}) = \boldsymbol{h}^T \boldsymbol{M}_r \boldsymbol{t}$
 - Where $oldsymbol{M}_r$ is a diagonal matrix with diagonal vector $oldsymbol{r}$
 - A simplification to neural tensor network (NTN)
- Objective function
 - $L = \sum_{(h,r,t)\in S} \sum_{(h',r,t')\in S'_{(h,r,t)}} [\gamma f_r(h,t) + f_r(h',t')]_+$

Limitation

- Can only model symmetric relation
 - $f_r(\boldsymbol{h}, \boldsymbol{t}) = f_r(\boldsymbol{t}, \boldsymbol{h})$

Yang et al., Embedding entities and relations for learning and inference in knowledge bases, ICLR 2015

RotatE: Score Function

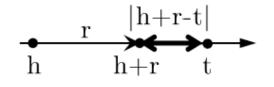
- Relation: rotation operation in complex space
 - head and tail entities in complex vector space, i.e.,
 h, t ∈ ℂ^k
 - each relation r as an element-wise rotation from the head entity h to the tail entity t, i.e.,
 - $t = h \circ r$, *i.e.*, $t_i = h_i r_i$, where $|r_i| = 1$
 - Equivalently, $r_i = e^{i\theta_{r,i}}$, *i.e.*, *rotate* h_i with $\theta_{r,i}$
- Score function:

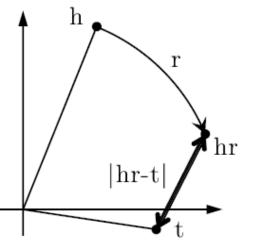
•
$$f_r(h,t) = -||\boldsymbol{h} \circ \boldsymbol{r} - \boldsymbol{t}||$$

Zhiqing Sun, Zhihong Deng, Jian-Yun Nie, and Jian Tang. "RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space." ICLR'19.

RotatE: Geometric Interpretation

Consider 1-d case





(a) TransE models **r** as translation in real line.

(b) RotatE models **r** as rotation in complex plane.

RotatE: Objective function

Smarter negative sampling

 The negative triple with higher score is more likely to be sampled

$$p(h'_j, r, t'_j | \{(h_i, r_i, t_i)\}) = \frac{\exp \alpha f_r(\mathbf{h}'_j, \mathbf{t}'_j)}{\sum_i \exp \alpha f_r(\mathbf{h}'_i, \mathbf{t}'_i)}$$

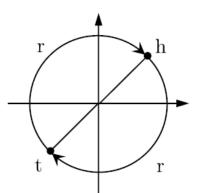
Cross-entropy loss

$$L = -\log \sigma(\gamma - d_r(\mathbf{h}, \mathbf{t})) - \sum_{i=1}^n p(h'_i, r, t'_i) \log \sigma(d_r(\mathbf{h}'_i, \mathbf{t}'_i) - \gamma)$$

RotatE: Pros and Cons

• Pros:

- Can model relations with different propertie
- Symmetric: $r_i = +1 \ or \ -1$
- Anti-symmetric: $r \circ r \neq 1$
- Inverse relations: $\mathbf{r}_2 = \overline{\mathbf{r}_1}$



- E.g., hypernym is the **inverse** relation of hyponym
- Composition relations: $r_3 = r_1 \circ r_2$, i. e., $\theta_3 = \theta_1 + \theta_2$, if $r_j = e^{i\theta_j}$ for j = 1,2,3

• Cons:

- One-one mapping
- Relations are commutative: i.e., $r_1 \circ r_2 = r_2 \circ r_1$
 - Which is not always true, e.g., father's wife ≠ wife's father

Content

Introduction to Graphs

Spectral analysis

Shallow Embedding

Notations

- •An attributed graph G = (V, E)
 - *V*: vertex set
 - E: edge set
 - A: adjacency matrix
 - $X \in \mathbb{R}^{d_0 \times |V|}$: feature matrix for all the nodes
 - N(v): neighbors of node v
 - h_{v}^{l} : Representation vector of node v at Layer l
 - Note $h_v^0 = x_v$
 - $H^{l} \in \mathbb{R}^{d_{l} \times |V|}$: representation matrix

The General Architecture of GNNs

• For a node v at layer t

$$h_v^{(t)} = f\left(\underline{h_v^{(t-1)}}, \left\{\underline{h_u^{(t-1)}}|u \in \mathcal{N}(v)\right\}\right)$$

representation vector from previous layer for node v representation vectors from previous layer for node v's neighbors

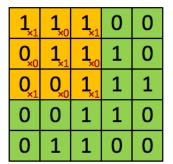
- A function of representations of neighbors and itself from previous layers
 - Aggregation of neighbors
 - Transformation to a different space
 - Combination of neighbors and the node itself

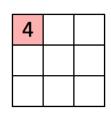
Compare with CNN

Recall CNN

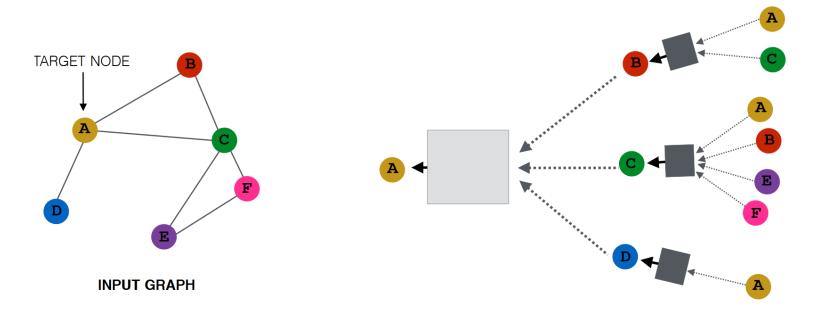
• GNN

• Regular graph





• Extend to irregular graph structure • Extend to irregular graph structure



Graph Convolutional Network (GCN)

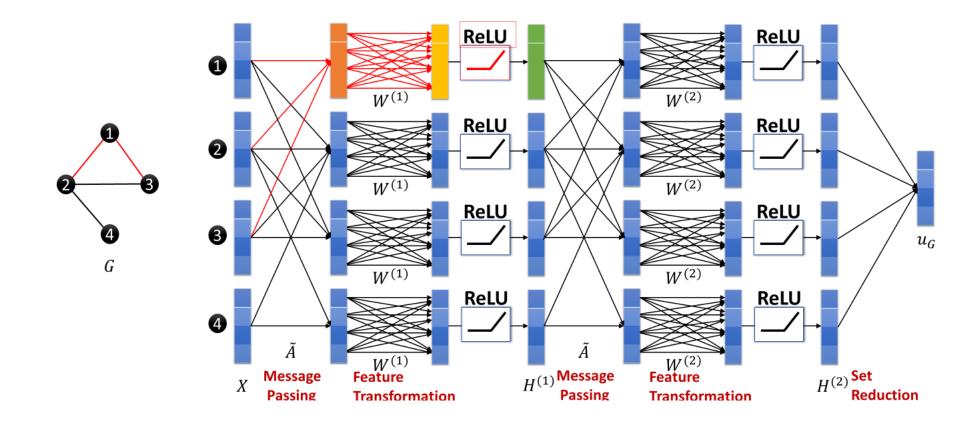
- Kipf and Welling, ICLR'17
 - $f(H^{(l)}, A) = \sigma\left(\hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}}H^{(l)}W^{(l)}\right), \hat{A} = A + I$
 - f: graph filter
- From a node v's perspective

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v) \cup v} \frac{\mathbf{h}_{u}^{k-1}}{\sqrt{|N(u)||N(v)|}} \right)$$

W_k: weight matrix at Layer k, shared across different nodes

A toy example of 2-layer GCN on a 4node graph

Computation graph



GraphSAGE

 Inductive Representation Learning on Large Graphs William L. Hamilton*, Rex Ying*, Jure Leskovec, NeurIPS'17

$$\mathbf{h}_{\mathcal{N}(v)}^{k} \leftarrow \operatorname{AGGREGATE}_{k}(\{\mathbf{h}_{u}^{k-1}, \forall u \in \mathcal{N}(v)\})$$
$$\mathbf{h}_{v}^{k} \leftarrow \sigma\left(\mathbf{W}^{k} \cdot \operatorname{CONCAT}(\mathbf{h}_{v}^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^{k})\right)$$

A more general form

$$\mathbf{h}_{v}^{k} = \sigma\left(\left[\mathbf{W}_{k} \cdot \overline{\operatorname{AGG}\left(\{\mathbf{h}_{u}^{k-1}, \forall u \in N(v)\}\right)}, \mathbf{B}_{k}^{k} \mathbf{h}_{v}^{k-1}\right]\right)$$

More about AGG

• Mean
$$AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_u^{k-1}}{|N(v)|}$$

• LSTM AGG = LSTM $([\mathbf{h}_u^{k-1}, \forall u \in \pi(N(v))])$ • $\pi(\cdot)$: a random permutation

Pool AGG = γ {Qh_u^{k-1}, ∀u ∈ N(v)} γ(·): Element-wise mean/max pooling of neighbor set

Message-Passing Neural Network

- Gilmer et al., 2017. Neural Message Passing for Quantum Chemistry. *ICML*.
- A general framework that subsumes most GNNs
 - Can also include edge information
- Two steps
 - Get messages from neighbors at step k

$$\mathbf{m}_v^k = \sum_{u \in N(v)} M(\mathbf{h}_u^{k-1}, \mathbf{h}_v^{k-1}, \mathbf{e}_{u,v})$$
 e.g., Sum or MLP

• Update the node latent represent based on the msg $\mathbf{h}_{v}^{k} = U(\mathbf{h}_{v}^{k-1}, \mathbf{m}_{v}^{k})$ e.g., LSTM, GRU

A special case: GGNN, Li et al., Gated graph sequence neural networks, ICLR 2015

Graph Attention Network (GAN)

- How to decide the importance of neighbors?
 - GCN: a predefined weight
 - Others: no differentiation
- GAN: decide the weights using learnable attention
 - Velickovic et al., 2018. Graph Attention Networks. *ICLR*.

$$\vec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right)$$

The attention mechanism

Potentially many possible designs

$$\alpha_{ij} = \frac{\exp\left(\operatorname{LeakyReLU}\left(\vec{\mathbf{a}}^{T}[\mathbf{W}\vec{h}_{i}\|\mathbf{W}\vec{h}_{j}]\right)\right)}{\sum_{k \in \mathcal{N}_{i}} \exp\left(\operatorname{LeakyReLU}\left(\vec{\mathbf{a}}^{T}[\mathbf{W}\vec{h}_{i}\|\mathbf{W}\vec{h}_{k}]\right)\right)}$$

Heterogeneous Graph Transformer (HGT)

- How to handle heterogeneous types of nodes and relations?
 - Introduce different weight matrices for different types of nodes and relations
 - Introduce different attention weight matrices for different types of nodes and relation

Write

 S_1

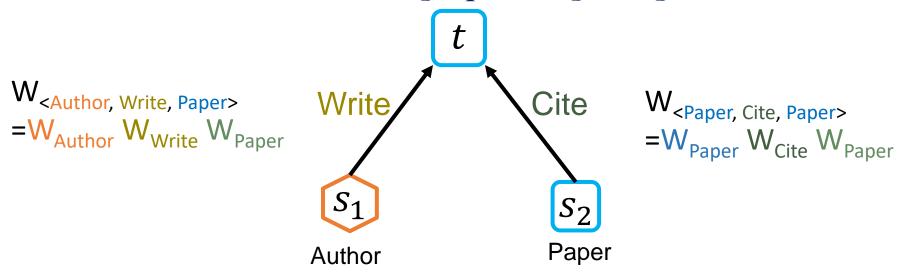
Author

Cite

Hu et al., Heterogeneous Graph Transformer, WWW'20

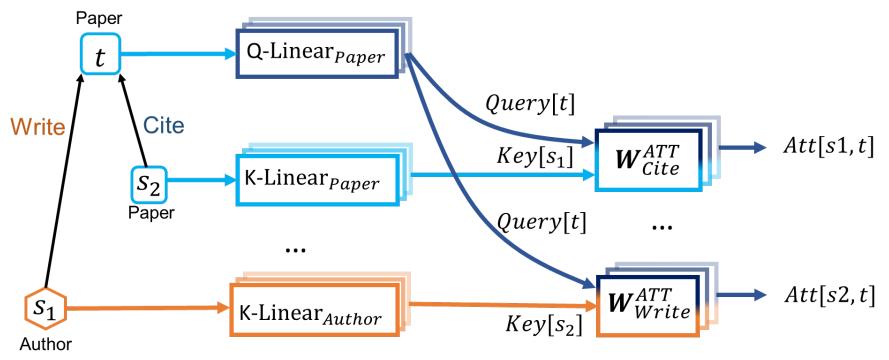
Meta-Relation-based Parametrization

- Introduce node- and edge- dependent parameterization
 - Leverage meta relation <*source node type*, *edge type*, *target node type*> to parameterize attention and message passing weight.



Meta-Relation-based Attention

 Attention learning is also parameterized based on node type and link type



Downstream Tasks for Graphs

Typical Graph Functions

Node level

- Similarity search
- Link prediction
- Classification
- Community detection
- Ranking

Graph level

- Similarity search
- Frequent pattern mining
- Graph isomorphism test
- Graph matching
- Classification
- Clustering
- Graph generation

1. Semi-supervised Node Classification

- Decoder using $z_v = h_v^L$
 - Feed into another fully connected layer
 - $\hat{y}_v = \sigma(\theta^T z_v)$
- Loss function
 - Cross entropy loss
 - In a binary classification case

•
$$l_v = y_v \log \hat{y}_v + (1 - y_v) \log(1 - \hat{y}_v)$$

Applications of Node Classification

- Social network
 - An account is bot or not
- Citation network
 - A paper's research field
- A program-derived graph
 - The type of a variable

2. Link Prediction

- Decoder using $z_v = h_v^L$
 - Given a node pair (u, v)
 - Determine its probability $p_{uv} = z_u^T R z_v$
 - R could be different for different relation type
- Loss function
 - Cross entropy loss
 - $l_{uv} = y_{uv} log p_{uv} + (1 y_{uv}) log (1 p_{uv})$

Link Prediction Applications

Social network

- Friend recommendation
- Citation network
 - Citation recommendation
- Medical network
 - Drug and target binding or not
- A program-derived graph
 - Code autocomplete

3. Graph Classification

- Decoder using $h_G = g(\{z_v\}_{v \in V})$
 - $g(\cdot)$: a read out function, e.g., sum
 - Feed h_G into another fully connected layer
 - $\bullet \hat{y}_G = \sigma(\theta^T h_G)$
- Loss function
 - Cross entropy loss
 - In a binary classification case

•
$$l_G = y_G \log \hat{y}_G + (1 - y_G) \log(1 - \hat{y}_G)$$

Graph Classification Applications

- Chemical compounds
 - Toxic or not
- Proteins
 - Has certain function or not
- Program-derived graphs
 - Contains bugs or not

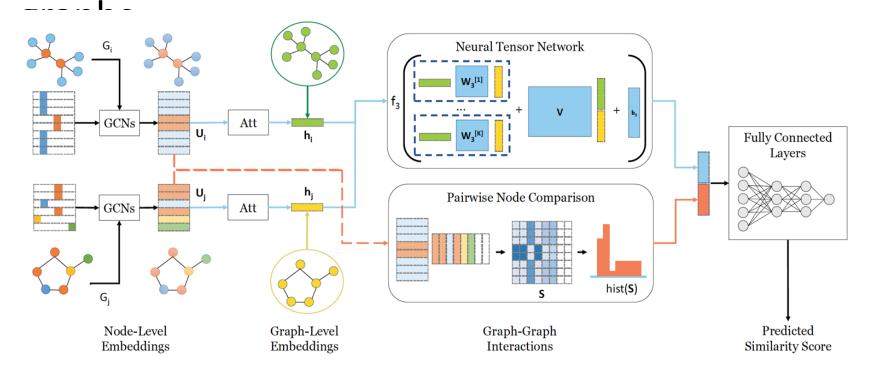
4. Graph Similarity Computation

- Decoder using $h_G = g(\{z_v\}_{v \in V})$
 - Given a graph pair (G_1, G_2)
 - Determine its score $s_{G_1G_2} = h_{G_1}^T R h_{G_2}$
- Loss function
 - E.g., Square loss

•
$$l_{G_1G_2} = (y_{G_1G_2} - s_{G_1G_2})^2$$

A Concrete solution by SimGNN [Bai et al., AAAI 2019]

• Goal: learn a GNN $\phi: \mathcal{G} \times \mathcal{G} \rightarrow \mathbb{R}^+$ to approximate Graph Edit Distance between two



- 1. Attention-based graph-level embedding
- 2. Histogram features from pairwise node similarities

Graph Similarity Computation Applications

- Drug database
 - Drug similarity search
- Program database
 - Code recommendation
 - Search ninja code for novice code
 - Search java code for COBOL code

BUSINESS

Wanted urgently: People who know a half century-old computer language so states can process unemployment claims

By Alicia Lee, CNN Updated 4:00 PM ET, Wed April 8, 2020

Introduction to Graphs

Spectral analysis

Shallow Embedding

• Graph Neural Networks