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More …
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Why Graph Mining?
• Graphs are ubiquitous

• Chemical compounds (Cheminformatics)

• Protein structures, biological pathways/networks (Bioinformactics)

• Program control flow, traffic flow, and workflow analysis 

• XML databases, Web, and social network analysis

• Graph is a general model
• Trees, lattices, sequences, and items are degenerated graphs

• Diversity of graphs
• Directed vs. undirected, labeled vs. unlabeled (edges & vertices), weighted vs. 

unweighted, homogeneous vs. heterogeneous

• Complexity of algorithms: many problems are of high complexity



Representation of a Graph
• 𝐺𝐺 =< 𝑉𝑉,𝐸𝐸 >

• 𝑉𝑉 = {𝑢𝑢1, … ,𝑢𝑢𝑛𝑛}: node set
• 𝐸𝐸 ⊆ 𝑉𝑉 × 𝑉𝑉: edge set

• Adjacency matrix
• 𝐴𝐴 = 𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗 = 1, … ,𝑁𝑁

• 𝑎𝑎𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖𝑖𝑖 < 𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑖𝑖 >∈ 𝐸𝐸
• 𝑎𝑎𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖𝑖𝑖 < 𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑖𝑖 >∉ 𝐸𝐸

• Undirected graph vs. Directed graph
• 𝐴𝐴 = 𝐴𝐴T 𝑣𝑣𝑣𝑣.𝐴𝐴 ≠ 𝐴𝐴T

• Weighted graph
• Use W instead of A, where 𝑤𝑤𝑖𝑖𝑖𝑖 represents the weight of edge

< 𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑖𝑖 >
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Example
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Yahoo

M’softAmazon

y   1    1     0
a   1    0     1
m  0    1     0

y    a    m

Adjacency matrix A



Typical Graph Tasks
• Node level

• Link prediction

• Node classification

• Similarity search

• Community detection

• Ranking
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• Graph level
• Graph Prediction

• Graph similarity search

• Frequent pattern mining

• MCS detection

• Clustering 

• Node level, Graph Property 
• Betweenness score prediction
• Travelling salesman problem 
• Network attack problem
• Set cover problem
• Maximum clique detection



Graph Techniques
•Approaches before GNNs

• Heuristics

• Graph signal processing

• Graph Kernels

• Graphical models
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Content
• Introduction to Graphs

•Spectral analysis

•Shallow Embedding

•Graph Neural Networks
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Spectral Analysis
• Graph Laplacians are keys to understand 
graphs
• Unnormalized graph Laplacians
• Normalized graph Laplacians

• Spectral clustering
• Leverage eigenvectors of graph Laplacians to 
conduct clustering on graphs

• Has close relationship with graph cuts
• Label propagation

• Semi-supervised node classification on graphs
• Also related to graph Laplacians
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What are Graph Laplacian Matrices?
•They are matrices defined as functions of 
graph adjacency or weight matrix

•A tool to study graphs 

•There is a field called spectral graph 
theory studying those matrices
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Examples of Graph Laplacians
• Given an undirected and weighted graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), 

with weight matrix 𝑊𝑊
• 𝑊𝑊𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑖𝑖 ≥ 0
• n: total number of nodes
• Degree for node 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉: 𝑑𝑑𝑖𝑖 = ∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖
• Degree matrix 𝐷𝐷: a diagonal matrix with degrees on the 

diagonal, i.e., 𝐷𝐷𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖 and 𝐷𝐷𝑖𝑖𝑖𝑖 = 0 𝑖𝑖𝑖𝑖 𝑖𝑖 ≠ 𝑗𝑗
• Three examples of graph Laplacians

• The unnormalized graph Laplacian
• 𝐿𝐿 = 𝐷𝐷 −𝑊𝑊

• The normalized graph Laplacians
• Symmetric: 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐷𝐷−1/2𝐿𝐿𝐷𝐷−1/2

• Random walk related: 𝐿𝐿𝑟𝑟𝑟𝑟 = 𝐷𝐷−1𝐿𝐿
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The Unnormalized Graph Laplacian
• Definition: 𝐿𝐿 = 𝐷𝐷 −𝑊𝑊
• Properties of 𝐿𝐿

• For any vector 𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛

• 𝐿𝐿 is symmetric and positive semi-definite
• The smallest eigenvalue of 𝐿𝐿 is 0, and the 

corresponding eigenvector is the constant one vector 𝟏𝟏
• 𝟏𝟏 is an all-one vector with n dimensions
• An eigenvector can be scaled by multiplying a nonzero 

scalar 𝛼𝛼
• 𝐿𝐿 has n non-negative, real-valued eigenvalues:
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Question
•Will self loops in graph change 𝐿𝐿?
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Number of Connected Components
•The multiplicity k of the eigenvalue 0 of 𝐿𝐿
equals the number of connected 
components
• Consider 𝑘𝑘 = 1, i.e., a connected graph, and 
𝑖𝑖, the corresponding eigenvector for 0

• Every element of 𝑖𝑖 has to be equal to each 
other

16



K connected components
• The graph can be represented as a block 
diagonal matrix, and so do matrix 𝐿𝐿

• For each block 𝐿𝐿𝑖𝑖,  it has eigenvalue 0 with 
corresponding constant one eigenvector

• For 𝐿𝐿, it has k eigenvalues with 0, with 
corresponding eigenvectors as indicator vectors
• 𝟏𝟏𝐴𝐴𝑖𝑖 is an indicator vector, with ones for nodes in 𝐴𝐴𝑖𝑖, 

i.e., the nodes in component i, and zeros elsewhere 
17



The normalized graph Laplacians
•Symmetric: 

•𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐷𝐷−1/2𝐿𝐿𝐷𝐷−1/2 = 𝐼𝐼 − 𝐷𝐷−1/2𝑊𝑊𝐷𝐷−1/2

•Random walk related: 
•𝐿𝐿𝑟𝑟𝑟𝑟 = 𝐷𝐷−1𝐿𝐿 = 𝐼𝐼 − 𝐷𝐷−1𝑊𝑊
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Properties of 𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔 and 𝑳𝑳𝒓𝒓𝒓𝒓
• For any vector 𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛

• 𝜆𝜆 is an eigenvalue of 𝑳𝑳𝒓𝒓𝒓𝒓 with eigenvector 𝑣𝑣 𝜆𝜆 is an 
eigenvalue of 𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔 with eigenvector 𝑤𝑤 = 𝐷𝐷1/2𝑣𝑣

• 𝜆𝜆 is an eigenvalue of 𝑳𝑳𝒓𝒓𝒓𝒓 with eigenvector 𝑣𝑣 𝜆𝜆 and 𝑣𝑣
solves the generalized eigen problem 𝐿𝐿𝑣𝑣 = 𝜆𝜆𝐷𝐷𝑣𝑣

• 0 is an eigenvalue of 𝑳𝑳𝒓𝒓𝒓𝒓 with eigenvector 𝟏𝟏. 0 is an 
eigenvalue of 𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔 with eigenvector 𝐷𝐷1/2𝟏𝟏

• 𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔 and 𝑳𝑳𝒓𝒓𝒓𝒓 are positive semi-definite, and have n 
non-negative real-valued eigenvalues
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Example
• Graph built upon Gaussian mixture model with 
four components
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Spectral Clustering



Clustering Graphs and Network Data

• Applications
• Bi-partite graphs, e.g., customers and products, authors and 

conferences
• Web search engines, e.g., click through graphs and Web 

graphs
• Social networks, friendship/coauthor graphs

22
Clustering books about politics [Newman, 2006]



Example of Graph Clustering
•Reference: ICDM’09 Tutorial by Chris Ding
•Example:

• Clustering supreme court justices according to 
their voting behavior
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Example: Continue
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Spectral Clustering Algorithms
•Goal: cluster nodes in the graph into k 
clusters

• Idea: Leverage the first k eigenvectors of 𝐿𝐿
•Major steps:

• Compute the first k eigenvectors, 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘, 
of 𝐿𝐿

• Each node i is then represented by k values 
𝑥𝑥𝑖𝑖 = (𝑣𝑣1𝑖𝑖 , 𝑣𝑣2𝑖𝑖 , … , 𝑣𝑣𝑘𝑘𝑖𝑖)

• Cluster 𝑥𝑥𝑖𝑖’s using k-means 
25



Variants of Spectral Clustering 
Algorithms

•Normalized spectral clustering according 
to Shi and Malik (2000)
• Compute the first k eigenvectors, 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘, 
of 𝐿𝐿𝑟𝑟𝑟𝑟

•Normalized spectral clustering according 
to Ng, Jordan, and Weiss (2002)
• Compute the first k eigenvectors, 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘, 
of 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠

• Normalizing 𝑥𝑥𝑖𝑖 to have norm 1
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Connections to Graph Cuts
•Min-Cut

• Minimize the # of cut of edges to partition a 
graph into 2 disconnected components
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Objective Function of Min-Cut
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Algorithm
•Step 1:

• Calculate Graph Laplacian matrix: 𝐿𝐿 = 𝐷𝐷 −𝑊𝑊
•Step 2:

• Calculate the second eigenvector q
• Q: Why second?

•Step 3:
• Bisect q (e.g., 0) to get two clusters  
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Minimum Cut with Constraints
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Other Objective Functions
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Label Propagation



Label Propagation in the Network
•Given a network, some nodes are given 
labels, can we classify the unlabeled 
nodes by using link information?
• E.g., Node 12 belongs to Class 1, Node 5 Belongs to Class 2

33
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Problem Formalization for Label 
Propagation

• Given n nodes
• l with labels (e.g., 𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘𝑘𝑘𝑘𝑘𝑤𝑤𝑘𝑘)
• u without labels (e.g., 𝑌𝑌𝑙𝑙+1,𝑌𝑌𝑙𝑙+2, … ,𝑌𝑌𝑛𝑛 are 
unknown)

• 𝑌𝑌 𝑖𝑖𝑣𝑣 𝑡𝑡𝑡𝑎𝑎 𝑘𝑘 × 𝐾𝐾 𝑙𝑙𝑎𝑎𝑙𝑙𝑎𝑎𝑙𝑙 𝑚𝑚𝑎𝑎𝑡𝑡𝑎𝑎𝑖𝑖𝑥𝑥
• K is the number of labels (classes)
• 𝑌𝑌𝑖𝑖𝑘𝑘 denotes the probability node i belonging to class k

• The weighted adjacency matrix is W
• The probabilistic transition matrix T

• 𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑃𝑃 𝑗𝑗 → 𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑖𝑖
∑𝑖𝑖′ 𝑟𝑟𝑖𝑖′𝑖𝑖
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The Label Propagation Algorithm
•Step 1: Propagate 𝑌𝑌 ← 𝑇𝑇𝑌𝑌

•𝑌𝑌𝑖𝑖 = ∑𝑖𝑖 𝑇𝑇𝑖𝑖𝑖𝑖𝑌𝑌𝑖𝑖 = ∑𝑖𝑖 𝑃𝑃 𝑗𝑗 → 𝑖𝑖 𝑌𝑌𝑖𝑖
• Initialization of Y for unlabeled ones is not 
important

•Step 2: Row-normalize Y
• The summation of the probability of each 
object belonging to each class is 1

•Step 3: Reset the labels for the labeled 
nodes. Repeat 1-3 until Y converges
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Example: Iter = 0
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Example: Iter = 2

38

12

5
7

8 11

9
10

3

2

4

0

1

13

𝑌𝑌6 = 𝑃𝑃(7 → 6)𝑌𝑌7 + 𝑃𝑃 11 → 6 𝑌𝑌11 + 𝑃𝑃 10 → 6 𝑌𝑌10
+ 𝑃𝑃 3 → 6 𝑌𝑌3 + 𝑃𝑃 4 → 6 𝑌𝑌4 + 𝑃𝑃 0 → 6 𝑌𝑌0

= (3/4,0)+(0,3/4) = (3/4,3/4)
After normalization, 𝑌𝑌6 = (1

2
, 1
2
)
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Other Label Propagation Algorithms
• Energy minimizing and harmonic function

• Semi-Supervised Learning Using Gaussian Fields 
and Harmonic Functions
• By Xiaojin Zhu et al., ICML’03
• https://www.aaai.org/Papers/ICML/2003/ICML03-

118.pdf

• Graph regularization
• Learning with Local and Global Consistency

• By Denny Zhou et al., NIPS’03
• http://papers.nips.cc/paper/2506-learning-with-local-

and-global-consistency.pdf

39

https://www.aaai.org/Papers/ICML/2003/ICML03-118.pdf
http://papers.nips.cc/paper/2506-learning-with-local-and-global-consistency.pdf


From Energy Minimizing Perspective
• Consider a binary classification problem

• 𝑦𝑦 ∈ {0,1}
• Let 𝑖𝑖:𝑉𝑉 → 𝑅𝑅, which maps a node to a real number

• 𝑖𝑖 𝑖𝑖 = 𝑦𝑦𝑖𝑖, if i is labeled

• 𝑖𝑖 = 𝑖𝑖𝑙𝑙
𝑖𝑖𝑢𝑢

• The energy function
•

• Intuition: if two nodes are connected, they should share 
similar labels

40



Minimizing Energy Function Results in 
Harmonic Function

•Note 𝐸𝐸 𝑖𝑖 = 𝑖𝑖′ 𝐷𝐷 −𝑊𝑊 𝑖𝑖 = 𝑖𝑖′𝐿𝐿𝑖𝑖!
•Goal: find f such that 𝐸𝐸 𝑖𝑖 is minimized, 
and 𝑖𝑖𝑙𝑙 is fixed

•Solution:
• 𝐷𝐷 −𝑊𝑊 𝑖𝑖 = 0

41



Solve 𝑖𝑖𝑢𝑢
• Consider W as a block matrix

• Closed form solution of 𝑖𝑖𝑢𝑢:

• Where 𝑃𝑃 = 𝐷𝐷−1𝑊𝑊
• Iterative solution of 𝑖𝑖𝑢𝑢:

• 𝑖𝑖𝑢𝑢 = (∑𝑡𝑡=0𝑃𝑃𝑢𝑢𝑢𝑢𝑡𝑡 )𝑃𝑃𝑢𝑢𝑙𝑙𝑖𝑖𝑙𝑙 ⇒ 𝑖𝑖𝑢𝑢𝑡𝑡 = 𝑃𝑃𝑢𝑢𝑢𝑢𝑖𝑖𝑢𝑢𝑡𝑡−1 + 𝑃𝑃𝑢𝑢𝑙𝑙𝑖𝑖𝑙𝑙
• As (𝐼𝐼 − 𝑃𝑃𝑢𝑢𝑢𝑢)−1 = 𝐼𝐼 + 𝑃𝑃𝑢𝑢𝑢𝑢 + 𝑃𝑃𝑢𝑢𝑢𝑢2 + ⋯
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From Graph Regularization Perspective

• Let 𝐹𝐹 be n*K matrix with nonnegative entries
• For node i, pick the label k such that 𝐹𝐹𝑖𝑖𝑘𝑘 is the 

maximum on among all the k

• Let 𝑌𝑌 be n*K matrix with 𝑦𝑦𝑖𝑖𝑘𝑘 = 1, if node i is 
labeled as class k, and 0 otherwise.

•Cost function: 
• Smoothness constraint + fitting constraint 

43



Solve F
• Note the first component is related to 
trace 𝐹𝐹′𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝐹𝐹

• Closed form solution:
•

• ⇒ 𝐹𝐹∗ = 1 − 𝛼𝛼 𝐼𝐼 − 𝛼𝛼𝛼𝛼 −1𝑌𝑌

• Where 𝛼𝛼 = 𝐷𝐷−1/2𝑊𝑊𝐷𝐷−1/2, 𝛼𝛼 = 1
1+𝜇𝜇

is a value 
between 0 and 1

• Iterative solution:
•

44
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Representing Nodes and Graphs
• Important for many graph related tasks
•Discrete nature makes it very challenging
•Naïve solutions

Limitations:
Extremely High-dimensional
No global structure information integrated
Permutation-variant



Even more challenging for graph 
representation

•Ex. Graphlet-based feature vector

48

Source: 
https://haotang1995.github.io/projects/robust
_graph_level_representation_learning_using_g
raph_based_structural_attentional_learning

Source: DOI: 10.1093/bioinformatics/btv130

Requires subgraph isomorphism test: NP-hard 

https://www.researchgate.net/deref/http:/dx.doi.org/10.1093/bioinformatics/btv130?_sg%5B0%5D=c7EGji0yMAcNmX7qyvelALSHPs_AFY6uY_j1fZsQZ2r4MdBS-ltMoAizuryiUXNwMLFIn_6V4T8VftuQ6QNmrqwwSA.tAM7JBYLZHQdDZ40OzufE0T1jq2gyXBuI_prSIiB9DcdobMFPQq7ZyYPsjv1syVUs2cOW6GumNBbq15VqgX3VQ


Automatic representation Learning
•Map each node/graph into 
a low dimensional vector
•𝜙𝜙:𝑉𝑉 → 𝑅𝑅𝑑𝑑 or 𝜙𝜙:𝒢𝒢 → 𝑅𝑅𝑑𝑑

•Earlier methods
• Shallow node embedding 
methods inspired by word2vec
• DeepWalk [Perozzi, KDD’14]
• LINE [Tang, WWW’15]
• Node2Vec [Grover, KDD’16]

49
Source: DeepWalk𝝓𝝓 𝒗𝒗 = 𝑼𝑼𝑻𝑻𝒙𝒙𝒗𝒗, where U is the embedding matrix and 𝒙𝒙𝒗𝒗

is the one-hot encoding vector



LINE: Large-scale Information Network 
Embedding

• First-order proximity

• Assumption: Two nodes are similar if they are 
connected

• Limitation: links are sparse, not sufficient

50

𝑢𝑢𝑖𝑖: 𝑎𝑎𝑚𝑚𝑙𝑙𝑎𝑎𝑑𝑑𝑑𝑑𝑖𝑖𝑘𝑘𝑒𝑒 𝑣𝑣𝑎𝑎𝑣𝑣𝑡𝑡𝑘𝑘𝑎𝑎 𝑖𝑖𝑘𝑘𝑎𝑎 𝑘𝑘𝑘𝑘𝑑𝑑𝑎𝑎 𝑖𝑖



Objective function for first-order 
proximity

•Minimize the KL divergence between 
empirical link distribution and modeled 
link distribution

51

𝑤𝑤𝑖𝑖𝑖𝑖:𝑤𝑤𝑎𝑎𝑖𝑖𝑒𝑒𝑡𝑡𝑡 𝑘𝑘𝑣𝑣𝑎𝑎𝑎𝑎 𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎(𝑖𝑖, 𝑗𝑗)



Second-Order Proximity
•Assumption:

• Two nodes are similar if their neighbors are 
similar

52

𝑢𝑢𝑖𝑖: 𝑡𝑡𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑡𝑡 𝑎𝑎𝑚𝑚𝑙𝑙𝑎𝑎𝑑𝑑𝑑𝑑𝑖𝑖𝑘𝑘𝑒𝑒 𝑣𝑣𝑎𝑎𝑣𝑣𝑡𝑡𝑘𝑘𝑎𝑎 𝑖𝑖𝑘𝑘𝑎𝑎 𝑘𝑘𝑘𝑘𝑑𝑑𝑎𝑎 𝑖𝑖
𝑢𝑢𝑖𝑖′: 𝑣𝑣𝑘𝑘𝑘𝑘𝑡𝑡𝑎𝑎𝑥𝑥𝑡𝑡 𝑎𝑎𝑚𝑚𝑙𝑙𝑎𝑎𝑑𝑑𝑑𝑑𝑖𝑖𝑘𝑘𝑒𝑒 𝑣𝑣𝑎𝑎𝑣𝑣𝑡𝑡𝑘𝑘𝑎𝑎 𝑖𝑖𝑘𝑘𝑎𝑎 𝑘𝑘𝑘𝑘𝑑𝑑𝑎𝑎 𝑗𝑗



Objective function for second-order 
proximity

•Minimize the KL divergence between 
empirical link distribution and modeled 
link distribution
• Empirical distribution

• Objective function

53

𝒅𝒅𝒊𝒊

𝒅𝒅𝒊𝒊 = �
𝒌𝒌

𝒓𝒓𝒊𝒊𝒌𝒌



Negative Sampling for Optimization
•For second-order proximity derived 
objective function
• For each positive link (i, j), sample K negative 
links (i, n)
• An edge with weight w can be considered as w 

binary edges

• New objective function

54

𝑘𝑘𝑎𝑎𝑒𝑒𝑎𝑎𝑡𝑡𝑖𝑖𝑣𝑣𝑎𝑎 𝑑𝑑𝑖𝑖𝑣𝑣𝑡𝑡𝑎𝑎𝑖𝑖𝑙𝑙𝑢𝑢𝑡𝑡𝑖𝑖𝑘𝑘𝑘𝑘: 𝑃𝑃𝑛𝑛 𝑣𝑣 ∝ 𝑑𝑑𝑣𝑣
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Limitation of shallow embedding 
techniques

•Too many parameters
• Each node is associated with an embedding 
vector, which are parameters

•Not inductive
• Cannot handle new nodes

•Cannot handle node attributes
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From shallow embedding to Graph 
Neural Networks

•The embedding function (encoder) is 
more complicated
• Shallow embedding

•𝜙𝜙 𝑣𝑣 = 𝑈𝑈𝑇𝑇𝑥𝑥𝑣𝑣, where U is the embedding matrix 
and 𝑥𝑥𝑣𝑣 is the one-hot encoding vector

• Graph neural networks
•𝜙𝜙 𝑣𝑣 is a neural network depending on the graph 

structure
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Knowledge Graph Embedding



Knowledge Graph
•What are knowledge graphs?

• Multi-relational graph data 
• (heterogeneous information network)

• Provide structured representation for semantic 
relationships between real-world entities

58

A triple (h, r, t) represents a fact, ex: 
(Eiffel Tower, is located in, Paris)



Examples of KG

59

General-purpose KGs

Common-sense KGs & NLP

Bio & Medical KGs

Product Graphs & E-commerce



Applications of KGs
● Foundational to knowledge-driven AI systems
● Enable many downstream applications (NLP

tasks, QA systems, etc)

60

QA & Dialogue systems

Sorry, I don't know 
that one.

Computational Biology

Natural Language 
Processing

Recommendation Systems

Knowledge Graphs



Knowledge Graph Embedding
•Goal:

• Encode entities as low-dimensional vectors and 
relations as parametric algebraic operations

•Applications:
• Dialogue agents
• Question answering
• Machine comprehension
• Recommender systems
• ...
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Key Idea of KG embedding algorithms

• Define a score function for a triple: 𝑖𝑖𝑟𝑟(𝒉𝒉, 𝒕𝒕)
• According to entity and relation representation

• Define a loss function to guide the training
• E.g., an observed triple scores higher than a negative 

one

62

Triple

Score Function



Summary of Existing Approaches
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Source: Sun et al., RotatE: Knowledge Graph Embedding by Relational Rotation in 
Complex Space (ICLR’19)



TransE: Score Function
•Relation: translating embedding

•Score function
•𝑖𝑖𝑟𝑟 𝒉𝒉, 𝒕𝒕 = − 𝒉𝒉 + 𝒓𝒓 − 𝒕𝒕 = −𝑑𝑑(𝒉𝒉 + 𝒓𝒓, 𝒕𝒕)
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China

U.S.

UK

Beijing

D.C.

London

: Capitial

Bordes et al., Translating embeddings for modeling multi-relational data, 
NeurIPS 2013



TransE: Objective Function
•Objective Function

• Margin-based ranking loss
• 𝐿𝐿 = ∑ ℎ,𝑟𝑟,𝑡𝑡 ∈𝑆𝑆 ∑(ℎ′,𝑟𝑟,𝑡𝑡′)∈𝑆𝑆 ℎ,𝑟𝑟,𝑡𝑡

′ [𝛾𝛾 + 𝑑𝑑 (𝒉𝒉 +
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TransE: Limitations
• One-one mapping: 𝑡𝑡 = 𝜙𝜙𝑟𝑟(𝑡)

• Given (h,r), t is unique

• Given (r,t), h is unique

• Anti-symmetric
• If r(h,t) then r(t,h) is not true

• Cannot model symmetric relation, e.g., friendship

• Anti-reflexive
• r(h,h) is not true

• Cannot model reflexive relations, e.g., synonym
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DistMult
• Bilinear score function

• 𝑖𝑖𝑟𝑟 𝒉𝒉, 𝒕𝒕 = 𝒉𝒉𝑇𝑇𝑴𝑴𝑟𝑟𝒕𝒕
• Where 𝑴𝑴𝑟𝑟 is a diagonal matrix with diagonal vector 𝒓𝒓

• A simplification to neural tensor network (NTN)

• Objective function
• 𝐿𝐿 = ∑ ℎ,𝑟𝑟,𝑡𝑡 ∈𝑆𝑆 ∑(ℎ′,𝑟𝑟,𝑡𝑡′)∈𝑆𝑆 ℎ,𝑟𝑟,𝑡𝑡

′ [𝛾𝛾 − 𝑖𝑖𝑟𝑟 𝒉𝒉, 𝒕𝒕 + 𝑖𝑖𝑟𝑟 𝒉𝒉′, 𝒕𝒕′ ]+

• Limitation
• Can only model symmetric relation

• 𝑖𝑖𝑟𝑟 𝒉𝒉, 𝒕𝒕 = 𝑖𝑖𝑟𝑟 𝒕𝒕,𝒉𝒉

67
Yang et al., Embedding entities and relations for learning and inference in 
knowledge bases, ICLR 2015



RotatE: Score Function
• Relation: rotation operation in complex space

• head and tail entities in complex vector space, i.e., 
𝐡𝐡, 𝐭𝐭 ∈ ℂ𝑘𝑘

• each relation r as an element-wise rotation from the 
head entity 𝐡𝐡 to the tail entity 𝐭𝐭, i.e., 
• 𝒕𝒕 = 𝒉𝒉 ∘ 𝒓𝒓, 𝑖𝑖. 𝑎𝑎. , 𝑡𝑡𝑖𝑖 = 𝑡𝑖𝑖𝑎𝑎𝑖𝑖 ,𝑤𝑤𝑡𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑖𝑖 = 1
• Equivalently, 𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑖𝑖𝜃𝜃𝑟𝑟,𝑖𝑖 , 𝑖𝑖. 𝑎𝑎. , 𝑎𝑎𝑘𝑘𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎 hi with 𝜃𝜃𝑟𝑟,𝑖𝑖

• Score function:
•𝑖𝑖𝑟𝑟 𝑡, 𝑡𝑡 = −||𝒉𝒉 ∘ 𝒓𝒓 − 𝒕𝒕||

68

Zhiqing Sun, Zhihong Deng, Jian-Yun Nie, and Jian Tang. “RotatE: Knowledge Graph 
Embedding by Relational Rotation in Complex Space.” ICLR’19.



RotatE: Geometric Interpretation
•Consider 1-d case
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RotatE: Objective function
•Smarter negative sampling

• The negative triple with higher score is more likely 
to be sampled

•Cross-entropy loss
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RotatE: Pros and Cons
• Pros:

• Can model relations with different properties
• Symmetric: 𝑎𝑎𝑖𝑖 = +1 𝑘𝑘𝑎𝑎 − 1
• Anti-symmetric: 𝒓𝒓 ∘ 𝒓𝒓 ≠ 𝟏𝟏
• Inverse relations: 𝐫𝐫2 = �𝐫𝐫1

• E.g., hypernym is the inverse relation of hyponym
• Composition relations: 𝒓𝒓𝟑𝟑 = 𝒓𝒓𝟏𝟏 ∘ 𝒓𝒓𝟐𝟐, i. e. ,𝜽𝜽𝟑𝟑 = 𝜽𝜽𝟏𝟏 +
𝜽𝜽𝟐𝟐, if 𝒓𝒓𝑖𝑖 = 𝑎𝑎𝑖𝑖𝜽𝜽𝑖𝑖 for j = 1,2,3

• Cons:
• One-one mapping
• Relations are commutative: i.e., 𝒓𝒓𝟏𝟏 ∘ 𝒓𝒓𝟐𝟐 = 𝒓𝒓𝟐𝟐 ∘ 𝒓𝒓𝟏𝟏

• Which is not always true, e.g., father’s wife ≠ wife’s father 
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Content
• Introduction to Graphs

•Spectral analysis

•Shallow Embedding

•Graph Neural Networks
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Notations
•An attributed graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)

•𝑉𝑉: vertex set

•𝐸𝐸: edge set

•𝐴𝐴: adjacency matrix  

•𝑋𝑋 ∈ 𝑅𝑅𝑑𝑑0×|𝑉𝑉|: feature matrix for all the nodes

•𝑁𝑁(𝑣𝑣): neighbors of node 𝑣𝑣
•𝑡𝑣𝑣𝑙𝑙 : Representation vector of node 𝑣𝑣 at Layer 𝑙𝑙

• Note 𝑡𝑣𝑣0 = 𝑥𝑥𝑣𝑣
•𝐻𝐻𝑙𝑙 ∈ 𝑅𝑅𝑑𝑑𝑙𝑙×|𝑉𝑉|: representation matrix
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The General Architecture of GNNs
•For a node v at layer t

• A function of representations of neighbors and 
itself from previous layers
• Aggregation of neighbors
• Transformation to a different space
• Combination of neighbors and the node itself

74

representation vector 
from previous layer for 
node v 

representation vectors 
from previous layer for 
node v’s neighbors 



Compare with CNN
•Recall CNN

• Regular graph

•GNN
• Extend to irregular graph structure
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Graph Convolutional Network (GCN)
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•Kipf and Welling, ICLR’17
• , �𝐴𝐴 = 𝐴𝐴 + 𝐼𝐼
• f: graph filter

•From a node v’s perspective

𝑾𝑾𝒌𝒌:𝒓𝒓𝒘𝒘𝒊𝒊𝒘𝒘𝒉𝒉𝒕𝒕 𝒔𝒔𝒎𝒎𝒕𝒕𝒓𝒓𝒊𝒊𝒙𝒙 𝒎𝒎𝒕𝒕 𝑳𝑳𝒎𝒎𝒔𝒔𝒘𝒘𝒓𝒓 𝒌𝒌, 𝒔𝒔𝒉𝒉𝒎𝒎𝒓𝒓𝒘𝒘𝒅𝒅 𝒎𝒎𝒂𝒂𝒓𝒓𝒂𝒂𝒔𝒔𝒔𝒔 𝒅𝒅𝒊𝒊𝒅𝒅𝒅𝒅𝒘𝒘𝒓𝒓𝒘𝒘𝒅𝒅𝒕𝒕 𝒅𝒅𝒂𝒂𝒅𝒅𝒘𝒘𝒔𝒔



A toy example of 2-layer GCN on a 4-
node graph

•Computation graph
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GraphSAGE
• Inductive Representation Learning on Large Graphs

William L. Hamilton*, Rex Ying*, Jure Leskovec, 
NeurIPS’17
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A more general form

https://arxiv.org/pdf/1706.02216.pdf


More about AGG
•Mean

•LSTM
•𝜋𝜋 ⋅ : 𝑎𝑎 𝑎𝑎𝑎𝑎𝑘𝑘𝑑𝑑𝑘𝑘𝑚𝑚 𝑝𝑝𝑎𝑎𝑎𝑎𝑚𝑚𝑢𝑢𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝑘𝑘𝑘𝑘

•Pool
•𝛾𝛾 ⋅ : Element-wise mean/max pooling of 
neighbor set 

79

= 𝛾𝛾



Message-Passing Neural Network
• Gilmer et al., 2017. Neural Message Passing 
for Quantum Chemistry. ICML.

• A general framework that subsumes most 
GNNs
• Can also include edge information

• Two steps
• Get messages from neighbors at step k

• Update the node latent represent based on the 
msg
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e.g., Sum or MLP

e.g., LSTM, GRU

𝑨𝑨 𝒔𝒔𝒔𝒔𝒘𝒘𝒂𝒂𝒊𝒊𝒎𝒎𝒔𝒔 𝒂𝒂𝒎𝒎𝒔𝒔𝒘𝒘:𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮, Li et al., Gated graph sequence neural networks, ICLR 2015



Graph Attention Network (GAN)
• How to decide the importance of neighbors?

• GCN: a predefined weight

• Others: no differentiation

• GAN: decide the weights using learnable 
attention
• Velickovic et al., 2018. Graph Attention 
Networks. ICLR.
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The attention mechanism
•Potentially many possible designs
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Heterogeneous Graph Transformer 
(HGT)

•How to handle heterogeneous types of 
nodes and relations?
• Introduce different weight matrices for 
different types of nodes and relations

• Introduce different attention weight matrices 
for different types of nodes and relations

83

𝑡𝑡

𝑣𝑣2𝑣𝑣1

Paper

Author Paper

CiteWrite
Hu et al., Heterogeneous Graph Transformer, WWW’20 



Meta-Relation-based Parametrization 

• Introduce node- and edge- dependent 
parameterization
• Leverage meta relation <source node type, 
edge type, target node type> to parameterize 
attention and message passing weight.

84

W<Author, Write, Paper>
=WAuthor WWrite WPaper

W<Paper, Cite, Paper>
=WPaper WCite WPaper

𝑣𝑣2𝑣𝑣1
Author Paper

CiteWrite
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Meta-Relation-based Attention
•Attention learning is also parameterized 
based on node type and link type
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Downstream Tasks for Graphs



Typical Graph Functions
•Node level

• Similarity search

• Link prediction

• Classification

• Community detection

• Ranking

87

•Graph level
• Similarity search

• Frequent pattern mining

• Graph isomorphism test

• Graph matching

• Classification

• Clustering 

• Graph generation



1. Semi-supervised Node Classification

•Decoder using 𝑧𝑧𝑣𝑣 = 𝑡𝑣𝑣𝐿𝐿
• Feed into another fully connected layer

• �𝑦𝑦𝑣𝑣 = 𝜎𝜎(𝜃𝜃𝑇𝑇𝑧𝑧𝑣𝑣)
•Loss function

• Cross entropy loss

• In a binary classification case
• 𝑙𝑙𝑣𝑣 = 𝑦𝑦𝑣𝑣𝑙𝑙𝑘𝑘𝑒𝑒 �𝑦𝑦𝑣𝑣 + (1 − 𝑦𝑦𝑣𝑣)log(1 − �𝑦𝑦𝑣𝑣)
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Applications of Node Classification
•Social network

• An account is bot or not

•Citation network
• A paper’s research field

•A program-derived graph
• The type of a variable
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2. Link Prediction
•Decoder using 𝑧𝑧𝑣𝑣 = 𝑡𝑣𝑣𝐿𝐿

• Given a node pair 𝑢𝑢, 𝑣𝑣
• Determine its probability 𝑝𝑝𝑢𝑢𝑣𝑣 = 𝑧𝑧𝑢𝑢𝑇𝑇𝑅𝑅𝑧𝑧𝑣𝑣
• R could be different for different relation type

•Loss function
• Cross entropy loss

• 𝑙𝑙𝑢𝑢𝑣𝑣 = 𝑦𝑦𝑢𝑢𝑣𝑣𝑙𝑙𝑘𝑘𝑒𝑒𝑝𝑝𝑢𝑢𝑣𝑣 + (1 − 𝑦𝑦𝑢𝑢𝑣𝑣)log(1 − 𝑝𝑝𝑢𝑢𝑣𝑣)
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Link Prediction Applications
•Social network

• Friend recommendation

•Citation network
• Citation recommendation

•Medical network
• Drug and target binding or not

•A program-derived graph
• Code autocomplete
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3. Graph Classification
•Decoder using 𝑡𝐺𝐺 = 𝑒𝑒( 𝑧𝑧𝑣𝑣 𝑣𝑣∈𝑉𝑉)

•𝑒𝑒 ⋅ : 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑 𝑘𝑘𝑢𝑢𝑡𝑡 𝑖𝑖𝑢𝑢𝑘𝑘𝑣𝑣𝑡𝑡𝑖𝑖𝑘𝑘𝑘𝑘, e.g., sum

• Feed 𝑡𝐺𝐺 into another fully connected layer

• �𝑦𝑦𝐺𝐺 = 𝜎𝜎(𝜃𝜃𝑇𝑇𝑡𝐺𝐺)
•Loss function

• Cross entropy loss

• In a binary classification case
• 𝑙𝑙𝐺𝐺 = 𝑦𝑦𝐺𝐺𝑙𝑙𝑘𝑘𝑒𝑒 �𝑦𝑦𝐺𝐺 + (1 − 𝑦𝑦𝐺𝐺)log(1 − �𝑦𝑦𝐺𝐺)
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Graph Classification Applications
•Chemical compounds

• Toxic or not

•Proteins
• Has certain function or not 

•Program-derived graphs
• Contains bugs or not
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4. Graph Similarity Computation
•Decoder using 𝑡𝐺𝐺= 𝑒𝑒( 𝑧𝑧𝑣𝑣 𝑣𝑣∈𝑉𝑉)

• Given a graph pair 𝐺𝐺1,𝐺𝐺2
• Determine its score 𝑣𝑣𝐺𝐺1𝐺𝐺2 = 𝑡𝐺𝐺1

𝑇𝑇 𝑅𝑅𝑡𝐺𝐺2
•Loss function

• E.g., Square loss
• 𝑙𝑙𝐺𝐺1𝐺𝐺2 = (𝑦𝑦𝐺𝐺1𝐺𝐺2−𝑣𝑣𝐺𝐺1𝐺𝐺2)^2
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A Concrete solution by SimGNN [Bai et 
al., AAAI 2019]

• Goal: learn a GNN 𝜙𝜙: 𝒢𝒢 × 𝒢𝒢 → 𝑅𝑅+ to 
approximate Graph Edit Distance between two 
graphs
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1. Attention-based graph-level embedding
2. Histogram features from pairwise node similarities



Graph Similarity Computation 
Applications

•Drug database
• Drug similarity search

•Program database
• Code recommendation

• Search ninja code for novice code 
• Search java code for COBOL code
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Summary
• Introduction to Graphs

•Spectral analysis

•Shallow Embedding

•Graph Neural Networks
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