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Graph, Graph, Everywhere

Co-author network
Internet

from H. Jeong et al Nature 411, 41 (2001)
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Why Graph Mining?

- Graphs are ubiquitous
« Chemical compounds (Cheminformatics)
- Protein structures, biological pathways/networks (Bioimformactics)
» Program control flow, trathic flow, and workflow analysis
- XML databases, Web, and social network analysis
- Graph is a general model
* Trees, lattices, sequences, and items are degenerated graphs
« Diversity of graphs

» Directed vs. undirected, labeled vs. unlabeled (edges & vertices), weighted vs.

unwelghted, homogeneous vs. heterogeneous

« Complexity of algorithms: many problems are of high complexity



Representation of a Graph

G =<V,E>
-V ={uy, ..., uy}: node set
«EF CV XV:edge set
- Adjacency matrix
cA={a;}ij=1,..,N
ca; = 1,if <u,u >€EE
ca; =0,if <u,u >¢E
» Undirected graph vs. Directed graph
cA=ATvs. A+ AT
* Weighted graph

* Use Winstead of A, where w;; represents the weight of edge
< ui,uj >



Example
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Adjacency matrix A




Typical Graph Tasks

- Node level « Graph level
- Link prediction  Graph Prediction
+ Node classification  Graph similarity search
 Simularity search  Frequent pattern mining
» Community detection « MCS detection
- Ranking + Clustering

» Node level, Graph Property
» Betweenness score prediction

Travelling salesman problem

Network attack problem

Set cover problem

Maximum chique detection




Graph Techniques

- Approaches before GNNs

 Heuristics

» Grap!

D.

» Grap!

D.

» Grap!

D.

n signal processing

h Kernels

hical models
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Spectral Analysis

- Graph Laplacians are keys to understand
graphs
» Unnormalized graph Laplacians
» Normalized graph Laplacians

- Spectral clustering

- Leverage eigenvectors of graph Laplacians to
conduct clustering on graphs

» Has close relationship with graph cuts

- Label propagation
» Semi-supervised node classification on graphs
» Also related to graph Laplacians

11



What are Graph Laplacian Matrices?

- They are matrices defined as functions of
graph adjacency or weight matrix

» A tool to study graphs

- There is a field called spectral graph
theory studying those matrices

12



Examples of Graph Laplacians

- Given an undirected and weighted graph ¢ = (V, E),
with weight matrix W

° Wij — VVji = 0
» n: total number of nodes
* Degree for node v; € V:d; = ) wy;
* Degree matrix D: a diagonal matrix with degrees on the
diagonal, 1.e., Dj; = d;and Dy; = 0if i #
- Three examples of graph Laplacians
 The unnormalized graph Laplacian
L=D-W
 The normalized graph Laplacians
- Symmetric: Lgy,,, = D™Y/2LD71/2
- Random walk related: L,,, = D71L

13



The Unnormalized Graph Laplacian

» Definition: L =D — W
* Properties of L
- For any vector f € R™

1 T )
f'Lf =5 Zl wii (fi = fi)*.
1,)=
e L 1s symmetric and positive semi-definite

* The smallest eigenvalue of L 1s 0, and the
corresponding eigenvector 1s the constant one vector 1
* 1 is an all-one vector with n dimensions
» An eigenvector can be scaled by multiplying a nonzero
scalar a

« L has n non-negative, real-valued eigenvalues:



Question

* Will self loops in graph change L?
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Number of Connected Components

- The multiplicity k of the eigenvalue O of L
equals the number of connected
components

* Consider k = 1, 1.e., a connected graph, and
f, the corresponding eigenvector for 0

0=f'Lf = wij(fi— f;)?
1,7=1

» Every element of f has to be equal to each
other

16



K connected components

- The graph can be represented as a block
diagonal matrix, and so do matrix L

(L )

L,

)

* For each block L;, 1t has eigenvalue 0 with
corresponding constant one eigenvector

» For L, 1t has k eigenvalues with 0, with
corresponding eigenvectors as imdicator vectors

° 1Ai is an indicator vector, with ones for nodes in 4;,
i.e., the nodes in component i, and zeros elsewhere

17



The normalized graph Laplacians

*Symmetric:

*Lgym = D™Y2LD~Y2 = | — D~1/2WwD~1/2
*Random walk related:

L., =D"L=1-D"1W

18



Properties of L,,,,, and L,.,,

» For any vector f € R™ ,
1 / f?' f
f,LS}-’!??f — A Z Wy 4 — — . )
25 \Vdi Vs

* A 1s an eigenvalue of L., with eigenvector v <& A is an
eigenvalue of Lg,y,y, with eigenvector w = D2y

* A 1s an eigenvalue of L., with eigenvector v <> A and v
solves the generalized eigen problem Lv = ADv

* 0 15 an eigenvalue of L,.,, with eigenvector 1. 0 1s an
eigenvalue of Lgy,y, with eigenvector D1/21

* Lgym and Ly, are positive semi-definite, and have n
non-negative real-valued eigenvalues

D=\ <...< A\,

19



Example

» Graph built upon Gaussian mixture model with
four components
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Spectral Clustering



Clustering Graphs and Network Data

- Applications

 Bi-partite graphs, e.g., customers and products, authors and
conferences

« Web search engines, e.g., click through graphs and Web
eraphs
« Social networks, friendship/coauthor graphs

Clustering books about politics [Newman, 2006]
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Example of Graph Clustering

-Reference: ICDM’09 Tutorial by Chris Ding
-Example:

- Clustering supreme court justices according to

Number of times (%) two Justices voted Iin agreement
Ste Bre (5in Somn O'Co Ken Reh Sca Tho
Stevens (2 G 63 33 30 25 14 15
Brever (2 72 71 55 A7 13 25 24
Ginsherg 66 72 8 47 49 43 28 26
W = Souter 63 71 T8 - 55 50 44 31 29
O'Connor a3 DH 47 DH 67 7] 24 24
Kennedy 36 47 49 50) 67 — [ h8 59
Rehnguist 25 43 43 44 71 TT - G it
Scalia 14 25 25 31 54 58 (i 7
Thomas 15 24 26 29 54 59 it 70 -
Table 1: From the voting record of Justices 1995 Term — 2004 Term, the number of times two
justices voted in agreement (in percentage). (Data source: from July 2, 2005 New York Times.

Originallv from Legal Affairs; Harvard Law Review)



Example: Continue

C' = qaqs + q3q;

q3 O
Q' Conngr
-
L L
g g Kennady
c | :Hehnqulst
< .
i Breyer
1I:
.E‘ L.
=
Bsouer
i EGinsharg
Hstevens
I lﬁJThumas
SCalia
1 ] 1 1 i
2 liberal = » conservative

« Three groups in the Supreme Court:

Stevens
Breyar
Ginsberg
Souter
O'Connar
Kennedy
Rehnguist
Scalia

Thomas

§L§E%§%£E
§ 52385538
FelpeoEENEs=
EEEE« - BB
B BEEEN-s==
e EEEN
H:-E=anslENE
H - B e nm
HE=EEmEEnNn -
sE=nm= BN
ml==N= - BN

- Left leaning group, center-right group, right leaning group.
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Spectral Clustering Algorithms

*Goal: cluster nodes in the graph into k
clusters

ldea: Leverage the first k eigenvectors of L
* Major steps:

- Compute the first k eigenvectors, v, U5, ..., Uy,
of L

 lach node 11s then represented by k values
X; = (V14 Vais vy Vi)

e Cluster x;’s using k-means

25



Variants of Spectral Clustering

Algorithms
*Normalized spectral clustering according
to Shi and Malik (2000)

- Compute the first k eigenvectors, v, U5, ..., U,
of L,

*Normalized spectral clustering according
to Ng, Jordan, and Weiss (2002)

- Compute the first k eigenvectors, v, U5, ..., U,
of Lgym

* Normalizing x; to have norm 1

26



Connections to Graph Cuts

* Min-Cut

» Minimize the # of cut of edges to partition a
oraph mnto 2 disconnected components

27



Objective Function of Min-Cut

2-way Spectral Graph Partitioning

. . - = - o l if I- E 1-4
Partitton membership indicator: ¢, =y . . .
-1 if ieB

— (" "5 — l ‘ 2
J = CutSize = ZZM WU'[Q.% - qj]

1 2, 2 _1
4 th; wyldin + 45 =24,9,;1= EZM iy =y 14,

17

59 (D=W)q

2

Relax indicators g; from discrete values to continuous values,

the solution for min J(g) 1s given by the eigenvectors of

([) — W)q — iq (Fiedler. 1973, 1975)

(Pothen, Simon. Liou, 1990)
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Algorithm

*Step 1:
» Calculate Graph Laplacian matrix: L =D — W
*Step 2:
» Calculate the second eigenvector ¢
* Q: Why second?

*Step 3:
* Bisect g (e.g., 0) to get two clusters

29



Minimum Cut with Constraints

minimize cutsize without explicit size constraints

But where to cut ?

Need to balance sizes

30



Other Objective Functions

e Ratio Cut (Hangen & Kahng, 1992) & = !
o s(A,B) s(A,B)
Jo. (A,B) = +
Reut! ) ‘A| |B‘
e Normalized Cut (shi & Malik, 2000) d,=>d,
S (4B) - s(4.B) | s(4.B) =4
Newt \ 41> dA dg

s(4.8) s(4.B)
s(A.A)+s(A,B) s(B.B)+s(A.B)
e Min-Max-Cut (Ding et al, 2001)

s(4,B) N s(4,B)
s(A,4) s(B,B)

Jvpc(4,B) =

31



Label Propagation



Label Propagation in the Network

*Given a network, some nodes are given
labels, can we classify the unlabeled
nodes by using link information?

» k. g., Node 12 belongs to Class 1, Node 5 Belongs to Class 2
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Problem Formalization for Label

Propagation
* Given n nodes

- | with labels (e.g., Y3,Y5, ..., Y; are known)

- u without labels (e.g., Y;+1, Y40, ..., Y, are
unknown)

Y isthen X K label matrix

» K is the number of labels (classes)
* Y denotes the probability node i belonging to class k

- The weighted adjacency matrix is W
» The probabilistic transition matrix T

—P(]—>l)—

WI
i’ i'j
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The Label Propagation Algorithm

-Step 1: Propagate Y « TY
Y, =2, TV, =2 P(J - DY
« Imtializatton of Y for unlabeled ones 1s not
important

-Step 2: Row-normalize Y

»"The summaton of the probability of each
object belonging to each class 1s 1

-Step 3: Reset the labels for the labeled
nodes. Repeat 1-3 until Y converges

35



Example: Iter =0

13

36



Example: Iter=1

13
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Example: Iter =2

+P(3 5 6)Ys + P(4 > 6)Y, + P(0 > 6)Y,
- = (3/4,0)+(0,3/4) = (3/4,3/4)

N 11
After normalization, Yg = (E’E)

38



Other Label Propagation Algorithms

* Energy minimizing and harmonic function

» Semi-Supervised Learning Using Gaussian Fields
and Harmonic Functions
* By Xiaojin Zhu et al., ICML03
e https://www.aaai.org/Papers/ICML/2003/ICMLO3-
118.pdf

- Graph regularization

» Learning with Local and Global Consistency
* By Denny Zhou et al., NIPS'03

e http://papers.nips.cc/paper/2506-learning-with-local-
and-global-consistency.pdf

39


https://www.aaai.org/Papers/ICML/2003/ICML03-118.pdf
http://papers.nips.cc/paper/2506-learning-with-local-and-global-consistency.pdf

From Energy Minimizing Perspective

- Consider a binary classification problem

-y €{0,1}
Let f:V — R, which maps a node to a real number
« f(i) = y;, if 115 labeled

_ ﬁ>
! (fu
- The energy function
" () =5 Y ws (U6 - )

 Intuition: 1if two nodes are connected, they should share
similar labels

40



Minimizing Energy Function Results in
H i Functi

‘Note E(f) = f'(D —W)f = f'Lf!
»Goal: find f such that E(f) is minimized,
and f; is fixed
- Solution:
(D -W)f =0

41



Solve f,,

« Consider W as a block matrix

| Wu Wy,
W= [ Wul Wuu ]

» Closed form solution of f,;:
fu = Duw = Wau) "' Wi fi = (I = Puyy) ™" Pufi
« Where P = D™1W
- Iterative solution of f,:

“fu = (tho Putu)Pulfl = ftf — Puuftf_l + Puifi
cAs(I—PB,) ' =1+PB, + P4 + -

42



From Graph Regularization Perspective

- Let F be n*K matrix with nonnegative entries

» For node 1, pick the label k such that Fj;, 1s the
maximum on among all the k

*Let Y be n*K matrix with y;;,, = 1, if node i is
labeled as class k, and O otherwise.

« Cost function:

* Smoothness constraint + fitting constraint

2 n

X |-

i=1

7. . 1 1 F
= vDii © /Dy’

43



Solve F

- Note the first component is related to
trace(F 'LsymF )
* Closed form solution:

o 00
OF

— F* _SFr e p(FF—Y) =
F=F"*

=>F*=1—-a){ —aS)"1Y
« Where S = D™Y2Wp-12 o = ﬁ 1s a value
between 0 and 1
* [terative solution:

© F(t+1)=aSFt)+ (1—a)Y

44
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Representing Nodes and Graphs

*Important for many graph related tasks

- Discrete nature makes it very challenging
»Naive solutions

==l == Ll ()
=== = O

=S| O S| eS|
= | S| S| | S| T

Limitations:
Extremely High-dimensional
No global structure information integrated
Permutation-variant



Even more challenging for graph
representation

- Ex. Graphlet-based feature vector

2-node  3-node graphlets 4-node graphlets
graphlet !
0

G, G; Gy Gs G G,

5-node graphlets

g;ml ”ﬁm@ﬁ

9 G][} Gll Gl2 G]3 GM GIS Glﬁ Gl? G]S G]!il

ROZa3 R ROR Al R

GZD GEI G!Z GH G24 GZS GZB G?.‘J' GEE GZQ

IR S| B

12 1 4 1 6 0

Source: DOI: 10.1093/bioinformatics/btv130 \

Source:
Requires subgraph isomorphism test: NP-hard ptj¢.//haotang1995.github.io/projects/robust

_graph_level representation_learning_using_g

raph_based_structural_attentional _learning4s


https://www.researchgate.net/deref/http:/dx.doi.org/10.1093/bioinformatics/btv130?_sg%5B0%5D=c7EGji0yMAcNmX7qyvelALSHPs_AFY6uY_j1fZsQZ2r4MdBS-ltMoAizuryiUXNwMLFIn_6V4T8VftuQ6QNmrqwwSA.tAM7JBYLZHQdDZ40OzufE0T1jq2gyXBuI_prSIiB9DcdobMFPQq7ZyYPsjv1syVUs2cOW6GumNBbq15VqgX3VQ

Automatic representation Learning

-Map each node/graphinto . .. .-
a low dimensional vector

+¢p:V > R%or ¢: G > R?
s Earlier methods

 Shallow node embedding
methods mspired by word2vec -« «. *- ..
- DeepWalk [Perozzi, KDD'14] e+ =
* LINE [Tang, WWW’15] '

* Node2Vec [Grover, KDD’16]

¢(v) = UTx,, where U is the embedding matrix and x,,
is the one-hot encoding vector

(b) Output: representations

Source: DeepWalk
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LINE: Large-scale Information Network

Embedding

* First-order proximity

:%3—-4':

» Assumption: Two nodes are similar if they are
connected

—-T —
exp(ii i)

exp(i. i )
> i,

(m,n)evVxVy

pl(Vij)=

u;: embedding vector for node i

- Limitation: links are sparse, not sufficient

50



Objective function for first-order

it

*Minimize the KL divergence between
empirical link distribution and modeled
link distribution

le

ﬁl(vgavj) = 2 "

mn
(m,n)eE

O,=KL(p.p)=- Y w;logp,(v,v;)
(1,))EE
w;j:weight over edge(i, j)

51



Second-Order Proximity

* Assumption:

»"T'wo nodes are similar 1if their neighbors are

, .o—oé:

similar

(a - i)

exp(u; - u;

> exp(iy! - i)

u;: target embedding vector for node i

u]’-: context embedding vector for node j

p2(vj|vi) =

52



Objective function for second-order

i
*Minimize the KL divergence between
empirical link distribution and modeled

link distribution

.. C ~ i
- Empirical distribution P, (V; 1v;) = 2
W,
ik

kv
» Objective function

0, =E[KL(}32('|Vi),p2(‘|vi))=— E w; log p,(v; v,)

i (i,))EE
d; = z Wik
k

53



Negative Sampling for Optimization

- For second-order proximity derived
objective function

» For each positive link (1, j), sample K negative
links (1, n)

« An edge with weight w can be considered as w
binary edges

logo (i - ;) + Z By, np, ) llogo(=i," - ;)]
1=1

negative distribution: P,(v) « d3/4
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Limitation of shallow embedding

techniques
- Too many parameters

 Fach node 1s associated with an embedding
vector, which are parameters

*Not inductive

« Cannot handle new nodes

«Cannot handle node attributes
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From shallow embedding to Graph
Neural Networks

- The embedding function (encoder) is
more complicated

» Shallow embedding

p(v) = UTxv, where U is the embedding matrix
and x,, is the one-hot encoding vector

 Graph neural networks

- ¢ (v) is a neural network depending on the graph
structure

56



Knowledge Graph Embedding



Knowledge Graph

What are knowledge graphs?
» Multi-relational graph data

* (heterogeneous information network)

 Provide structured representation for semantic

relationships between real-world entities

City

A triple (h, r, t) represents a fact, ex:
(Eiffel Tower, is located in, Paris)




Examples of KG

General-purpose KGs H./ @ Bio & Medical KGs V7
0 [ g7 N " :
Bai'dﬂ'il]i”lia a"Go-s;.:.gIe.' '
S W L neXtprot «.sTriNG

NELLOO < Frecbase @RUGBANK

Product Graphs & E-commerce Common-sense KGs & NLP

'pa?ﬁﬁ“\‘%'eb &2 Walmart: < WURDNE 1 / /\f ConceptNet

open, multilingual knowledge graph
Ahbaba com
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Applications of KGs

. Foundational to knowledge-driven Al systems
. Enable many downstream applications (NLP
tasks, QA systems, etc)

e @
o tNa%ural =) B, .
atistical? :JEur\dg?qt?erm g
rules | Credit m$ EE E‘E ;PFOCGS§IHG &i
vod g m_{ ¢
@atext & g
humans £ 1§ IR =
chaialeol AN
1 =11 ‘
M& A Ruie Based ° 5
(0] 4 :
Natural Language QA & Dialogue systems
Processing

Knowledge Graphs

ebay
amazon g

Recommendation Systems 2% Al

Computatlonal Blology



Knowledge Graph Embedding

«Goal:

* Ik'ncode entities as low-dimensional vectors and
relations as parametric algebraic operations

- Applications:
» Dialogue agents
» Question answering
» Machine comprehension

* Recommender systems
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Key Idea of KG embedding algorithms

- Define a score function for a triple: f-(h, t)

» According to entity and relation representation

Triple UCLA iogaie ciI n ‘M

soreruncion | (@00 @00 @OO )
h r t

- Define a loss function to guide the training

* Io.g., an observed triple scores higher than a negative
one

62



Summary of Existing Approaches

Model Score Function
SE (Bordes et al., 2011 — ||[Wr1h — W, ot|| h,t ¢ R*, W,.. ¢ R**"

TransE (Bordes et al.,|2013) —[[h 4+ r — t]| h,r,t € R
TransX —|lgr,1(h) + 1 — gr2(t)|| h,r,t € R
DistMult (Yang et al.,|2014) (r,h,t) h,r,t € R”
ComplEx dTrouil-lon et al, 2016 Re({(r, h,t)) h,r.t e C"
HolE (Nickel et al., 2016 r,h®t) h,r,t € R”
ConvE (Dettmers et al.,2017) | (o(vec(a([r,h] * Q))W), t) h,r,t € R

RotatE

“Jhor—t|

2

h,r .t e C" |r|=1

Source: Sun et al., RotatE: Knowledge Graph Embedding by Relational Rotation in

Complex Space (ICLR’19)




TransE: Score Function

-Relation: translating embedding

- r China - Peliing
h us / D.C.L d
ondon
: UK /
> Pt : Capitial

«Score function
fr(ht) = —||lh+r—t|| = —-d(h+r,1t)

Bordes et al., Translating embeddings for modeling multi-relational data,

NeurlPS 2013
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TransE: Objective Function

- Objective Function
» Margin-based ranking loss
» L = Z(h,r,t)ES Z(h"r't’)es(’h,r,t) [)/ +d (h +

65



TransE: Limitations

»One-one mapping: t = ¢,.(h)

- Given (h,r), t1s unique

- Given (r,t), h 1s unique
* Anti-symmetric

o If r(h,t) then r(t,h) 1s not true

- Cannot model symmetric relation, e.g., friendship
» Anti-reflexive

* r(h,h) 1s not true

» Cannot model retlexive relations, e.g., synonym
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DistMult

- Bilinear score function
- f.(h,t) = h"M,t
* Where M., is a diagonal matrix with diagonal vector r

» A sitmplification to neural tensor network (N'T'N)

- Objective function
- L = Z(h,r,t)ES Z(h"r't’)es(,hrt) []/ - fr(h; t) + fr (h’; t,)]+

* Limitation

» Can only model symmetric relation

fr(ht) = f(t, h)

Yang et al., Embedding entities and relations for learning and inference in
knowledge bases, ICLR 2015
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RotatE: Score Function

- Relation: rotation operation in complex space

* head and tail entities 1n complex vector space, 1.e.,
h,t e C*

« each relation r as an element-wise rotation from the
head entity h to the tail entity t, 1.€.,
et=Hhor, i.e., t; = hir;, where |r;| =1

6

- Equivalently, r; = e'%ri i.e., rotate h; with 0 i

» Score function:
fr(h,t) = —[|hor —t|]

Zhiging Sun, Zhihong Deng, Jian-Yun Nie, and Jian Tang. “RotatE: Knowledge Graph
Embedding by Relational Rotation in Complex Space.” ICLR’19.
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RotatE: Geometric Interpretation

« Consider 1-d case

A h
r
- [hr-t]
PP o—>»
h h-+r t hr
| hr-t|
o=
L
(a) TransE models r as (b) RotatE models r as ro-

translation in real line. tation in complex plane.



RotatE: Objective function

-Smarter negative sampling

» The negative triple with higher score is more likely
to be sampled

p(h;7 T, t;‘{(hza T, tz)}) —

*Cross-entropy loss

expaf, (), t))
Zi exp af,(h}, t})

L=—logo(y—d.(h,t)) — Zp(h;;ﬂ“, t;) logO(dr(hfi,tg) — )

1=1
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RotatE: Pros and Cons

* Pros: \

« Can model relations with different propertie /?ﬁ
e Symmetric: ; = +1 or — 1 -
« Anti-symmetric: ror # 1 J
* Inverse relations: r, = 1y r
 E.g., hypernym is the inverse relation of hyponym

- Composition relations: r3 = 1rq ory,i.e.,03 = 01 +
0,,ifr; = e'% forj=1,2,3
» Cons:
» One-one mapping
» Relations are commutative: 1.e., 7y o1y =15 0T
» Which is not always true, e.g., father’s wife # wife’s father

71



Content

*Introduction to Graphs
-Spectral analysis
-Shallow Embedding

*Graph Neural Networks "
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Notations

*An attributed graph G = (V, E)
V. vertex set
 E: edge set
» A: adjacency matrix
« X € RWXIVI: feature matrix for all the nodes
« N(v): neighbors of node v
- hi: Representation vector of node v at Layer [
- Note h) = x,

- HY € RYXIVI; representation matrix
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The General Architecture of GNNs

*For a node v at layer t

ht) = f (h,,,g“h {hgf” ue N (v)})

representation vector representation vectors
from previous layer for from previous layer for
node v node v’s neighbors

A function of representations of neighbors and
itsell from previous layers
» Aggregation of neighbors
 Transformation to a different space
- Combination of neighbors and the node itself
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Compare with CNN

Recall CNN TiToT

ol1/1/1|0 :

» Regular graph s
IERERD

«GNN o

Convolved

Image

- Fxtend to irregular graph structuré

eature

l

o
INPUT GRAPH

TARGET NODE .A‘<
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Graph Convolutional Network (GCN)

«Kipf and Welling, ICLR’17

1 1

A — — AN A e

cf(HY, A) =0 (D * AD 2H(”W(”) A =A+1
«{: graph hilter
-From a node Vv’s perspective

he=—o (W, b,
‘ ' VIN@)[N()|

W:weight matrix at Layer k, shared across dif ferent nodes

76



A toy example of 2-layer GCN on a 4-

node graph

- Computation graph

RelU

RelU

©
2>
A

8

RelU
(3) _/
G
RelLU
(4] _/

Message Feature H@ Message Feature H® Set
Passing Transformation Passing Transformation Reduction



GraphSAGE

e Inductive Representation Learning on Large Graphs

William L. Hamilton™*, Rex Ying*, Jure Leskovec,

NeurlPS’17

hi/ () ¢ AGGREGATEy ({h;~',Vu € N(v)})
k k k—1
hY < o (W - CONCAT (h” th))

h! = o ([Wy

A more general form

A e o) BNl
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https://arxiv.org/pdf/1706.02216.pdf

More about AGG

—

*LSTM -AGG = [LSTM ([hﬁ_l,‘v’u C w(N(v))])

-1(+): a random permutation

*Pool AGG =y {QhF1 Yy € N(v)}

v (+): Element-wise mean/max pooling of
neighbor set
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Message-Passing Neural Network

*Gilmer et al., 2017. Neural Message Passing
for Quantum Chemistry. ICML.

A general framework that subsumes most
GNNs

» Can also include edge imnformation

* Two steps
» Get messages from neighbors at step k
mF = Z Mkt hE1 e, ) e.g., Sum or MLP

ueN(v)

- Update the node latent represent based on the
msg  h* =Umh""! m" e.g., LSTM, GRU

v

A special case: GGNN, Li et al., Gated graph sequence neural networks, ICLR 2015
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Graph Attention Network (GAN)

- How to decide the importance of neighbors?
* GCN: a predelined weight
» Others: no diffterentiation

- GAN: decide the weights using learnable
attention

» Velickovic et al., 2018. Graph Attention
Networks. ICLR.

g Z O{ingj
JEN;

7/
i
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The attention mechanism

- Potentially many possible designs

exp (LeakyReLU (_’T 'Wh; HWE ]))

Odij —

D _keN, €XD (LeakyReLU ( 'Wh; ||th}))
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Heterogeneous Graph Transformer

(HGT)

How to handle heterogeneous types of
nodes and relations?

» Introduce different weight matrices for
different types ol nodes and relations

» Introduce different attention weight matrices

for different types of nodes and relatlo]Pa iy

Write Cite
Hu et al., Heterogeneous Graph Transformer, WWW’20

Author Papegg




Meta-Relation-based Parametrization

Introduce node- and edge- dependent
parameterization
» Leverage meta relation <source node type,

edge type, target node type> to parameterize
attention and message passing weight.

t

W
< erte Paper> Write Cite <Paper Cite, Paper>
Wr|te Paper Paper WClte WPaper

Author Paper
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Meta-Relation-based Attention

- Attention learning is also parameterized
based on node type and link type

Paper

Write Cite

| — Att[s1,t]

ATT
J WCite

| —> Att[s2,1]

S1 >| K-Linear ay¢hor
Author

ATT
>| WWrite
S2]

85



Downstream Tasks for Graphs



Typical Graph Functions

*Node level -Graph level
» Similarity search  Similarity search
- Link prediction » Frequent pattern mining
- Classification » Graph 1somorphism test
» Community detection » Graph matching
- Ranking - Classification
» Clustering
» Graph generation
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1. Semi-supervised Node Classification

-Decoder using z, = h{
* IF'eed 1into another fully connected layer
Py = 0(8"z,)

»Loss function
* Cross entropy loss

« In a binary classification case
Ly = ylogy, + (1 — y,)log(1l — )
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Applications of Node Classification

*Social network

 An account 1s bot or not

 Citation network

* A paper’s research field

A program-derived graph
The type of a variable

89



2. Link Prediction

-Decoder using z, = hi
» Given a node pair (u, v)
» Determine its probability p,,,, = z. Rz,
* R could be different for different relation type

 Loss function

* Cross entropy loss
* lyy = Yuwlogpuy + (1 — yyp)log(l — pyy)
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Link Prediction Applications

*Social network

* Friend recommendation

 Citation network

» Citatton recommendation

*Medical network
* Drug and target binding or not

A program-derived graph

» Code autocomplete
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3. Graph Classification

-Decoder using h; = g({z,}ver)
- g(:):aread out function, e.g., sum
* Feed h; into another fully connected layer
Y6 = (6" hg)
»Loss function
* Cross entropy loss

« In a binary classification case
“lg =yclogye + (1 —yg)log(1l — ¥e)
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Graph Classification Applications

»Chemical compounds

« T'oxic or not

* Proteins

« Has certain function or not
- Program-derived graphs

- Contains bugs or not
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4. Graph Similarity Computation

-Decoder using he= g({zy, }yer)

» Given a graph pair (G4, G,)

» Determine 1ts score Sg, g, = hglR hg,
- Loss function

* Il.g., Square loss

° lalaz = ()’Gch—Sc;le)AZ
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A Concrete solution by SImGNN [Bai et

al., AAAI 2019]

»Goal:learna GNN ¢: G X G —» R™ to
approximate Graph Edit Distance between two

, G, | Neural Tensor Network \
e T e 0 0¥ | (T ¥
D ! i wgm i i 1

m

[2[2:::::2 — — 1K ||

EZ — GONs ;::::::. _ ‘ mmmdiaaa, + v SR

"[ S— i WK o Fully Connected

N —  — (= . La
........ / i yers

________ o \5

:;:I:Z GeN — y, —lAtt h] | / Pairwise Node Comparison \ >i:i f.‘ Y

" GCNs E— 2

—— — | | '

P AN o | — .
¢ 9 L N == H8 .
— &— &i\ >» S h|st{5)/
o=

G;
Node-Level Graph-Level Graph-Graph Predicted
Embeddings Embeddings Interactions Similarity Score

1. Attention-based graph-level embedding
2. Histogram features from pairwise node similarities
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Graph Similarity Computation

Applications

-Drug database

* Drug similarity search

*Program database

» Code recommendation

» Search ninja code for novice code
» Search java code for COBOL code

Wanted urgently: People who know a half century-old computer
language so states can process unemployment claims

By Alicia Lee, CNN
Updated 4:00 PM ET, Wed April 8, 2020
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Summary

*Introduction to Graphs

-Spectral analysis

-Shallow Embedding

*Graph Neural Networks
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