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ABSTRACT

Almost all real-world social networks are dynamic and evolving
with time, where new links may form and old links may drop,
largely determined by the homophily of social actors (i.e., nodes
in the network). Meanwhile, (latent) properties of social actors,
such as their opinions, are changing along the time, partially due
to social influence received from the network, which will in turn
affect the network structure. Social network evolution and node
property migration are usually treated as two orthogonal prob-
lems, and have been studied separately. In this paper, we propose
a co-evolution model that closes the loop by modeling the two
phenomena together, which contains two major components: (1)
a network generative model when the node property is known;
and (2) a property migration model when the social network struc-
ture is known. Simulation shows that our model has several nice
properties: (1) it can model a broad range of phenomena such as
opinion convergence (i.e., herding) and community-based opinion
divergence; and (2) it allows to control the evolution via a set of fac-
tors such as social influence scope, opinion leader, and noise level.
Finally, the usefulness of our model is demonstrated by an applica-
tion of co-sponsorship prediction for legislative bills in Congress,
which outperforms several state-of-the-art baselines.
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1 INTRODUCTION

Social network analysis has become prevalent as the variety and
popularity of information networks increase. In the real world, net-
works are evolving constantly with links joining and dropping over
time. Meantime, properties of social actors in these networks, such
as their opinions, are constantly changing as well. One example
is the political ideology migration for two parties in U.S. Figure 1
shows the 1-dimensional mean ideology for members in two politi-
cal parties via ideal point estimation using their historical voting
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records [12]. A similar discovery can be seen in [2]. We can clearly
observe the divergence of ideologies of the two communities (i.e.
the Democrats and Republicans), especially the polarization trend
since 1960s. A natural question raises, why such divergence happens
and is there any possible intervention we can have to alleviate such po-
larization? In this paper, we attempt to interpret this phenomenon
and thus propose a unified co-evolution model for link evolution
as well as (latent) node property migration in social networks.

« *+ Mean Ideology of Republicans
« *+ Mean Ideology of Democrats

M\

1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 19902000 2010

N

Political Ideology

{
N

Figure 1: Ideology migration of the two parties in U.S.

On one hand, people in social networks exhibit great diversity
and are associated with different properties (e.g., hidden properties
such as political ideology). Interactions between individuals are
more likely to happen within people that are alike, described as
“homophily” in social network analysis [28]. With this principle,
network generative models such as blockmodels [18, 44] and latent
space models [17] have emerged, where each individual is assigned
with a feature vector denoting her latent properties (i.e., a position
in a latent space). Individuals that are close in the latent space are
likely to have interactions in the network.

On the other hand, like flocks of collectively moving animals,
people in social networks comprise a system of interacting, perma-
nently moving units. In fact, the changing of location is ubiquitous
among many kinds of creatures in real life: flocks of birds fly and
migrate; colonies of ants and drones work and move to seek for
foods. This phenomenon is also overwhelming in the realm of
social network analysis, where people’s latent position (e.g., ideol-
ogy) are migrating with their crowds (e.g., parties). In other words,
individuals are likely to be affected by their friends or who they
interact with in the social network. This “social influence” [22, 41]
assumption has been widely applied in literature. For example,
in an information diffusion model, a person will be activated (i.e.
the binary status is switched to “on”) if she has enough activated
neighbors [14].

Inspired by these observations, in this paper we propose a proba-
bilistic co-evolution model that explains the evolution of networks



as well as the migration of node properties, which contains two
major components: (1) a network generative model when the node
property is known; and (2) a property migration model when the
social network structure is known. First, in terms of network evolu-
tion, similar to existing work, we assume the network is a reflection
of node’s latent properties. Our network generative model assumes
(1) individuals have a higher chance to interact with people who
are alike; and (2) opinion leaders attract more people and thus in-
teract with more people. Second, in terms of property migration,
we notice how creatures in biological systems and how particles in
molecular systems propagate: they are influenced by their spatial
neighbors to a large extent. We generalize the notion of “spatial
neighbors” to “friends” in social network, and people’s moving
direction is influenced by their friends’ moving directions.
Simulation shows that our model has several nice properties: (1)
it can model a broad range of phenomena such as opinion conver-
gence (i.e., herding) and community-based opinion divergence; and
(2) it allows us to control the evolution via a set of factors such as
social influence scope, opinion leader, and noise level. By learning
system-level parameters via a series of historical snapshots of net-
works, predictions can be made about the evolution of the whole
system in the future. We demonstrate the usefulness of our model
by an application of co-sponsorship prediction for legislative bills
in Congress, which outperforms several state-of-the-art baselines.
The contributions of our paper are summarized as follows:

e We propose a unified co-evolution model that captures the
evolution of network structure as well as the migration of node
properties.

e Under different system-level parameter settings, our model is
able to exhibit different behaviors of network evolution and
property migration.

e Our model is capable of inference via learning from real-world
data. Empirical results reveal our advantage over state-of-the-
art approaches in terms of a co-sponsorship prediction task.

2 PRELIMINARY OF COLLECTIVE MOTION

In the realm of biological systems, collective motion is one of the
most common and spectacular manifestation of coordinated behav-
ior [19, 43]. Flocks of birds fly and migrate uniformly as a group;
ants are famous for their large and well-organized hierarchies, and
individuals in each hierarchy exhibit highly coherent behaviors; a
school of fish swim in a tightly organized way in terms of speed
and direction. Collective motion is also observed in phase transi-
tion process as in many particle systems, and a well known line of
work [42] describes their collective motion model as follows. Each
particle moves at a constant rate v, while the direction of motion is
determined by the average direction of all others within its neigh-
borhood of radius r, plus some random perturbation. Denoting a
particle n’s position at time ¢ by x,(t), it is assumed to be updated
according to
d

7%n () =on(D) )

where v, (t) = v - (cos 0, (t),sin 0, (t)) is its moving direction at ¢.
The direction will be consistently adjusted by it spatial neighbors:

On(t +1) =(On(t)) + AO (2

where (0,(t)) is the direction averaged by n’s spatial neighbors
within radius r, i.e. {m : ||x,(t) — x;n(t)|| < r}. v is the absolute
value of each particle’s velocity and is assumed to remain the same
for every particle during the transition process. Noise Af is ran-
domly chosen uniformly from interval [-n/2,n/2], where 5 controls
the noise level.

Spatial neighbors play a crucial role in above systems. Notice
that, however, in the setting of social networks, individuals are
assumed to receive social influence only from their friends rather
than anyone who are close to them. This inspires us to design the
co-evolution model as introduced in next section.

3 THE CO-EVOLUTION MODEL

The position migration in biological and molecule systems men-
tioned in Section 2 are a good analogy to the opinion migration for
individuals in social networks. Like flocks of collectively moving
animals, people on social networks also comprise a system of in-
teracting, permanently moving units in terms of latent opinions
or stances. Different from biological systems, in social networks
people form social ties where information propagate through. In
other words, every individual is exposed to a group of “friends”
and receives influence merely from them. This phenomenon is
referred to as “social influence” or “social selection” [7, 22, 41] in
literature. In turn, new/old links in social networks may form/drop
as a result of individuals’ opinion migration, due to “homophily”
[28]. Since opinion is an important property of an entity, we use the
terms opinion, property and feature interchangeably in this paper,
to denote the intrinsic characteristics belonging to an individual
on social network.

By putting (1) social influence-based opinion migration and (2)
homophily-based network generation together, we then have our
co-evolution model, which is introduced in the remaining of this
section.

3.1 Social Network Generation

Latent space models [17] assume the snapshot of a static social
network is generated based on the positions of individuals in an
unobserved social space. This latent space consists of unobserved
latent characteristics of people that represent potential tendencies
in network relations. In these network generation models, the
generation of each link is independent on each other, and is based
purely on the positions of two users. We could design any score
function s : RK x RK — R that assigns a score to a pair of node
features (x5, x,), which indicates the likelihood of observing the
presence of the link in between. The score function is crucial to the
network and its properties, and we discuss two possibilities below.

Dot Product-based Score Function. In tons of existing works, dot
product of two features vectors is used to capture the similarity
between them [3, 21, 30, 31, 40]. However, this generation model
contradicts with the following observation.

Obviously, node degree is associated with the choice of score
function. The higher chance of a node has to issue links to others,
the larger degree it will be. Vector norm plays an important role in
inner product; as a result, those actors with a large norm (i.e. ||xy|[)
tend to attract interests from a large group of others, and thus
become opinion leaders in the generation process. To demonstrate



this, we show the 2-dimensional position of two users A and B as
well as their affected regions in Figure 2(a). The affected region of a
user is defined as the set of people who can be influenced by her (i.e.
their score function exceeds some threshold). User A has a position
of (3,3) and B is located at (—1,—0.5). It is obvious from the plot that
user A are far more likely to befriend others (even those with less
cosine similarity) than B, simply because A is further away from
the origin than B is. In other words, people with extreme stances
(i.e. large norms of latent feature vector) will become the opinion
leader. However in most cases, the most popular people are either
around the center of the entire population, or the center in their
community. For example, it is found that radical politicians on the
ideology spectrum are hardly party leaders [34]. In addition, each
actor has limited resources and energy, which sets a constraint on
one’s spreadable radius. Preferably, the score function is invariant
of the scale, and the affected region should have limited area (i.e.

bounded).
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Figure 2: Affected regions (colored area) for two users with
different similarity functions. Nodes in the affected region
are prone to interact with the corresponding user in the
same color (i.e., red region for User A and blue region for
User B).

Gravity-based Score Function. We recall that herds of animals
have the notion of “spatial neighbors” when they migrate and
collaborate. In molecule systems, nearby molecules also account
for the majority of the interaction. Inspired by these observations,
it is reasonable to set the score function between two users to be
based on their Euclidean distance. We adapt the inverse squared
gravity formula in our definition of score function. Using the new

metric, we show the affected region of two users in Figure 2(b).

Although the feature vectors of user A and B have different scales,
the spaces of their friend candidates are comparable.

In the graph generation model, when we want to determine
the link between two actors, the score function is mapped to a
probability using Gaussian function:

2
pam = exp(- 25 - il ®)
where € is a model hyper-parameter, and {b,} C R is another set
of parameters which reflect the popularity of actors. The link will be
generated if pp,, > d, where d is a system parameter which controls

sparsity of the network, and a larger d means fewer neighbors

an actor can interact with. For geometric interpretation, by, is
proportional to the radius of one’s neighborhood, and opinion
leaders will be the ones with largest values of b. In other words,
opinion leaders are more likely (with higher probability) to interact

with other actors. As the formula ”—"“z resembles the law of

[1xn=2xm|
gravity, we call this score function as gravity-based.

3.2 Opinion Migration
Similar to the migration of fish and flocks of birds, individuals in
social networks also exhibit collective behaviors, which is modeled
in this section.

Earlier work [6, 16, 36, 37, 45, 46] on modeling property change
is quite straightforward: properties at adjacent timestamps (e.g.
x{8, x{t+1) are forced to be similar via various kinds of regular-
ization/prior in order to avoid abrupt changes. For example, x{+1
is assumed to be generated from a Gaussian prior centered on its
previous position x{*?. However, this plausible strategy has two
major flaws, which greatly reduce the power of the generation
model.

First of all, let us investigate the activity of two actors in Figure
3. Here X-axis denotes the timestamp, and Y-axis denotes the
1-dimensional latent position. According to the migration prior
defined above, the behavior of user X and Y are equally possible;
however in real life, it is more likely to observe the trajectory of
user Y (moving along the same direction) rather than X (oscillating).
The same phenomenon is observed in flocks of animals as well:
a school of fish tends to move towards some direction instead of
wandering around some places.

Latent Position

Tirane
Figure 3: An example of two people’s migration.

Secondly, social influence should be involved in the migration
process, and the generation model should be able to express dif-
ferent properties of the random network under different system
settings. For example, we may observe the polarization of opinions
in some networks, i.e. multiple clusters of people heading towards
different directions. However, if latent features evolve solely ac-
cording to their previous positions, it is unlikely that individuals
will automatically form several clusters.

In a recent work [16], social influence are included in the gener-
ation model. Simply generalizing their binary features into contin-
uous features, we have

AN =2 x +21(x).0?) ()
where (xﬁp) is the average position of user u,’s neighbors at time ¢,
and N (i, 0?) is the normal distribution with mean y and variance



o2. A toy example of 2-dimensional feature migration under this
framework is shown in Figure 4. We see that although two clusters
emerge after several steps (nodes in the middle are going upwards
and downwards), they are trapped in a local area and refuse to keep
moving upwards or downwards since the clusters are formed. In
other words, people’s opinions will no longer change after commu-
nities are developed. The principal reason lies in that propagation
model: the moving tendency of nodes is never captured; instead, en-
tities update their positions arbitrarily, and they lack the motivation
to move in a stable status.
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Figure 4: Position migration of N = 20 nodes. 3 nearest
neighbors of each node are chosen as friends in the network.

To overcome these problems, a natural approach is to track the
historic features, such as setting a global regularization term in
addition to features in adjacent steps. However, the lack of Markov
property would make the generation process less intuitive and
much more complex, and inference would be impossible due to
high computational cost. Here we seek for a solution from the
propagation in the nature. It is rare to observe a flock of animals
turn around frequently; similarly, a person should gradually change
her interest in some dimension (e.g. her enthusiasm of a topic may
be dropping) instead of keeping switching between two viewpoints.
Therefore, we keep track of velocity, i.e., the direction (which can
be regarded as the first derivation of displacement), and punish its
volatile changes.

Therefore, in terms of opinion migration, we introduce the direc-
tion that a user uy, is heading as an angle 6, and the latent position
of each user will be updated according to the basic displacement
formula:

%xn(t) = v - (cosOy(t), sin b, (t)) (5)

where v is a constant factor indicating absolute speed, and the
unit vector (cos 0, (t), sin 6, (t)) represents u,’s moving direction at
time ¢. In reality, we observe discrete snapshots of social networks.
Therefore, we write the above equation in its discrete form as

xﬁlHl) = xfp +v - (cos Hﬁp, sin Hﬁp) (6)

The remaining question is how 9§f> propagates. It is worth notic-
ing how every member in a flock of birds picks its direction. When
some flocks of birds head west and others head north, an observer
bird is likely to pick either direction instead of south or east. During
a migration, people are likely to take similar paths as their families
and close friends. This strategy is believed to have advantages such
as more efficient explorations for resources and improved decision
making in larger groups [43]. In sum, it is very rare that a member

chooses to behave oppositely to its friends. When it comes to social
networks, people also adopt similar behaviors as their neighbors
[22]. We probably have already observed the following facts in our
real life. A scholar tends to raise interest in a research topic that is
trending among her collaborators. A Democrat is likely to become
more liberal, if she feels her acquaintances are going “left” (and vice
versa). Social network provides exposure to one’s neighbors, and
this factor will be reflected in the formation of direction variables.
Therefore in our model, a person’s moving direction is assumed to
be influenced by her neighbors’ directions, and is subject to a noise
of some magnitude:

63 ~ N((63),5%) )

where (9§f>) is the average direction of u,’s neighbors’ (including
herself) at time ¢. In the above case, when a bird observes 10 others
heading west and 20 others heading north, the average direction
of other birds is about 63° north of west. Therefore in most cases,
the observer will fly in a similar direction (follows either the west
or north group), as it would incur great penalty if it flies south
or east instead. Intrinsically, the parameter ¢ controls how easily
people are influenced by their neighbors (or how strictly a person
should follow the trend of their neighbors): larger o will relax the
regularization.

In the discussion above, the dimension of node feature is set to
2 in order to make the propagation process more intuitive. Nev-
ertheless, our method is not subject to this constraint and can
be easily generalized to higher dimensional latent spaces using
polar/hyperspherical coordinate systems [1]. For example, the di-
rection (cos 0y (t), sin 8, (t)) in Equation 5 can be replaced by any
dimensional unit-length vector with polar coordinates. The average
direction determined by Equation 7 simply becomes the (normal-
ized) vector summation. In the remaining of the paper, we will use
2-dimensional representations for visualization purposes.

Note that our regularization on the direction 6 already implies
the regularization of feature x. This is trivial since the change of a

variable is reflected in its first derivative. In particular, ||x§lt+1> -

xﬁ,t>|| is fixed for every t, which means abnormal change in the
feature space is impossible. Therefore, our model has further con-
tributions while inheriting the advantages of existing propagation
approaches.

3.3 Unified Model

Putting them together, the evolution of network and migration
of entity opinions happen iteratively after each other in our co-
evolution model. At each timestamp t, a network is generated
given node latent features (homophily), and node directions are
generated according to the network structure (social influence),
thus determine the latent feature for the next timestamp t + 1
(migration). System-level parameters include sparsity parameter d
which controls the sparsity of the graph (i.e. the average number
of friends), and noise level o which implies the deviation of one’s
direction from the expected value. The generative process of our
co-evolution model is summarized in Algorithm 1.



input :number of users N; number of timestamps T; sparsity
parameter d; noise level o.
output:a series of graphs and users’ latent positions.
initialization;
fort=1t0T do
// graph generation
fornm=1toN do
calculate ppm;
determine the link between n and m as forzl =1if
Pnm > d;
end
// opinion migration
if t == 1 then
forn =11t N do
sample 9ff> ~ Uniform[0, 27);

update x(*1 = x{0 + v (cos 65, sin63");
end

else
forn=1toN do

sample 057 ~ N (88171, o2);
update x{*+1 = x® 1+ v - (cos 9§f>, sin Qﬁlt));
end

end

end
Algorithm 1: Generation model for co-evolution

4 SIMULATION

To reveal the properties of our generation model, we run simu-
lations and show the migration of individuals in the network for
selected parameters. For initialization, every node is randomly as-
signed a 2-dimensional initial position in the lattice of [-L/2,L/2] X
[-L/2,L/2] where L = 5, as well as a popularity b ~ Uniform([1, 2]).
b will be fixed throughout the migration process. Initializations are
identical across all parameter settings.

According to [42], we adopt the absolute value of average nor-
malized velocity as a measure for the system status:

N
1 .
Vave = N |nZ=;(COS On, sin Op)| ®)

vgve € [0,1] and in general, v4ye = 1 means completely coherent
moving behavior, while v4, = 0 means completely randomness,
or two groups of equal number of people moving towards opposite
directions. In Figure 5 we plot the metric v4pe under different
parameter settings.

Noise level. Noise level ¢ controls how uniformly individuals
proceed. Intuitively, a large o will overwrite the direction deter-
mined by one’s neighbors, thus leads to more random migration
behaviors. In Figure 5(a) we can see vy ~ 0 for large o. People
tend to behave collectively in groups with small o values.

Sparsity parameter. Sparsity parameter d plays a role in the
emergence of clusters. A larger value of d leads to a sparser net-
work, therefore people interact with only a few others. In this case,
communities are allowed to maintain their own direction, and it
is more likely to observe several clusters with different migration

directions. On the other hand, when the threshold is small, an
individual is easily linked to most others, therefore information is
prone to spread through the entire network, making almost all the
people to propagate coherently. In Figure 5(b) we can see vgpe is
larger for smaller d values.
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Figure 5: System-level parameter study

We show people’s positions and their moving directions in Fig-
ure 6. Each row corresponds to a set of system-level parameters.
Absolute value of velocity is set to v = 0.03 and moving direc-
tions are shown as unit-length arrows starting from one’s position.
Opinion leaders (top 5% people with largest b) are marked in red.

Observations. We can see in most cases, the opinion leaders are
surrounded by others and appear in the center of a community,
which agrees with our findings in Section 3.1. In addition, the ef-
fect of system-level parameters is also revealed in these examples:
networks tend to be very random when noise level o is large (com-
paring first and second row). Under a small noise level, sparsity
parameter d comes into play: a small d makes the network denser,
thus communities have more overlapping entities and are likely to
act coherently; while a large d reduces the scope of individuals, and
clusters may emerge and head towards different directions (com-
paring first and third row). In sum, initially, sparsity, small noise
and different directions of opinion leaders are necessary in order
for opinion convergence within each community, which eventually
leads to emergence of clusters.

Intervention. Now back to the question raised in introduction
section: how can we alleviate the divergence of communities? From
the above observations, one solution is to reduce ¢ and enlarge d.
Under this setting, people are exposed to many others, follow their
directions without much perturbation and a uniform global trend
is likely to occur. Another alternative is utilizing opinion leaders to
advertise and propagate similar directions of migration. Thanks to
their high popularity, they are likely to interact with more people
in their neighborhood, and thus play a role in deciding others’
directions. In Figure 6(a)-6(c), we already observe the emergence
of two clusters with different directions. Following Figure 6(c), we
flip and fix the directions of the three leaders in the left community
as in Figure 7(a); as a result, people in the left cluster will gradually
alter their directions following the leaders (Figure 7(a)-7(c)).
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Figure 7: Role of opinion leaders (under the same setting: o = 0.5, d = exp (—0.4)).

5 APPLICATION

Apart from the capability of modeling opinion migration and net-
work evolution, a good generation model should be able to explain

and predict the behavior of objects given observed data. In gen-
eral, node properties could be regarded as vector representations or
explanatory variables of a node, and are also referred to as node em-
beddings in some work (e.g. [40]). They usually convey meanings
dependent on the network and context, and are flexible enough



to be inferred given a variety of real-world networks. In this sec-
tion we show an application of our co-evolution model, where we
predict the cosponsors of bills in the future. Here the node latent
properties can be treated as multi-dimensional political ideology as
in [5, 32].

5.1 Dataset

Co-sponsorship dataset. A sponsor of a bill is a legislator (usually
a member from the congress) who introduces a bill or resolution
for consideration. A cosponsor is another congress member who
adds his or her name as a supporter to the sponsor’s bill. Cospon-
sorship contains important information about the social support
network between legislators: the closer the relationship between a
sponsor and a cosponsor, the more likely it is that the sponsor has
directly petitioned the cosponsor for support [11]. We crawled the
legislative bills' from 1983 (98th congress meeting) till now (114th
congress meeting), with a timeframe of 34 years. For bills with
a sponsor, we extract all the cosponsors and build links between
them. The minimal time unit is set to one month, and we use H &)
to denote all the cosponsor links in month ¢. In order to make the
evolution process smoother, a snapshot of network Gt consists of
all the people and their cosponsor links within a 12-month period
up to month ¢, and the time window is shifted forwards one month
at a time. In other words, G(*? = H{=1D y g{t=10) ...y g,
Therefore, this series of graphs starts at tp = 12 and G contains
all the cosponsorship links from Jan. 1, 1983 to Jan. 1, 1984; GitotD)
contains all the cosponsorship links from Feb. 1, 1983 to Feb. 1,
1984, and so on. This series of evolving networks contain T = 382
time slices, N = 2,180 legislators, 130,692 bills and 2.1 million
cosponsorship links in total.

5.2 Fitting the Data

A graphical model representing our model is shown in Figure 8.

Figure 8: Graphical model representation of our model.
Shadowed units represent observed variables.

Our model becomes a probabilistic model during the inference
process, therefore each link is no longer deterministically estab-
lished by a threshold d. The optimal parameters are inferred by
maximizing the joint probability of G, X = {x<t>}tT:1, 0= {9<t>}tT:1
and b = {bn}ff:l. From Figure 8 we have

T T

X,0,b = argmax ]_[p(c<f> Ix2 by - ]—[p(e“> |91 Gée=D)y

X,0,b =1 t=2
©)

Data are collected at https://www.govtrack.us

s.t.
xf,t“) = xff> + v - (cos Hff), sin Hff)), Vn,t (10)

The constraint (Equation 10) makes it much harder to achieve a
global estimation of parameters. Therefore, we adopt an approach
similar to coordinate ascent algorithm, and update X, ® and b given
each other iteratively.

Update b. b can be directly updated using traditional methods
(e.g. stochastic gradient ascent) under a unconstrained optimization
setting.

Update X and ©. Initially (¢ = ), the optimal positions x{/)*
are estimated by maximizing the likelihood of the first observed
graph:

x{07* = argmax p(G{0? |x{) b) (11)
x(to)
and directions 6% are initialized uniformly at random in [0, 27).
Latent features at the next step x{%*1 are updated deterministically
by our propagation model (Equation 6).

After that, for each timestamp ¢ (¢t > o + 1), given the present
position x{*, previous direction 8~ and the next graph G¢*+1,
we are able to estimate ¢ according to:

07 = argmax log p(6%9|GH*D 0~ x(®) p)
o0

=argmax (logp(GY*10,x(,b) + log p(010¢~D, G 1))
ot

=argmax (logp(GY*[x{"*1,b) + log p(67104~, G 1))

o
(12)
This concludes an outer-iteration of parameter update. We plot
the objective versus the number of outer iterations in Figure 9.
Empirically, only a few iterations are needed for convergence, and
we let the number to be 3 in all following experiments.
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Figure 9: The log likelihood when parameters are updated
for multiple rounds.

5.3 Baselines

We compare our co-evolution model of network structure and node
opinions (CoNN) with the following baseline methods. For fair
comparison, we compare with several models designed for dynamic
networks, and dimension of latent features is set to K = 2 in all
methods. The absolute value of velocity is fixed to be v = 3 x 1073
in order for the process to be smoother. Welet 0 = 1 and € = 0.8
in our method for now. Parameter studies at the end of this section
reveal that our method is not sensitive to these parameters.
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e CoNNy,;: The first baseline is a variant of our model where
the probability of a link involves a dot product: p(Gpm = 1) =
1/(1+e~n Xm+bntbm)y (p Viga set of variables with meaning
similar to our CoNN model.

o Latent feature propagation model (LFP) [16]: The second base-
line is the binary latent feature propagation model. Local opti-
mization is adopted in order for their method to scale with our
data. The authors kindly share their code.

e Dynamic social network with latent space models (DSNL) [36]:
We implement the dynamic social network analysis approach
where no social neighbors are considered in propagation. Latent
features evolve purely according to their previous positions.

e Phase transition model (PTM) [42]. This approach is proposed
to model the behavior of molecules during a phase transition.
Directions of molecules are treated as the parameter, and they
propagate according to the average of their spatial neighbors.
We use our estimated features at the beginning as their initial-
ization, and run simulation for T steps.

We also compare with a state-of-the-art baseline method de-
signed for static networks.

e Large-scale information network embedding (LINE) [40]. This
approach embeds information network into low-dimensional
vector spaces. We apply LINE on static snapshots of the social
graph, and treat the embeddings as node features.

5.4 Co-sponsorship Prediction

In this task, we demonstrate the advantage of our co-evolution
model by predicting cosponsors in the future. Specifically, given
the observed cosponsor links up to time #1, a bill in future time #;
(t2 > t1) and its sponsor up, our goal is to predict the users who
will cosponsor it.

Given G<t°:t1>, we are able to learn 21— and x{t0't) | After
that, the latent features propagate according to our evolution model,
namely

65 ~ N (5.0
xffH) = xff> +v - (cos 9,<f>, sin Qﬁls))

for s = t1,--- ,t2 — 1 and every user n. Finally, we calculate the
pairwise probability of a link from u, to all other users, rank them
and evaluate the AUC score in Figure 11. The X-axis denotes time
gap between now and the prediction (in months) (At = t; —t1), and
Y-axis denotes the cosponsor prediction AUC for all bills at time o,
averaged over all pairs of (t1,#2) which satisfy t; — 1 = At.

For baseline methods which purely model the propagation of
latent features, we have

(13)

x5 < (x$), ¥ (14)
fors = t1,--- ,t2 — 1, where pm(xfls>) is the prior (propagation

probability) for the corresponding baseline method m. For baseline
methods designed for static networks (i.e. no propagation in terms
of latent features), we use the node representation at time t; to
predict the cosponsors at ;.

It would also be interesting to study the time delay that a legis-
lator cosponsors a bill. After a bill is initialized, the sponsor may
expend considerable efforts recruiting cosponsors with personal
contacts so that others will add their names to support the bill later.

Only those cosponsors who join within a year are considered. The
distribution of the time delay between the initial sponsorship and
cosponsor date is shown in Figure 10. When a legislator cospon-
sors a bill immediately after its initialization, it may indicate that
the sponsor and cosponsor are close in some sense. Therefore,
we assign a relevant score to cosponsors according to the date of
cosponsorship: those who signed their names within the first quar-
tile (most promptly) are assigned with the highest relevance score
of 4; those between the first and the second quartile have a rele-
vance score of 3, and so on. Thus, based on the ranking given by the
likelihood of a cosponsor, we are able to calculate the normalized
discounted cumulative gain (NDCG) of the cosponsorship predic-
tion. The macro-average NDCGyg score for each bill is reported in
Figure 12. X-axis has the same meaning as the previous task, i.e.,
the time gap between now and the prediction.
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Figure 10: Distribution of time delay. Quartiles: Q; = 24, Q
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Figure 11: AUC score for cosponsor prediction.

In Table 1 we also show the top 10 people with largest b values in
our timeframe (1983-present). They are popular in that many others
legislators are likely to cosponsor the bills they drafted. We interpret
them as opinion leaders, since cosponsorship implies endorsement
and their ideas spread more widely among others. Among the
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Figure 12: NDCGj( for cosponsor prediction.

results, we identify John Kerry (68th U.S. Secretary of State), Albert
Gore (45th U.S. Vice President) and Mitch McConnell (the majority
leader of the Senate since 2015). Therefore, the opinion leaders and
the actual leaders in the legislature have some overlap, and our
approach can detect leaders from another perspective.

Rank Name Party-State Time in Congress
1 Paul Simon Democrat-IL 1975-1997
2 Jay Rockefeller Republican-WV 1985-2015
3 John Kerry Democrat-MA 1985-2013
4 Thomas Harkin Democrat-TIA 1975-2015
5 James Terry Sanford | Democrat-NC 1986-1993
6 Albert Gore Democrat-TN 1983-1993
7 Kent Conrad Democrat-ND 1987-2013
8 Edward Kennedy Democrat-MA 1962-2009
9 Mitch McConnell Republican-KY 1985-present

10 Frank Annunzio Democrat-IL 1965-1993

Table 1: Popular legislators ranked by b in recent 34 years.

Parameter Study. We plot the performance curve under differ-
ent choices of hyperparameters (o, €) in Figure 13. For intuitive
comparison, we calculate the average evaluation measure over all
possible lengths of time gap (i.e. from At = 1 to 36) as the value
on Y-axis. In sum, our inference model is not sensitive to these
parameters as long as they lie within a reasonable range.

6 RELATED WORK

Understanding the evolution of link structure and node property
has been a promising research topic recently. Traditional inter-
pretations of dynamic networks treat the two problems separately,
i.e., the evolution of link structures [4, 9, 24-26, 39, 47] and the
evolution of node attributes [13-15, 22].

Under a fixed network structure, various node property prop-
agation models have been proposed, which are better known as
the information diffusion model when the node features are bi-
nary. The binary feature of each node can be considered as a status,
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Figure 13: Parameter study on ¢ and ¢ for CoNN. In the left
figure, € is fixed to be 0.8. In the right figure, o is fixed to be
1.

as whether the node is infested or activated, and it may change
according to the network structure. Typically, information diffu-
sion process occurs between nodes that are linked to each other.
For example, linear threshold model [14] involves an aggregation
of neighbors’ weights, and a node is activated if the aggregated
weight of its active neighbors exceeds some threshold. Indepen-
dent cascade model [13] assumes an activating probability for each
neighbor of a newly activated node. While binary features reflect
the activation status of a node, probabilistic or real-valued features
embed every node onto a continuous spectrum, which indicates the
relative position between actors. In the DeGroot learning process,
every time the opinions of agents are assumed to be updated ac-
cording to the weighted average of their neighbors [8]. Adjustment
in user features after interaction is studied in [7], where similarity
of connected users are found to be increasing over time. These
methods are limited to the case where network structure does not
change over time, and more principled approaches are desired to
model user behaviors in dynamic networks.

The evolution of networks is usually modeled as a result of the
migration of individuals’ features. To model the static snapshots
of networks, a variety of methods assume vertices in the network
are associated with a latent feature representation, and the ob-
served links are a result of their interaction. Latent class models
(blockmodels) assume the probability of a link depends on the com-
munities that the corresponding users engage in [6, 16, 45, 46], and
continuous latent feature models embed each node in the network
as a position in a lower dimensional Euclidean space, where the
features constitute a continuous spectrum that conveys more mean-
ingful messages such as a user’s stance (e.g. extreme/moderate)
towards a specific topic. These approaches have broad applications
in clustering, visualization and so on [17, 29, 33].

Migration of users’ latent features is usually modeled as a hidden
Markov model (HMM), with network structure being the observed
sequence and node features being the latent variables [6, 16, 45, 46].
The distribution of the latent variables depends only on the their
previous values, and the value of observed network depends only
on the latent variables at the same timestamp. Optimization is usu-
ally done using standard forward-backward algorithm [16]. Feature
dimension may also be learned automatically from the data, leading
to nonparametric methods [10, 20, 23, 35]. The evolution of la-
tent features is modeled as regression of a node’s future features to
accommodate dynamic networks [27, 36-38]. However, these meth-
ods fail to consider the feature migration as part of co-evolution



process. In other words, influence from network structure to node
feature migration is totally ignored. In addition, as far as we are
concerned, all of the existing approaches simply posit the propaga-
tion of node features can happen arbitrarily, without considering
the direction or tendency when people change their opinions.

7 CONCLUSION

In this paper we present a novel approach for understanding the
co-evolution of network structure and opinion migration. Our
approach models both the migration of latent features by virtue
of network structures, and the evolution of link structures as a
result of the change of node features. We analogize the motion of
entities in biological and molecular system to propose the latent
feature migration model, and social influence is explicitly exhibited
in terms of user’s moving directions. Various properties of network
can be charactered by adjusting the system-level parameters of our
generation model, and applications on a real-world dataset reveal
our advantage over the state-of-the-art co-evolution approaches.
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