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Graph Embedding
• What is Graph Embedding

• Shallow Network Embedding

• Knowledge Graph Embedding

• Graph Neural Network

• Summary
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How to represent nodes?
• A naïve solution

• Limitations:
• Extremely High-dimensional
• No global structure information integrated
• Permutation-variant
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Even more challenging for graph 
representation

•Ex. Graphlet-based feature vector
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Source: 
https://haotang1995.github.io/projects/robust
_graph_level_representation_learning_using_g
raph_based_structural_attentional_learning

Source: DOI: 10.1093/bioinformatics/btv130

Requires subgraph isomorphism test: NP-hard 

https://www.researchgate.net/deref/http:/dx.doi.org/10.1093/bioinformatics/btv130?_sg%5b0%5d=c7EGji0yMAcNmX7qyvelALSHPs_AFY6uY_j1fZsQZ2r4MdBS-ltMoAizuryiUXNwMLFIn_6V4T8VftuQ6QNmrqwwSA.tAM7JBYLZHQdDZ40OzufE0T1jq2gyXBuI_prSIiB9DcdobMFPQq7ZyYPsjv1syVUs2cOW6GumNBbq15VqgX3VQ


A Better Solution
•Map each node into a low dimensional 
vector
•𝜙𝜙:𝑉𝑉 → 𝑅𝑅𝑑𝑑

5
Source: DeepWalk
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Shallow Network Embedding 
Approaches

• Inspired by word embedding
• A node’s embedding is determined by its 
context

•How to define the local context of a 
node?
• DeepWalk [Perozzi, KDD’14]

• LINE [Tang, WWW’15]

• Node2Vec [Grover, KDD’16]
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LINE: Large-scale Information Network 
Embedding

• First-order proximity

• Assumption: Two nodes are similar if they are 
connected

• Limitation: links are sparse, not sufficient
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𝑢𝑢𝑖𝑖: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖



Objective function for first-order 
proximity

•Minimize the KL divergence between 
empirical link distribution and modeled 
link distribution
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𝑤𝑤𝑖𝑖𝑖𝑖:𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖, 𝑗𝑗)



Second-Order Proximity
•Assumption:

• Two nodes are similar if their neighbors are 
similar
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𝑢𝑢𝑖𝑖: 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖
𝑢𝑢𝑗𝑗′: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑗𝑗



Objective function for second-order 
proximity

•Minimize the KL divergence between 
empirical link distribution and modeled 
link distribution
• Empirical distribution

• Objective function
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𝒅𝒅𝒊𝒊

𝒅𝒅𝒊𝒊 = �
𝒌𝒌
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Negative Sampling for Optimization
•For second-order proximity derived 
objective function
• For each positive link (i, j), sample K negative 
links (i, n)
• An edge with weight w can be considered as w 

binary edges

• New objective function
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𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑: 𝑃𝑃𝑛𝑛 𝑣𝑣 ∝ 𝑑𝑑𝑣𝑣
3/4
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Knowledge Graph
•What are knowledge graphs?

• Multi-relational graph data 
• (heterogeneous information network)

• Provide structured representation for semantic 
relationships between real-world entities
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A triple (h, r, t) represents a fact, ex: 
(Eiffel Tower, is located in, Paris)



KGs are everywhere
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General-purpose KGs

Common-sense KGs & NLP

Bio & Medical KGs

Product Graphs & E-commerce



Applications of KGs
● Foundational to knowledge-driven AI systems
● Enable many downstream applications (NLP

tasks, QA systems, etc)
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QA & Dialogue systems

Sor r y, I don 't  know 
that  one.

Computational Biology

Natural Language 
Processing

Recommendation Systems

Knowledge Graphs



Application in Search Engine
•When you search in Google
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Facts from KG



Applications to Product KG
• Hao et al., “P-Companion: A Principled Framework for 

Diversified Complementary Product 
Recommendation”, CIKM’20
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https://dl.acm.org/doi/10.1145/3340531.3412732


Application to Biological KG
• Hao et al., “Bio-JOIE: Joint Representation Learning of 

Biological Knowledge Bases”, ACM BCB’20 (best 
student paper award)
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https://www.biorxiv.org/content/10.1101/2020.06.15.153692v1


Knowledge Graph Embedding
•Goal: Encode entities as low-dimensional 
vectors and relations as parametric 
algebraic operations
• Input: Relation facts (triples)

• Output: representations of objects and 
relations
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Key Idea of KG embedding algorithms

• Define a score function for a triple: 𝑓𝑓𝑟𝑟(𝒉𝒉, 𝒕𝒕)
• According to entity and relation representation

• Define a loss function to guide the training
• E.g., an observed triple scores higher than a negative 

one

21

Triple

Score Function



Summary of Existing Approaches
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Source: Sun et al., RotatE: Knowledge Graph Embedding by Relational Rotation in 
Complex Space (ICLR’19)



TransE: Score Function
•Relation: translating embedding

•Score function
•𝑓𝑓𝑟𝑟 𝒉𝒉, 𝒕𝒕 = − 𝒉𝒉 + 𝒓𝒓 − 𝒕𝒕 = −𝑑𝑑(𝒉𝒉 + 𝒓𝒓, 𝒕𝒕)
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China

U.S.

UK

Beijing

D.C.

London

: Capitial

Bordes et al., Translating embeddings for modeling multi-relational data, 
NeurIPS 2013



TransE: Objective Function
•Objective Function

• Margin-based ranking loss
• 𝐿𝐿 = ∑ ℎ,𝑟𝑟,𝑡𝑡 ∈𝑆𝑆 ∑(ℎ′,𝑟𝑟,𝑡𝑡′)∈𝑆𝑆 ℎ,𝑟𝑟,𝑡𝑡

′ [𝛾𝛾 + 𝑑𝑑 (
)

𝒉𝒉 +
𝒓𝒓, 𝒕𝒕 − 𝑑𝑑(𝒉𝒉′ + 𝒓𝒓, 𝒕𝒕′)]+
• 𝑥𝑥 + denotes the positive part of 𝑥𝑥, i.e., max(0, 𝑥𝑥)
• 𝛾𝛾 > 0 denotes the margin hyperparameter

• The higher the bigger difference between positive triple and 
negative one

• 𝑆𝑆: positive triple set; 𝑆𝑆′: corrupted triple set 
(negative triples) 

•Optimization: stochastic gradient descent
24



TransE: Limitations
• One-one mapping: 𝑡𝑡 = 𝜙𝜙𝑟𝑟(ℎ)

• Given (h,r), t is unique

• Given (r,t), h is unique

• Anti-symmetric
• If r(h,t) then r(t,h) is not true

• Cannot model symmetric relation, e.g., friendship

• Anti-reflexive
• r(h,h) is not true

• Cannot model reflexive relations, e.g., synonym
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DistMult
• Bilinear score function

• 𝑓𝑓𝑟𝑟 𝒉𝒉, 𝒕𝒕 = 𝒉𝒉𝑇𝑇𝑴𝑴𝑟𝑟𝒕𝒕
• Where 𝑴𝑴𝑟𝑟 is a diagonal matrix with diagonal vector 𝒓𝒓

• A simplification to neural tensor network (NTN)

• Objective function
• 𝐿𝐿 = ∑ ℎ,𝑟𝑟,𝑡𝑡 ∈𝑆𝑆 ∑(ℎ′,𝑟𝑟,𝑡𝑡′)∈𝑆𝑆 ℎ,𝑟𝑟,𝑡𝑡

′ [𝛾𝛾 − 𝑓𝑓𝑟𝑟 𝒉𝒉, 𝒕𝒕 + 𝑓𝑓𝑟𝑟 𝒉𝒉′, 𝒕𝒕′ ]+

• Limitation
• Can only model symmetric relation

• 𝑓𝑓𝑟𝑟 𝒉𝒉, 𝒕𝒕 = 𝑓𝑓𝑟𝑟 𝒕𝒕,𝒉𝒉

26
Yang et al., Embedding entities and relations for learning and inference in 
knowledge bases, ICLR 2015



RotatE: Score Function
• Relation: rotation operation in complex space

• head and tail entities in complex vector space, i.e., 
𝐡𝐡, 𝐭𝐭 ∈ ℂ𝑘𝑘

• each relation r as an element-wise rotation from the 
head entity 𝐡𝐡 to the tail entity 𝐭𝐭, i.e., 
• 𝒕𝒕 = 𝒉𝒉 ∘ 𝒓𝒓, 𝑖𝑖. 𝑒𝑒. , 𝑡𝑡𝑖𝑖 = ℎ𝑖𝑖𝑟𝑟𝑖𝑖 ,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑟𝑟𝑖𝑖 = 1
• Equivalently, 𝑟𝑟𝑖𝑖 = 𝑒𝑒𝑖𝑖𝜃𝜃𝑟𝑟,𝑖𝑖 , 𝑖𝑖. 𝑒𝑒. , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 hi with 𝜃𝜃𝑟𝑟,𝑖𝑖

• Score function:
•𝑓𝑓𝑟𝑟 ℎ, 𝑡𝑡 = −||𝒉𝒉 ∘ 𝒓𝒓 − 𝒕𝒕||

27

Zhiqing Sun, Zhihong Deng, Jian-Yun Nie, and Jian Tang. “RotatE: Knowledge Graph 
Embedding by Relational Rotation in Complex Space.” ICLR’19.



RotatE: Geometric Interpretation
•Consider 1-d case
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RotatE: Objective function
•Smarter negative sampling

• The negative triple with higher score is more likely 
to be sampled

•Cross-entropy loss

29



RotatE: Pros and Cons
• Pros:

• Can model relations with different properties
• Symmetric: 𝑟𝑟𝑖𝑖 = +1 𝑜𝑜𝑜𝑜 − 1
• Anti-symmetric: 𝒓𝒓 ∘ 𝒓𝒓 ≠ 𝟏𝟏
• Inverse relations: 𝐫𝐫2 = �𝐫𝐫1

• E.g., hypernym is the inverse relation of hyponym
• Composition relations: 𝒓𝒓𝟑𝟑 = 𝒓𝒓𝟏𝟏 ∘ 𝒓𝒓𝟐𝟐, i. e. ,𝜽𝜽𝟑𝟑 = 𝜽𝜽𝟏𝟏 +
𝜽𝜽𝟐𝟐, if 𝒓𝒓𝑗𝑗 = 𝑒𝑒𝑖𝑖𝜽𝜽𝑗𝑗 for j = 1,2,3

• Cons:
• One-one mapping
• Relations are commutative: i.e., 𝒓𝒓𝟏𝟏 ∘ 𝒓𝒓𝟐𝟐 = 𝒓𝒓𝟐𝟐 ∘ 𝒓𝒓𝟏𝟏

• Which is not always true, e.g., father’s wife ≠ wife’s father 

30
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Limitation of Shallow Network 
Embedding

•Too many parameters
• Each node is associated with an embedding 
vector, which are parameters

•Not inductive
• Cannot handle new nodes

•Cannot handle node attributes

32



From shallow embedding to Graph 
Neural Networks

•The embedding function (encoder) is 
more complicated
• Shallow embedding

•𝜙𝜙 𝑣𝑣 = 𝑈𝑈𝑇𝑇𝑥𝑥𝑣𝑣, where U is the embedding matrix 
and 𝑥𝑥𝑣𝑣 is the one-hot encoding vector

• Graph neural networks
•𝜙𝜙 𝑣𝑣 is a neural network depending on the graph 

structure

33



Notations
•An attributed graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)

•𝑉𝑉: vertex set

•𝐸𝐸: edge set

•𝐴𝐴: adjacency matrix  

•𝑋𝑋 ∈ 𝑅𝑅𝑑𝑑0×|𝑉𝑉|: feature matrix for all the nodes

•𝑁𝑁(𝑣𝑣): neighbors of node 𝑣𝑣
•ℎ𝑣𝑣𝑙𝑙 : Representation vector of node 𝑣𝑣 at Layer 𝑙𝑙

• Note ℎ𝑣𝑣0 = 𝑥𝑥𝑣𝑣
•𝐻𝐻𝑙𝑙 ∈ 𝑅𝑅𝑑𝑑𝑙𝑙×|𝑉𝑉|: representation matrix

34



The General Architecture of GNNs
•For a node v at layer t

• A function of representations of neighbors and 
itself from previous layers
• Aggregation of neighbors
• Transformation to a different space
• Combination of neighbors and the node itself

35

representation vector 
from previous layer for 
node v 

representation vectors 
from previous layer for 
node v’s neighbors 



Compare with CNN
•Recall CNN

• Regular graph

•GNN
• Extend to irregular graph structure

36



Graph Convolutional Network (GCN)
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•Kipf and Welling, ICLR’17
• , �𝐴𝐴 = 𝐴𝐴 + 𝐼𝐼
• f: graph filter

•From a node v’s perspective

𝑾𝑾𝒌𝒌:𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒂𝒂𝒂𝒂 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 𝒌𝒌, 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏



A toy example of 2-layer GCN on a 4-
node graph

•Computation graph
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Question
•How many parameters are there in a 
GCN?
• Assuming initial features are with 𝑑𝑑0
dimensions

• Representation in later layers are with 𝑑𝑑
dimensions
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GraphSAGE
• Inductive Representation Learning on Large Graphs

William L. Hamilton*, Rex Ying*, Jure Leskovec, 
NeurIPS’17

40

A more general form

https://arxiv.org/pdf/1706.02216.pdf


More about AGG
•Mean

•LSTM
•𝜋𝜋 ⋅ : 𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

•Pool
•𝛾𝛾 ⋅ : Element-wise mean/max pooling of 
neighbor set 

41

= 𝛾𝛾



Message-Passing Neural Network
• Gilmer et al., 2017. Neural Message Passing for 
Quantum Chemistry. ICML.

• A general framework that subsumes most GNNs
• Can also include edge information

• Two steps
• Get messages from neighbors at step k

• Update the node latent represent based on the msg

42

e.g., Sum or MLP

e.g., LSTM, GRU

𝑨𝑨 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄:𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮, Li et al., Gated graph sequence neural networks, ICLR 2015



Graph Attention Network (GAN)
•How to decide the importance of 
neighbors?
• GCN: a predefined weight

• Others: no differentiation

•GAN: decide the weights using learnable 
attention
• Velickovic et al., 2018. Graph Attention Networks. ICLR.
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The attention mechanism
•Potentially many possible designs

44



Downstream Tasks for Graphs



Typical Graph Functions
•Node level

• Similarity search

• Link prediction

• Classification

• Community detection

• Ranking

47

•Graph level
• Similarity search

• Frequent pattern mining

• Graph isomorphism test

• Graph matching

• Classification

• Clustering 

• Graph generation



1. Semi-supervised Node Classification

•Decoder using 𝑧𝑧𝑣𝑣 = ℎ𝑣𝑣𝐿𝐿
• Feed into another fully connected layer

• �𝑦𝑦𝑣𝑣 = 𝜎𝜎(𝜃𝜃𝑇𝑇𝑧𝑧𝑣𝑣)
•Loss function

• Cross entropy loss

• In a binary classification case
• 𝑙𝑙𝑣𝑣 = −𝑦𝑦𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 �𝑦𝑦𝑣𝑣 − (1 − 𝑦𝑦𝑣𝑣)log(1 − �𝑦𝑦𝑣𝑣)

48



Applications of Node Classification
•Social network

• An account is bot or not

•Citation network
• A paper’s research field

•A program-derived graph
• The type of a variable

49



2. Link Prediction
•Decoder using 𝑧𝑧𝑣𝑣 = ℎ𝑣𝑣𝐿𝐿

• Given a node pair 𝑢𝑢, 𝑣𝑣
• Determine its probability 𝑝𝑝𝑢𝑢𝑢𝑢 = 𝜎𝜎(𝑧𝑧𝑢𝑢𝑇𝑇𝑅𝑅𝑧𝑧𝑣𝑣)
• R could be different for different relation type

•Loss function
• Cross entropy loss

• 𝑙𝑙𝑢𝑢𝑣𝑣 = −𝑦𝑦𝑢𝑢𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑢𝑢𝑢𝑢 − (1 − 𝑦𝑦𝑢𝑢𝑣𝑣)log(1 − 𝑝𝑝𝑢𝑢𝑢𝑢)
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Link Prediction Applications
•Social network

• Friend recommendation

•Citation network
• Citation recommendation

•Medical network
• Drug and target binding or not

•A program-derived graph
• Code autocomplete

51



3. Graph Classification
•Decoder using ℎ𝐺𝐺 = 𝑔𝑔( 𝑧𝑧𝑣𝑣 𝑣𝑣∈𝑉𝑉)

•𝑔𝑔 ⋅ : 𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, e.g., sum

• Feed ℎ𝐺𝐺 into another fully connected layer

• �𝑦𝑦𝐺𝐺 = 𝜎𝜎(𝜃𝜃𝑇𝑇ℎ𝐺𝐺)
•Loss function

• Cross entropy loss

• In a binary classification case
• 𝑙𝑙𝐺𝐺 = −𝑦𝑦𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙 �𝑦𝑦𝐺𝐺 − (1 − 𝑦𝑦𝐺𝐺)log(1 − �𝑦𝑦𝐺𝐺)
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Graph Classification Applications
•Chemical compounds

• Toxic or not

•Proteins
• Has certain function or not 

•Program-derived graphs
• Contains bugs or not
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4. Graph Similarity Computation
•Decoder using ℎ𝐺𝐺= 𝑔𝑔( 𝑧𝑧𝑣𝑣 𝑣𝑣∈𝑉𝑉)

• Given a graph pair 𝐺𝐺1,𝐺𝐺2
• Determine its score 𝑠𝑠𝐺𝐺1𝐺𝐺2 = ℎ𝐺𝐺1

𝑇𝑇 𝑅𝑅ℎ𝐺𝐺2
•Loss function

• E.g., Square loss
• 𝑙𝑙𝐺𝐺1𝐺𝐺2 = (𝑦𝑦𝐺𝐺1𝐺𝐺2−𝑠𝑠𝐺𝐺1𝐺𝐺2)^2
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A Concrete solution by SimGNN [Bai et 
al., AAAI 2019]

• Goal: learn a GNN 𝜙𝜙: 𝒢𝒢 × 𝒢𝒢 → 𝑅𝑅+ to 
approximate Graph Edit Distance between two 
graphs
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1. Attention-based graph-level embedding
2. Histogram features from pairwise node similarities



Graph Similarity Computation 
Applications

•Drug database
• Drug similarity search

•Program database
• Code recommendation

• Search ninja code for novice code 
• Search java code for COBOL code
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Tutorial on GNN coding
•https://colab.research.google.com/drive/
1DIQm9rOx2mT1bZETEeVUThxcrP1RKqAn
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Graph Embedding
• What is Graph Embedding

• Shallow Network Embedding

• Knowledge Graph Embedding

• Graph Neural Networks

• Summary
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Summary
•Graph embedding
•Shallow embedding

• E.g., LINE

•Knowledge graph embedding
• E.g., TransE

•Graph neural networks
• E.g., GCN
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