CS247: ADVANCED DATA MINING

09: Graph and Network: Graph Embedding

Instructor: Yizhou Sun

yzsun@ccs.neu.edu

February 8, 2022

Graph Embedding

What is Graph Embedding

Shallow Network Embedding

Knowledge Graph Embedding

Graph Neural Network

Summary

How to represent nodes?

A naïve solution

	Α	В	С	D	Ε	F
Α	0	1	1	1	0	0
В	1	0	0	0	1	1
С	1	0	0	0	0	1
D	1	0	0	0	0	0
Ε	0	1	0	0	0	0
F	0	1	1	0	0	0

- Limitations:
 - Extremely High-dimensional
 - No global structure information integrated
 - Permutation-variant

Even more challenging for graph representation

Ex. Graphlet-based feature vector

Source: DOI: 10.1093/bioinformatics/btv130

ممه	&	₩	2%	8%	딿	
12	1	4	1	6	0	

Requires subgraph isomorphism test: NP-hard

Source:

https://haotang1995.github.io/projects/robust _graph_level_representation_learning_using_g raph_based_structural_attentional_learning4

A Better Solution

Map each node into a low dimensional vector

• $\phi: V \to R^d$

(b) Output: representations

Source: DeepWalk

Graph Embedding

What is Graph Embedding

Shallow Network Embedding

Knowledge Graph Embedding

Graph Neural Network

Summary

Shallow Network Embedding Approaches

- Inspired by word embedding
 - A node's embedding is determined by its context
- How to define the local context of a node?
 - DeepWalk [Perozzi, KDD'14]
 - LINE [Tang, WWW'15]
 - Node2Vec [Grover, KDD'16]

LINE: Large-scale Information Network Embedding

First-order proximity

• Assumption: Two nodes are similar if they are connected...

$$p_1(v_i, v_j) = \frac{\exp(\vec{u}_i^T \vec{u}_j)}{\sum_{(m,n) \in V \times V} \exp(\vec{u}_m^T \vec{u}_n)} \quad u_i : embedding \ vector \ for \ node \ i$$

• Limitation: links are sparse, not sufficient

Objective function for first-order proximity

 Minimize the KL divergence between empirical link distribution and modeled link distribution

$$\hat{p}_1(v_i, v_j) = \frac{w_{ij}}{\sum_{(m,n)\in E} w_{mn}}$$

$$O_1 = KL(\hat{p}_1, p_1) = -\sum_{(i,j) \in E} w_{ij} \log p_1(v_i, v_j)$$

 w_{ij} : weight over edge(i,j)

Second-Order Proximity

Assumption:

Two nodes are similar if their neighbors are

 u_i : target embedding vector for node i u'_i : context embedding vector for node j

Objective function for second-order proximity

- Minimize the KL divergence between empirical link distribution and modeled link distribution
 - Empirical distribution $\hat{p}_2(v_j | v_i) = \frac{w_{ij}}{\sum_{k \in V} w_{ik}}$
 - Objective function

$$O_2 = \sum_{i} KL(\hat{p}_2(\cdot \mid v_i), p_2(\cdot \mid v_i)) = -\sum_{(i,j) \in E} w_{ij} \log p_2(v_j \mid v_i)$$

$$d_i = \sum_{k} w_{ik}$$

Negative Sampling for Optimization

- For second-order proximity derived objective function
 - For each positive link (i, j), sample K negative links (i, n)
 - An edge with weight w can be considered as w binary edges

$$\log \sigma(\vec{u}_j^{\prime T} \cdot \vec{u}_i) + \sum_{i=1}^K E_{v_n \sim P_n(v)} [\log \sigma(-\vec{u}_n^{\prime T} \cdot \vec{u}_i)]$$

negative distribution: $P_n(v) \propto d_v^{3/4}$

Graph Embedding

What is Graph Embedding

Shallow Network Embedding

Knowledge Graph Embedding

Graph Neural Networks

Summary

Knowledge Graph

- What are knowledge graphs?
 - Multi-relational graph data
 - (heterogeneous information network)
 - Provide structured representation for semantic relationships between real-world entities

KGs are everywhere

Bio & Medical KGs

Product Graphs & E-commerce

Common-sense KGs & NLP

Applications of KGs

- Foundational to knowledge-driven AI systems
- Enable many downstream applications (NLP tasks, QA systems, etc)

Application in Search Engine

When you search in Google

Applications to Product KG

 Hao et al., "P-Companion: A Principled Framework for Diversified Complementary Product Recommendation", CIKM'20

Application to Biological KG

 Hao et al., "Bio-JOIE: Joint Representation Learning of Biological Knowledge Bases", ACM BCB'20 (best

Gene Ontology Domain

student pape

Knowledge Graph Embedding

- Goal: Encode entities as low-dimensional vectors and relations as parametric algebraic operations
 - Input: Relation facts (triples)
 - Output: representations of objects and relations

Key Idea of KG embedding algorithms

- Define a score function for a triple: $f_r(\boldsymbol{h}, \boldsymbol{t})$
 - According to entity and relation representation

- Define a loss function to guide the training
 - E.g., an observed triple scores higher than a negative one

Summary of Existing Approaches

Model	Score Function		
SE (Bordes et al., 2011)	$-\ oldsymbol{W}_{r,1}\mathbf{h}-oldsymbol{W}_{r,2}\mathbf{t}\ $	$\mathbf{h},\mathbf{t} \in \mathbb{R}^k, oldsymbol{W}_{r,\cdot} \in \mathbb{R}^{k imes k}$	
TransE (Bordes et al., 2013)	$-\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ $	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^k$	
TransX	$-\ g_{r,1}(\mathbf{h}) + \mathbf{r} - g_{r,2}(\mathbf{t})\ $	$\mathbf{h},\mathbf{r},\mathbf{t} \in \mathbb{R}^k$	
DistMult (Yang et al., 2014)	$\langle \mathbf{r}, \mathbf{h}, \mathbf{t} \rangle$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^k$	
ComplEx (Trouillon et al., 2016)	$\operatorname{Re}(\langle \mathbf{r}, \mathbf{h}, \overline{\mathbf{t}} \rangle)$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{C}^k$	
HolE (Nickel et al., 2016)	$\langle {f r}, {f h} \otimes {f t} angle$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^k$	
ConvE (Dettmers et al., 2017)	$\langle \sigma(\operatorname{vec}(\sigma([\overline{\mathbf{r}},\overline{\mathbf{h}}]*\mathbf{\Omega}))\mathbf{W}),\mathbf{t} \rangle$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^k$	
RotatE	$-\left\ \mathbf{h}\circ\mathbf{r}-\mathbf{t} ight\ ^2$	$\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{C}^k, r_i = 1$	

Source: Sun et al., RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space (ICLR'19)

TransE: Score Function

Relation: translating embedding

Score function

$$f_r(\mathbf{h}, \mathbf{t}) = -||\mathbf{h} + \mathbf{r} - \mathbf{t}|| = -d(\mathbf{h} + \mathbf{r}, \mathbf{t})$$

Bordes et al., Translating embeddings for modeling multi-relational data, NeurIPS 2013

TransE: Objective Function

- Objective Function
 - Margin-based ranking loss
 - $L = \sum_{(h,r,t)\in S} \sum_{(h',r,t')\in S'_{(h,r,t)}} [\gamma + d(\mathbf{h} + \mathbf{r}, \mathbf{t}) d(\mathbf{h}' + \mathbf{r}, \mathbf{t}')]_{+}$
 - $[x]_+$ denotes the positive part of x, i.e., $\max(0, x)$
 - $\gamma > 0$ denotes the margin hyperparameter
 - The higher the bigger difference between positive triple and negative one
 - S: positive triple set; S': corrupted triple set (negative triples)
- Optimization: stochastic gradient descent

TransE: Limitations

- One-one mapping: $t = \phi_r(h)$
 - Given (h,r), t is unique
 - Given (r,t), h is unique
- Anti-symmetric
 - If r(h,t) then r(t,h) is not true
 - Cannot model symmetric relation, e.g., friendship
- Anti-reflexive
 - r(h,h) is not true
 - Cannot model reflexive relations, e.g., synonym

DistMult

- Bilinear score function
 - $f_r(\boldsymbol{h}, \boldsymbol{t}) = \boldsymbol{h}^T \boldsymbol{M}_r \boldsymbol{t}$
 - ullet Where $oldsymbol{M}_r$ is a diagonal matrix with diagonal vector $oldsymbol{r}$
 - A simplification to neural tensor network (NTN)
- Objective function

•
$$L = \sum_{(h,r,t)\in S} \sum_{(h',r,t')\in S'_{(h,r,t)}} [\gamma - f_r(\mathbf{h}, \mathbf{t}) + f_r(\mathbf{h}', \mathbf{t}')]_+$$

- Limitation
 - Can only model symmetric relation
 - $\bullet f_r(\boldsymbol{h}, \boldsymbol{t}) = f_r(\boldsymbol{t}, \boldsymbol{h})$

Yang et al., Embedding entities and relations for learning and inference in knowledge bases, ICLR 2015

RotatE: Score Function

- Relation: rotation operation in complex space
 - head and tail entities in complex vector space, i.e., $\mathbf{h}, \mathbf{t} \in \mathbb{C}^k$
 - each relation r as an element-wise rotation from the head entity h to the tail entity t, i.e.,
 - $t = h \circ r$, i.e., $t_i = h_i r_i$, where $|r_i| = 1$
 - ullet Equivalently, $r_i=e^{i heta_{r,i}}$, i.e. , $rotate\ \mathrm{h_i}$ with $heta_{r,i}$
- Score function:

•
$$f_r(h,t) = -||\boldsymbol{h} \circ \boldsymbol{r} - \boldsymbol{t}||$$

Zhiqing Sun, Zhihong Deng, Jian-Yun Nie, and Jian Tang. "RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space." ICLR'19.

RotatE: Geometric Interpretation

Consider 1-d case

(a) TransE models **r** as translation in real line.

(b) RotatE models **r** as rotation in complex plane.

RotatE: Objective function

- Smarter negative sampling
 - The negative triple with higher score is more likely to be sampled

$$p(h'_j, r, t'_j | \{(h_i, r_i, t_i)\}) = \frac{\exp \alpha f_r(\mathbf{h}'_j, \mathbf{t}'_j)}{\sum_i \exp \alpha f_r(\mathbf{h}'_i, \mathbf{t}'_i)}$$

Cross-entropy loss

$$L = -\log \sigma(\gamma - d_r(\mathbf{h}, \mathbf{t})) - \sum_{i=1}^{n} p(h'_i, r, t'_i) \log \sigma(d_r(\mathbf{h}'_i, \mathbf{t}'_i) - \gamma)$$

RotatE: Pros and Cons

• Pros:

- Can model relations with different properties
- Symmetric: $r_i = +1 \ or -1$
- Anti-symmetric: $r \circ r \neq 1$
- Inverse relations: $\mathbf{r}_2 = \overline{\mathbf{r}}_1$
 - E.g., hypernym is the **inverse** relation of hyponym
- Composition relations: $r_3=r_1\circ r_2$, i. e., $\theta_3=\theta_1+\theta_2$, if $r_j=e^{i\theta_j}$ for j = 1,2,3

• Cons:

- One-one mapping
- Relations are commutative: i.e., $r_1 \circ r_2 = r_2 \circ r_1$
 - Which is not always true, e.g., father's wife ≠ wife's father

Graph Embedding

What is Graph Embedding

Shallow Network Embedding

Knowledge Graph Embedding

Graph Neural Networks

Summary

Limitation of Shallow Network Embedding

- Too many parameters
 - Each node is associated with an embedding vector, which are parameters
- Not inductive
 - Cannot handle new nodes
- Cannot handle node attributes

From shallow embedding to Graph Neural Networks

- The embedding function (encoder) is more complicated
 - Shallow embedding
 - $\phi(v) = U^T x_v$, where U is the embedding matrix and x_v is the one-hot encoding vector
 - Graph neural networks
 - $ullet \phi(v)$ is a neural network depending on the graph structure

Notations

- •An attributed graph G = (V, E)
 - V: vertex set
 - *E*: edge set
 - A: adjacency matrix
 - $X \in \mathbb{R}^{d_0 \times |V|}$: feature matrix for all the nodes
 - N(v): neighbors of node v
 - h_{v}^{l} : Representation vector of node v at Layer l
 - *Note* $h_v^0 = x_v$
 - $H^l \in R^{d_l \times |V|}$: representation matrix

The General Architecture of GNNs

For a node v at layer t

$$h_v^{(t)} = f\left(\underline{h_v^{(t-1)}}, \left\{\underline{h_u^{(t-1)}}|u \in \mathcal{N}(v)\right\}\right)$$

representation vector from previous layer for node v

representation vectors from previous layer for node v's neighbors

- A function of representations of neighbors and itself from previous layers
 - Aggregation of neighbors
 - Transformation to a different space
 - Combination of neighbors and the node itself

Compare with CNN

- Recall CNN
 - Regular graph
- GNN

Image Convolved

• Extend to irregular graph structure Feature

Graph Convolutional Network (GCN)

Kipf and Welling, ICLR'17

$$ullet f(H^{(l)},A) = \sigma\left(\hat{D}^{-rac{1}{2}}\hat{A}\hat{D}^{-rac{1}{2}}H^{(l)}W^{(l)}
ight), \widehat{A} = A + I$$

- f: graph filter
- From a node v's perspective

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v) \cup v} \frac{\mathbf{h}_{u}^{k-1}}{\sqrt{|N(u)||N(v)|}} \right)$$

 W_k : weight matrix at Layer k, shared across different nodes

A toy example of 2-layer GCN on a 4node graph

Computation graph

Question

- How many parameters are there in a GCN?
 - Assuming initial features are with d_0 dimensions
 - Representation in later layers are with *d* dimensions

GraphSAGE

Inductive Representation Learning on Large Graphs

William L. Hamilton*, Rex Ying*, Jure Leskovec, NeurIPS'17

$$\mathbf{h}_{\mathcal{N}(v)}^{k} \leftarrow \text{AGGREGATE}_{k}(\{\mathbf{h}_{u}^{k-1}, \forall u \in \mathcal{N}(v)\})$$

$$\mathbf{h}_{v}^{k} \leftarrow \sigma\left(\mathbf{W}^{k} \cdot \text{CONCAT}(\mathbf{h}_{v}^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^{k})\right)$$

A more general form

$$\mathbf{h}_{v}^{k} = \sigma\left(\left[\mathbf{W}_{k} \cdot \boxed{\mathbf{AGG}\left(\left\{\mathbf{h}_{u}^{k-1}, \forall u \in N(v)\right\}\right), \mathbf{B}_{k}^{k} \mathbf{h}_{v}^{k-1}\right]\right)$$

More about AGG

Mean

$$AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_u^{\kappa - 1}}{|N(v)|}$$

- LSTM $\left(\left[\mathbf{h}_{u}^{k-1}, \forall u \in \pi(N(v))\right]\right)$
 - • $\pi(\cdot)$: a random permutation

- Pool $AGG = \gamma \{ \mathbf{Qh}_u^{k-1}, \forall u \in N(v) \}$
 - • $\gamma(\cdot)$: Element-wise mean/max pooling of neighbor set

Message-Passing Neural Network

- Gilmer et al., 2017. Neural Message Passing for Quantum Chemistry. ICML.
- A general framework that subsumes most GNNs
 - Can also include edge information
- Two steps
 - Get messages from neighbors at step k

$$\mathbf{m}_v^k = \sum_{u \in N(v)} M(\mathbf{h}_u^{k-1}, \mathbf{h}_v^{k-1}, \mathbf{e}_{u,v})$$
 e.g., Sum or MLP

• Update the node latent represent based on the msg

$$\mathbf{h}_v^k = U(\mathbf{h}_v^{k-1}, \mathbf{m}_v^k)$$
 e.g., LSTM, GRU

Graph Attention Network (GAN)

- How to decide the importance of neighbors?
 - GCN: a predefined weight
 - Others: no differentiation
- GAN: decide the weights using learnable attention
 - Velickovic et al., 2018. Graph Attention Networks. ICLR.

$$\vec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right)$$

The attention mechanism

Potentially many possible designs

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^{T}[\mathbf{W}\vec{h}_{i}\|\mathbf{W}\vec{h}_{j}]\right)\right)}{\sum_{k \in \mathcal{N}_{i}} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^{T}[\mathbf{W}\vec{h}_{i}\|\mathbf{W}\vec{h}_{i}]\right)\right)}$$

Downstream Tasks for Graphs

Typical Graph Functions

- Node level
 - Similarity search
 - Link prediction
 - Classification
 - Community detection
 - Ranking

- Graph level
 - Similarity search
 - Frequent pattern mining
 - Graph isomorphism test
 - Graph matching
 - Classification
 - Clustering
 - Graph generation

1. Semi-supervised Node Classification

- Decoder using $z_v = h_v^L$
 - Feed into another fully connected layer
 - $\bullet \, \hat{y}_v = \sigma(\theta^T z_v)$
- Loss function
 - Cross entropy loss
 - In a binary classification case
 - $l_v = -y_v \log \hat{y}_v (1 y_v) \log(1 \hat{y}_v)$

Applications of Node Classification

- Social network
 - An account is bot or not
- Citation network
 - A paper's research field
- A program-derived graph
 - The type of a variable

2. Link Prediction

- Decoder using $z_v = h_v^L$
 - Given a node pair (u, v)
 - Determine its probability $p_{uv} = \sigma(z_u^T R z_v)$
 - R could be different for different relation type
- Loss function
 - Cross entropy loss
 - $l_{uv} = -y_{uv}logp_{uv} (1 y_{uv})log(1 p_{uv})$

Link Prediction Applications

- Social network
 - Friend recommendation
- Citation network
 - Citation recommendation
- Medical network
 - Drug and target binding or not
- A program-derived graph
 - Code autocomplete

3. Graph Classification

- Decoder using $h_G = g(\{z_v\}_{v \in V})$
 - $g(\cdot)$: a read out function, e.g., sum
 - Feed h_G into another fully connected layer
 - $\bullet \hat{y}_G = \sigma(\theta^T h_G)$
- Loss function
 - Cross entropy loss
 - In a binary classification case
 - $l_G = -y_G log \hat{y}_G (1 y_G) log (1 \hat{y}_G)$

Graph Classification Applications

- Chemical compounds
 - Toxic or not
- Proteins
 - Has certain function or not
- Program-derived graphs
 - Contains bugs or not

4. Graph Similarity Computation

- Decoder using $h_G = g(\{z_v\}_{v \in V})$
 - Given a graph pair (G_1, G_2)
 - Determine its score $s_{G_1G_2} = h_{G_1}^T R h_{G_2}$
- Loss function
 - E.g., Square loss
 - $l_{G_1G_2} = (y_{G_1G_2} s_{G_1G_2})^2$

A Concrete solution by SimGNN [Bai et al., AAAI 2019]

• Goal: learn a GNN ϕ : $\mathcal{G} \times \mathcal{G} \to \mathbb{R}^+$ to approximate Graph Edit Distance between two

- 1. Attention-based graph-level embedding
- 2. Histogram features from pairwise node similarities

Graph Similarity Computation Applications

- Drug database
 - Drug similarity search
- Program database
 - Code recommendation
 - Search ninja code for novice code
 - Search java code for COBOL code

Wanted urgently: People who know a half century-old computer language so states can process unemployment claims

Tutorial on GNN coding

 https://colab.research.google.com/drive/ 1DIQm9rOx2mT1bZETEeVUThxcrP1RKqAn

Graph Embedding

What is Graph Embedding

Shallow Network Embedding

Knowledge Graph Embedding

Graph Neural Networks

Summary

Summary

- Graph embedding
- Shallow embedding
 - E.g., LINE
- Knowledge graph embedding
 - E.g., TransE
- Graph neural networks
 - E.g., GCN

References

- Bryan Perozzi, Rami Al-Rfou, Steven Skiena, DeepWalk: Online Learning of Social Representations, KDD'14
- Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, Qiaozhu Mei, LINE: Large-scale Information Network Embedding, WWW'15
- Aditya Grover, Jure Leskovec, node2vec: Scalable Feature Learning for Networks, KDD'16
- Kipf & Welling, <u>Semi-Supervised Classification with Graph</u> <u>Convolutional Networks</u>, ICLR 2017
- Tutorial: http://snap.stanford.edu/proj/embeddings-www/files/nrltutorial-part2-gnns.pdf
- Tutorial: http://tkipf.github.io/misc/SlidesCambridge.pdf
- Bordes et al., Translating Embeddings for Modeling Multirelational Data, NIPS 2013