
RLogic: Recursive Logical Rule Learning from Knowledge Graphs
Kewei Cheng

Department of Computer Science, University of California,
Los Angeles, Los Angeles, CA
viviancheng@cs.ucla.edu

Jiahao Liu
Department of Computer Science, Brown University,

Providence, RI
jiahao_liu@brown.edu

Wei Wang
Department of Computer Science, University of California,

Los Angeles, Los Angeles, CA
weiwang@cs.ucla.edu

Yizhou Sun
Department of Computer Science, University of California,

Los Angeles, Los Angeles, CA
yzsun@cs.ucla.edu

ABSTRACT
Logical rules are widely used to represent domain knowledge and
hypothesis, which is fundamental to symbolic reasoning-based
human intelligence. Very recently, it has been demonstrated that
integrating logical rules into regular learning tasks can further
enhance learning performance in a label-efficient manner. Many
attempts have been made to learn logical rules automatically from
knowledge graphs (KGs). However, a majority of existing methods
entirely rely on observed rule instances to define the score function
for rule evaluation and thus lack generalization ability and suffer
from severe computational inefficiency. Instead of completely rely-
ing on rule instances for rule evaluation, RLogic defines a predicate
representation learning-based scoring model, which is trained by
sampled rule instances. In addition, RLogic incorporates one of the
most significant properties of logical rules, the deductive nature, into
rule learning, which is critical especially when a rule lacks support-
ing evidence. To push deductive reasoning deeper into rule learning,
RLogic breaks a big sequential model into small atomic models in
a recursive way. Extensive experiments have demonstrated that
RLogic is superior to existing state-of-the-art algorithms in terms
of both efficiency and effectiveness.

CCS CONCEPTS
•Computingmethodologies→ Reasoning about belief and knowl-
edge.

KEYWORDS
Logical Rule Learning; Recursive; Knowledge Graph

ACM Reference Format:
Kewei Cheng, Jiahao Liu, Wei Wang, and Yizhou Sun. 2022. RLogic: Recur-
sive Logical Rule Learning from Knowledge Graphs. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’22), August 14–18, 2022, Washington, DC, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3534678.3539421

This work is licensed under a Creative Commons Attribution
International 4.0 License.

KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9385-0/22/08.
https://doi.org/10.1145/3534678.3539421

1 INTRODUCTION
Although deep learning has achieved groundbreaking improve-
ments in a variety of domains, e.g. speech recognition [7], image
classification [15], and machine translation [2], the lack of inter-
pretability and generalizability limits its application in broader tasks.
Logical reasoning, which aims to leverage logical rules to derive
missing knowledge, can provide insights into the inferred results
and allow easy generalization to unobserved objects. To overcome
the deficiency of deep learning, significant efforts have been made
to integrate logical reasoning into neural network learning for var-
ious real-world applications, e.g., image understanding [1], visual
question answering [18], and KG completion [27].

Due to the potential benefits brought by logical rules, increasing
attention has been made to summarize the underlying patterns
shared in the data to learn logical rules automatically. Note that
logical rule is a schema level concept, while only instance level
evidence can be directly observed from KGs. For example, from the
KG in Fig. 1, we can observe closed paths (rule instances) such as:

CP1 B Amy
hasMother−−−−−−−−−→ Bess

hasMother−−−−−−−−−→ Cara
hasGrandma←−−−−−−−−−− Amy

CP2 B Dana
hasMother−−−−−−−−−→ Eva

hasMother−−−−−−−−−→ Faye
hasSon−−−−−−→ Gino

hasUncle←−−−−−−− Dana
(1)

To bridge the gap between instance level observation and schema
level abstraction, the frequency of rule instances is widely utilized
to define the plausibility of the logical rules. Traditional methods
are represented by association rule mining [12, 19], where the score
is defined as the ratio between the total number of rule instances
and the total number of body instances for the corresponding rule.
Then the rule mining process is to search over the rule space and
select the rules with the highest score. For example, given the KG
in Fig. 1, the rule space with length 2 to predict head relation 𝑟2
(hasGrandma) can be represented as a tree structure, and each path
from root to leaf corresponds to a rule body. Two rules with high
scores can be found for Fig. 1 (𝛿1 has a score of 0.75 and 𝛿2 has a
score of 1), which are:

𝛿1 B hasGrandma(𝑥,𝑦) ← hasMother(𝑥, 𝑧) ∧ hasMother(𝑧,𝑦)
𝛿2 B hasUncle(𝑥,𝑦) ← hasMother(𝑥, 𝑧1) ∧ hasMother(𝑧1, 𝑧2) ∧ hasSon(𝑧2, 𝑦)

(2)
Recently, neural network-based approaches are proposed [29, 42,
43], which enables rule instances to be softly counted via sequences
of differentiable tensor multiplication. They also learn rules by
searching for the rule bodies (or proof paths) that maximize the
observations (i.e., triples) of the rule head.

https://doi.org/10.1145/3534678.3539421
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3534678.3539421

KDD ’22, August 14–18, 2022, Washington, DC, USA Kewei Cheng et al.

𝒓𝟏 𝒓𝟐 𝒓𝟑 𝒓𝟒

𝒓𝟏 𝒓𝟐 𝒓𝟑 𝒓𝟒

Knowledge Graph Rule Space

hasMother: 𝒓𝟏 hasGrandma: 𝒓𝟐 hasUncle: 𝒓𝟑 hasSon: 𝒓𝟒

Eva Faye

DanaBess

Cara

Gino
hasGrandma

Amy

hasGrandma(x,y) <- hasMother(x,z) ^ hasMother(z,y)

Rule body

rule instances

hasGrandma

𝟒 𝟎 𝟎 𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎# body instances

Lean rule

hasGrandma hasMother

hasUncle

Search

𝟑 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

Rule head = 𝒓𝟐

𝒓𝟏 𝒓𝟐 𝒓𝟑 𝒓𝟒 𝒓𝟏 𝒓𝟐 𝒓𝟑 𝒓𝟒 𝒓𝟏 𝒓𝟐 𝒓𝟑 𝒓𝟒

Figure 1: Left: An example KG and a detected rule with length 2. Right: A search tree for rules with length 2 and head relation 𝑟2. A path from
root to leaf corresponds to a rule body. Together with the head relation, it forms a candidate rule.

Although many efforts have been made to learn logical rules
automatically, there are two limitations for the existing studies. First,
most existing methods entirely rely on observed rule instances to
define the score function for rule evaluation . They are unable to
mine rules that have no support from rule instances. For example,
due to the lack of support evidence, the following rule cannot be
learned from Fig. 1:

𝛿3 B hasUncle(𝑥,𝑦) ← hasGrandma(𝑥, 𝑧) ∧ hasSon(𝑧,𝑦) (3)

Note that the number of rule instances is extremely large for a
big KG, scalability is another central challenge. Instead of com-
pletely relying on rule instances for rule evaluation, we propose to
learn logical rules directly in the schema level via representation
learning-based model. The score of a rule can be calculated based
on the learned predicate representations. In this way, a rule can be
evaluated without the support from rule instances. Since a small
amount of sampled rule instances are enough for training such
model, it greatly improves the efficiency.

Second, a majority of existing methods learn logical rules by
assuming that logical rules are independent from each other, which
seriously contradict the deductive nature of logical rules. Deductive
nature of logical rules describes the capability to combine existing
rules for deriving new rules. For example, given two short rules
𝛿1 and 𝛿3, we can infer a long rule 𝛿2. The inference of 𝛿2 can be
decomposed into recursive steps as shown in Fig. 2. Starting from
the first two predicates, we can derive an intermediate conclusion
hasGrandma(𝑥, 𝑧2) following 𝛿1. Then, by replacing the first two
predicates with the derived relation, we rewrite the rule body as
hasGrandma(𝑥, 𝑧2) ∧ hasMother(𝑧2, 𝑦) and derive the final conclu-
sion according to 𝛿3. Because deductive nature describes the logical
dependency among rules, it can be considered as “higher-order
constraints” over rules, which is essential for us to validate rules
without enough support from rule instances. For example, although
we cannot rely on rule instances to evaluate 𝛿3 due to the lack of
support evidence, as long as we can see evidence from Fig. 1 to
support 𝛿1 and 𝛿2, by pushing deduction deeper into 𝛿2, 𝛿3 is forced
to be true to make 𝛿2 true. To incorporate deductive nature into
rule learning, we propose to break a big sequential model to small
atomic models in a recursive way following logical deduction. The
main contributions of this paper are summarized as follows:

hasMother(𝒙,𝒛𝟏) ^ hasMother(𝒛𝟏,𝒛𝟐) ^ hasSon(𝒛𝟐,𝒚)

hasUncle (𝒙,𝒚)

hasGrandma(𝒙,𝒛𝟐)

Figure 2: Deduction from 𝛿1 and 𝛿3 to 𝛿2.

• We investigate the problem of logical rule learning and propose a
novel framework, known as RLogic, to learn logical rules directly
at the schema level via representation learning-based model.
• RLogic breaks a big sequential model to small atomic models
in a recursive way to push deductive reasoning deeper into rule
learning, which is critical when a rule lacks supporting evidence.
• We experimentally demonstrate that RLogic is superior to exist-
ing SOTA algorithms in terms of both effectiveness and efficiency.

2 PRELIMINARIES AND PROBLEM
DEFINITION

Horn Rule in the Language of Symbolic Logic. First-order logic
(FOL) provides an important way of knowledge representation in
AI [10, 32]. Horn rules, as a special case of FOL rules, are composed
of a body of conjunctive predicates and a single head predicate. In
this paper, we are interested in mining chain-like 1 Horn rules in
the following form.

𝑟ℎ (𝑥,𝑦) ← 𝑟𝑏1 (𝑥, 𝑧1) ∧ · · · ∧ 𝑟𝑏𝑛 (𝑧𝑛−1, 𝑦) (4)

where 𝑟ℎ (𝑥,𝑦) is called rule head and 𝑟𝑏1 (𝑥, 𝑧1) ∧· · ·∧𝑟𝑏𝑛 (𝑧𝑛−1, 𝑦)
is called rule body. Combining rule head and rule body, we denote
a Horn rule as (𝑟ℎ, rb) where rb = [𝑟𝑏1 , . . . , 𝑟𝑏𝑛]. The length of a
Horn rule is defined as the number of predicates appearing in its
body. In the area of symbolic logic, relations are called predicates.
𝛿1, 𝛿2 and 𝛿3 are real-world examples of Horn rules. By substituting
the variables in a Horn rule with concrete entities, we get a rule

1The assumption of chain-like Horn rules prevents finding rules with unrelated
relations.

RLogic: Recursive Logical Rule Learning from Knowledge Graphs KDD ’22, August 14–18, 2022, Washington, DC, USA

Symbolic Logic Knowledge Graph
Predicate Relation

Rule Instance Closed Path
Rule Head Target Relation
Rule Body Relation Path

Table 1: Comparison of different concepts in the language of sym-
bolic logic v.s. knowledge graph.

instance. For example, a rule instance of 𝛿2 is given as follows:

hasUncle(Dana, Gino)←hasMother(Dana, Eva) ∧ hasMother(Eva, Faye)
∧ hasSon(Faye, Gino)

(5)
Horn Rule in the Language of Knowledge Graph. A KG,

denoted by G = {𝐸, 𝑅,𝑂}, consists of a set of entities 𝐸, a set of rela-
tions𝑅 and a set of observed facts𝑂 . Each fact in𝑂 is represented by
a triple (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗), where 𝑒𝑖 , 𝑒 𝑗 ∈ 𝐸 and 𝑟𝑘 ∈ 𝑅. Horn rule instances
are called closed paths in the language of KG. For example, CP2
in Eq. (1) is the closed path corresponding to rule instance in Eq. (5).
Note that logical rule is a schema level concept yet only instance
level evidence in the form of closed paths can be directly observed
from KGs. To bridge the gap between instance level observation
and schema level abstract, we introduce relation path and target
relation as follows. By ignoring all concrete entities along a closed
path, we can divide a closed path into two components: (1) a relation
path, which is defined as a sequence of relations rb = [𝑟𝑏1 , . . . , 𝑟𝑏𝑛]
through which two entities 𝑒𝑖 and 𝑒 𝑗 can be connected on the
graph. As shown in Fig. 1, [hasMother, hasMother, hasSon] is a re-
lation path, through which Dana and Gino can be connected. A
relation path corresponds to a conjunctive body of Horn rule in
symbolic logic; and (2) a target relation, which is defined as a single
relation 𝑟𝑡 . It can close the relation path by connecting two enti-
ties 𝑒𝑖 and 𝑒 𝑗 directly. In Figure 1, relation hasUncle is the target
relation of relation path [hasMother, hasMother, hasSon]. A target
relation corresponds to the head of a Horn rule in symbolic logic.
Combining the relation path and target relation, we denote a closed
path as (𝑟𝑡 , rb).

The Problem of Logical Rule Learning. Logical rule learn-
ing aims to assign a plausibility score 𝑠 (𝑟ℎ, rb) to each rule (𝑟ℎ, rb)
in rule space. 𝑠 (·) is called the score function. The ratio that a
body path can be closed is usually utilized to define the score func-
tion (e.g., the confidence for association rule mining [12] and the
percentage of triples of the rule head to be satisfied for Neural-
LP [42]). During rule extraction, top 𝑘 rules with highest score will
be selected as the learned rules.

3 APPROACH
In this section, we propose a novel framework - RLogic to learn
rules in the schema level. Instead of completely relying on rule
instances for rule evaluation, we propose to learn logical rules via
representation learning-based model. As a small amount of sampled
closed paths are enough for training such model, it greatly improves
the efficiency. To push deductive reasoning deeper into rule learning,
RLogic breaks a big sequential model to small atomic models in
a recursive way, which is essential for us to detect rules without
support from rule instances.

𝑥 𝑧! 𝑧" 𝑧# 𝑧$
𝒓𝒃𝟐𝒓𝒃𝟏 𝒓𝒃𝟑 𝒓𝒃𝟒

𝑥 𝑧! 𝑧" 𝑧# 𝑧$
𝒓𝒃𝟐𝒓𝒃𝟏 𝒓𝒃𝟑 𝒓𝒃𝟒

𝑦
𝒓𝒃𝟓

𝑦
𝒓𝒃𝟓

(a) Left-wise decomposition

(b) Decomposition following an irregular order

Figure 3: Different order to deduct a relation path. (a) left-wise
decomposition; (b) irregular decomposition.

3.1 A New Measure for Rule Evaluation
Existing Measure for Rule Evaluation Among several possible
measures, confidence is the most representative one widely used by
association rule mining. It is defined as the ratio that a body path
can be closed by the target relation. Given an arbitrary rule defined
in Eq. 4, its confidence can be calculated as:

|{(𝑥, 𝑧1, . . . , 𝑧𝑛−1, 𝑦) : 𝑟ℎ (𝑥,𝑦) ← 𝑟𝑏1 (𝑥, 𝑧1) ∧ · · · ∧ 𝑟𝑏𝑛 (𝑧𝑛−1, 𝑦)}|
|{(𝑥, 𝑧1, . . . , 𝑧𝑛−1, 𝑦) : 𝑟𝑏1 (𝑥, 𝑧1) ∧ · · · ∧ 𝑟𝑏𝑛 (𝑧𝑛−1, 𝑦)}|

(6)
where the numerator is the number of its rule instances (i.e., closed
paths) and the denominator is the number of its body instances
(i.e., relation paths). Confidence cannot distinguish between “false
statement” and “unknown statement”. Therefore, it measures the
rules purely based on the observed data and penalizes rules that
make a large number of predictions in the unknown region, which
make it easily affected by data bias.

Proposed Measure for Rule Evaluation The calculation of
confidence entirely rely on observed rule instances. However, enu-
merating rule instances is usually time consuming. Instead, we
propose a new measure for rule evaluation based on the probability
that the rule body can be replaced by the rule head:

𝑠 (𝑟ℎ, rb) = 𝑞(𝑟ℎ = 𝑟𝑖 |rb) (7)

A sequential model, such as RNN, is a nature option to learn 𝑞(𝑟ℎ =

𝑟𝑖 |rb). We need a tensor with |𝑅 | (𝑙+1) dimension to store the proba-
bilities to learn rules with maximum length as 𝑙 . It is too expensive
and impossible to get enough data points to estimate each entry.

Note that deductive nature, as one of the most significant prop-
erties of logical rules, allows us to decompose the inference of long
rules on the basis of the short rules. Given the short Horn rule that
are in the form 𝑟ℎ ← 𝑟𝑖 ∧ 𝑟 𝑗 , we can reduce the long relation path
𝑟𝑏1 , 𝑟𝑏2 . . . , 𝑟𝑏𝑛 by replacing the relation pair 𝑟𝑖 ∧ 𝑟 𝑗 with their head
𝑟ℎ . By recursively applying different short Horn rules to a relation
path, it will be transformed into a single head at the end. Follow-
ing the same idea, we can use 𝑞(𝑟ℎ |𝑟𝑖 , 𝑟 𝑗) to compute 𝑞(𝑟ℎ |rb) in
a recursive way. For example, given a relation path [𝑟𝑏1 , 𝑟𝑏2 , 𝑟𝑏3],
𝑞(𝑟ℎ |𝑟𝑏1 , 𝑟𝑏2 , 𝑟𝑏3) can be computed as follows if we follow the order

KDD ’22, August 14–18, 2022, Washington, DC, USA Kewei Cheng et al.

from left to right to reduce the path:

𝑞(𝑟ℎ |𝑟𝑏1 , 𝑟𝑏2 , 𝑟𝑏3) =
∑︁
𝑘

𝑞(𝑟ℎ |𝑟𝑘 , 𝑟𝑏3)𝑞(𝑟𝑘 |𝑟𝑏1 , 𝑟𝑏2) (8)

As every step we only need to model a sequence with length 2,
this significantly reduces the computational burden caused by long
sequence modeling, such as RNN.

Although we can follow logical deduction to reduce a relation
path into one single head, this head relation may not always be
observed due to the sparsity of real-world KGs. To avoid penalizing
rules that make predictions in the unknown region, we introduce
𝑝 (𝑟𝑡 |𝑟ℎ) to bridge the gap between “ideal prediction” following
logical rules and “real observation” given in KGs.

𝑝 (𝑟𝑡 |rb) =
∑︁
ℎ

𝑝 (𝑟𝑡 |𝑟ℎ)𝑞(𝑟ℎ |rb) (9)

where 𝑝 (𝑟𝑡 |rb) is the ratio that a path rb is closed.

3.2 Framework - RLogic
Following the proposed measurement, we introduce a relation path
encoder and a close ratio predictor (i.e., predicting the ratio that a
path will close) to model 𝑞(𝑟ℎ |rb) and 𝑝 (𝑟𝑡 |𝑟ℎ) respectively. Given
a path rb, the relation path encoder first reduces rb into a single
head 𝑟ℎ by recursively applying different short Horn rules. Then
the close ratio predictor bridges the gap between “ideal prediction”
following logical rules and “real observation” by predicting the
ratio that the path rb is closed.

3.2.1 Predicate Representation Learning. Predicates are the ba-
sic units in context of logical rules. Low-dimensional vectors are
learned to represent predicates. We denote the embedding of pred-
icate 𝑟𝑖 as ri ∈ R𝑑 . With the representation of predicates, RLogic
can identify similar predicates like GrandPa and GrandFather even
though they are lexically different. Note that we may not always
find an existing relation to replace a relation path. For example, the
relation path [hasMother, hasMother, hasDaughter], can be replaced
by a single relation hasAunt, which may not be included in the KG.
To accommodate unseen relations, we introduce a “null” predicate
into the prediction set 𝑅, which is denoted as 𝑅0. The score function
is computed based on the representation of predicates. For any
candidate rule, even without direct evidence support from its rule
instances, we can still compute its score.

3.2.2 Relation Path Encoder. The goal of relation path encoder is
to find a head relation 𝑟ℎ to replace a relation path rb. It requires
learning both the order to deduct a relation path (i.e. the particular
relation pair to be selected in each step) and the probability to
replace a relation pair with a single relation (i.e. 𝑞(𝑟ℎ |𝑟𝑖 , 𝑟 𝑗)).

Learning the order to deduct a relation path. As shown in Fig-
ure 3, there are many different ways to deduct a relation path.
Determining the best order involves search over a potentially large
problem space. Given a relation path with length 𝑙 , there are𝐶𝑙−1 =∏𝑙−1

𝑘=2
𝑙−1+𝑘

𝑘
(Catalan number) different ways to decompose the re-

lation path. To alleviate the high computational complexity, instead
of enumerating all possible deduction orders to find the global opti-
mal, we adopt greedy algorithm to select the optimal relation pair at
each step, which reduces the complexity into (𝑙 −1) + (𝑙 −2) + · · ·+1.

Considering that the ground truth deduction order is unavailable
in our problem, we have to exploit different criteria to evaluate a
relation pair in a path. Entropy is commonly used to measure con-
fidence of predictions in the semi-supervised learning and domain
adaptation. By minimizing entropy, the confidence of predictions
can be encouraged. The entropy of a relation pair (𝑟𝑖 , 𝑟 𝑗) is defined
as follows:

𝐸 ((𝑟𝑖 , 𝑟 𝑗)) =
∑︁
𝑟ℎ ∈𝑅
−𝑞(𝑟ℎ |𝑟𝑖 , 𝑟 𝑗) log𝑞(𝑟ℎ |𝑟𝑖 , 𝑟 𝑗) (10)

The lower the entropy, themore confidentwe are to find a relation to
replace the relation pair. To maximize the confidence of deduction,
we select the relation pair with the lowest entropy as the optimal
every step.

Learning the probability to replace a relation pair with a sin-
gle relation. Given the order to deduct a relation path, the next
step is to learn 𝑞(𝑟ℎ |𝑟𝑖 , 𝑟 𝑗) to reduce the relation path recursively.
𝑞(𝑟ℎ = 𝑟𝑘 |𝑟𝑖 , 𝑟 𝑗) can be approximated via an multilayer percep-
tron (MLP) classifier. The MLP classifier 𝑓𝜃 (ri, rj) is a two-layer
fully-connected neural network with parameters 𝜃 . It takes the em-
bedding of predicate 𝑟𝑖 , 𝑟 𝑗 as input, and outputs the probability that
they can be replaced by each of the relation in KG plus the “null”
predicate (i.e., unknown relation). Considering that 𝑞(𝑟ℎ |𝑟𝑖 , 𝑟 𝑗) fol-
lows categorical distribution, the MLP classifier uses softmax as the
activation function for the final layer. Using the function 𝑓𝜃 (rk, rb3)
to approximate 𝑞(𝑟ℎ |𝑟𝑘 , 𝑟3), we rewrite formula in Eq. (8) as:

𝑞(𝑟ℎ |𝑟𝑏1 , 𝑟𝑏2 , 𝑟𝑏3) =
∑︁
𝑘

𝑞(𝑟𝑘 |𝑟𝑏1 , 𝑟𝑏2) 𝑓𝜃 (rk, rb3) (11)

As can be observed from the formula, the relation pair 𝑟𝑏1 , 𝑟𝑏2 can
be replaced by each of the relation in KG with different probability
(i.e., 𝑞(𝑟𝑘 |𝑟𝑏1 , 𝑟𝑏2)). It is significant to include all these probabil-
ities into computation to model complex logical deduction. For
example, given the rule body hasAunt(𝑥, 𝑧) ∧ hasSister(𝑧,𝑦), both
hasMother(𝑥,𝑦) and hasAunt(𝑥,𝑦) can be derived as the rule head.
However, this causes great computational burden as 𝑓𝜃 (rk, rb3) also
need to be calculated for each of predicates 𝑟𝑘 in a KG (i.e., |𝑅 | +1 in
total). To reduce the computational burden, we propose to approx-
imate

∑
𝑘 𝑞(𝑟𝑘 |𝑟𝑏1 , 𝑟𝑏2) 𝑓𝜃 (rk, rb3) with 𝑓𝜃 (r̃, rb3) instead, where r̃

can be defined as:

r̃ =
∑︁
𝑘

𝑞(𝑟𝑘 |𝑟𝑏1 , 𝑟𝑏2) · rk (12)

We can observe that r̃ is a “weighted average” representation, which
is learned by “softly” adding up representations of all predicates 𝑟𝑘
in a KG. With r̃, we significantly reduce the computational burden.

3.2.3 Close Ratio Predictor. Although we can follow logical deduc-
tion to reduce a relation path into one single head relation, this
head relation may not always be observed due to the sparsity of
real-world KGs. To bridge the gap between “ideal prediction” fol-
lowing logical rules and “real observation”, close ratio predictor is
proposed to predict the ratio that a path will close. A two-layer fully-
connected neural network (MLP) is introduced to model 𝑝 (𝑟𝑡 |𝑟ℎ). In
particular, it uses ReLU as the activation function for the first layer
and adds sigmoid as the activation function for the second layer.
The “weighted average” r̃ learned by the relation path encoder at

RLogic: Recursive Logical Rule Learning from Knowledge Graphs KDD ’22, August 14–18, 2022, Washington, DC, USA

the final step and the embedding rt are taken as input to decide the
close ratio.

3.2.4 Model Training. This section discusses training procedures
for RLogic. We first introduce our proposed closed path sampler
for training data generation. Then we give the objective functions
for training relation path encoder and close ratio predictor.

Closed Path Sampler for Training Data Generation. Rather than
enumerate all closed paths in KG, we utilize a closed path sampler to
sample only a small portion of closed paths to train the model. We
propose a random walk [33] based procedure to efficiently sample
the close paths. Formally, given a source entities 𝑥0, we simulate
a random walk of fixed length 𝑛. Let 𝑥𝑖 denote the 𝑖th node in the
walk. Nodes 𝑥𝑖 are generated by the following distribution:

𝑝 (𝑥𝑖 = 𝑒𝑖 |𝑥𝑖−1 = 𝑒 𝑗) =
{

1
|N (𝑒 𝑗) | , if (𝑒𝑖 , 𝑒 𝑗) ∈ 𝐸
0, otherwise

(13)

where |N (𝑒 𝑗) | is the neighbor size of entity 𝑒 𝑗 . Different from
random walk, each time after we sample the next node 𝑥𝑖 , we add
all edges which can directly connect 𝑥0 and 𝑥𝑖 in KG to construct
the closed paths.

Objective function for training relation path encoder. Relation
path encoder aims to find a head relation 𝑟ℎ to replace a relation
path rb. Each sampled closed path can be regarded as a positive
example, whose target relation gives the ground truth of head
relation 𝑟ℎ . Negative examples can be generated by corrupting the
positive examples. Note that KGs operate under the Open World
Assumption (OWA). A statement that is not contained in the KG
is not necessarily false. It is just unknown. Rather than assuming
negative examples are necessarily false, we can only infer that they
are more invalid than those positive ones. To make the scores of
positive examples higher than those of negative ones, we employ
pairwise margin-based ranking loss function to learn 𝑞(𝑟𝑘 |rb).∑︁

(𝑟ℎ,rb) ∈P

∑︁
(𝑟ℎ′,rb) ∈N(𝑟ℎ,rb)

[𝑞(𝑟ℎ |rb) + 𝛾 − 𝑞(𝑟ℎ ′ |rb))]+ (14)

where [𝑥]+ = max{0, 𝑥} and the scoring function 𝑠 (·) can be pa-
rameterized by the relation path encoder. 𝛾 > 0 is the margin
hyperparameter separating positive and negative closed paths. To
reduce the effects of randomness, we sample multiple negative ex-
amples for each positive closed path. We denote the set of negative
samples of a closed path (𝑟ℎ, rb) asN(𝑟ℎ, rb), which is constructed
by replacing the head relation of the closed path (𝑟ℎ, rb) with a
relation sampled randomly from relation set 𝑅:

N(𝑟ℎ, rb) ⊂ {(𝑟ℎ ′, rb) |𝑟ℎ ′ ∈ 𝑅}} (15)

Objective function for training close ratio predictor. Close ratio
predictor bridges the gap between “ideal prediction” following
logical rules and “real observation” by predicting the ratio that
a path rb will close. Each closed path in KG can be regarded as a
positive example while the paths fail to be closed by any relation are
regarded as negative examples. The training objective for learning
𝑝 (𝑟𝑡 |𝑟ℎ) can be formulated as the binary cross-entropy loss:∑︁

(𝑟𝑡 ,𝑟ℎ) ∈P
log 𝑝 (𝑟𝑡 |𝑟ℎ) +

∑︁
(𝑟𝑡 ,𝑟ℎ) ∈N

log(1 − (𝑝 (𝑟𝑡 |𝑟ℎ)) (16)

Closed Path

Dana Eva Faye Gino
hasMother hasMother hasSon

hasBrother

hasUncle

𝑟|𝑅| 𝑟1
Relation embeddings

Calculation of q

FC Layer

FC Layer

…

q0q1q|𝑅 | …

𝑟0Weighted
Average

Calculation of q

FC Layer

Calculation of p

p

Figure 4: Illustration of the RLogic framework. It contains twomain
components: (1) a relation path encoder to model 𝑞 (𝑟ℎ |rb) ; and (2) a
close ratio predictor to model 𝑝 (𝑟𝑡 |𝑟ℎ) . Given a path rb, the relation
path encoder reduces rb into a single head 𝑟ℎ by recursively merge
relation pairs in path rb according to 𝑞 (𝑟ℎ |𝑟𝑖 , 𝑟 𝑗) . Then, the close
ratio predictor bridges the gap between “ideal prediction” following
logical rules and “real observation” by predicting predicting the ratio
that the relation path rb will close.

where P stores only positive examples and N stores only negative
examples. 𝑟ℎ is the head to replace the relation path rb learned by
the relation path encoder.

3.3 Rule Extraction
To recover logical rules from RLogic, we calculate the score 𝑠 (𝑟ℎ, rb)
for each rule 𝛿 in rule space when the model has finished training.
Unlike most of the existing methods, which can only rank rules
conditioned on head relation, our method can rank rules globally.
With such scores, we can select the most important rules to in-
terpret the whole KG rather than to infer a certain relation. The
detailed procedure to extract rules is presented as below. Given
a candidate rule (𝑟ℎ, rb), we reduce the rule body rb into a single
head 𝑟ℎ by recursively merge relation pairs in path rb according
to 𝑞(𝑟ℎ |𝑟𝑖 , 𝑟 𝑗). Every step, the relation pair (𝑟𝑖 , 𝑟 𝑗) with minimum
entropy will be selected and replaced by an intermediate repre-
sentation r̃ according to Eq. (12). At the end of the deduction, we
obtain the vector [𝑞(𝑟0 |rb), 𝑞(𝑟1 |rb), . . . , 𝑞(𝑟 |𝑅 | |rb)] where 𝑞(𝑟𝑘 |rb)
are the score of rule (𝑟𝑘 , rb). Top 𝑘 rules with highest score will be
selected as learned rules.

4 EXPERIMENTS
Datasets. Four widely used benchmark datasets are adopted to
evaluate our proposed RLogic, which includes WN18RR [8], FB15K-
237 [37], YAGO3-10 [34] and Family [13]. The detailed statistics of
the datasets are summarized in Appendix.

4.1 Quality of Learned Rules in Terms of KG
Completion Task

KG completion is a classic task widely used by logical rule learning
methods such as Neural-LP [42], DRUM [29] and NLIL [43] to evalu-
ate the quality of learned rules. An existing algorithm called forward
chaining [30] can used to derive missing facts from logical rules
efficiently. We selected the top 2400 rules with the highest score

KDD ’22, August 14–18, 2022, Washington, DC, USA Kewei Cheng et al.

Category Model WN18RR FB15K-237 YAGO3-10
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

KGE

TransE 0.23 2.2 52.4 0.29 18.9 46.5 0.36 25.1 58.0
DistMult 0.42 38.2 50.7 0.22 13.6 38.8 0.34 24.3 53.3
ConvE 0.43 40.1 52.5 0.32 21.6 50.1 0.36 26.5 55.6

ComplEx 0.44 41.0 51.2 0.24 15.8 42.8 0.34 24.8 54.9
RotatE 0.47 42.9 55.7 0.32 22.8 52.1 0.49 40.2 67.0

Rule Learning

Neural-LP† 0.38 36.8 40.8 0.24 17.3 36.2 - - -
NLIL† 0.30 20.1 33.5 0.25 13.8 32.4 - - -
DRUM† 0.38 36.9 41.0 0.23 17.4 36.4 - - -
AMIE 0.36 39.1 48.5 0.23 14.8 41.9 0.25 20.6 34.3

RNNLogic (w/o emb)‡ 0.46 41.4 53.1 0.29 20.8 44.5 - - -
RLogic 0.47 44.3 53.7 0.31 20.3 50.1 0.36 25.2 50.4

† Neural-LP, NLIL and DRUM exceeds the capacity of our machines on YAGO3-10 dataset
‡ Results on RLogic are taken from the original papers.

Table 2: Transductive link prediction. The bold numbers represent the best performances among all methods while the underlined numbers
represent the best performances among all rule learning methods.

learned by RLogic for the KG completion task. Detailed method of
applying rules for KG completion is available in Appendix.

EvaluationMetrics.Wemask the head or tail entity of each test
triple, and require each method to predict the masked entity. During
evaluation, we use the filtered setting [3] and three evaluation
metrics, i.e., Hit@1, Hit@10 and MRR. To break ties for triples with
the same score, we follow random protocol [36] to rank the triples
with the same score.

Comparing with Other Methods.We evaluate RLogic against
SOTA algorithms, including: (1) traditional KG embedding (KGE)
methods (e.g., TransE [3], DistMult [41], ConvE [8], ComplEx [38]
and RotatE [35]); (2) logical rule learning methods (e.g., Neural-
LP [42], NLIL [43], DRUM [29], AMIE [12] and RNNLogic [26]).
More detailed settings are in Appendix. The comparison results are
presented in Table 2. We can observe that: (1) Although RLogic is
not designed specifically for KG completion task, compared with
traditional KGE models, it still achieves comparable result on all
datasets; (2) RLogic outperforms most logical rule learning methods
with significant performance gain in most cases; (3) RNNLogic
shows great performance over KG completion tasks because it
jointly trains a powerful reasoning predictor to predict missing
links. To fairly compare with RNNLogic, we propose RLogic+ to
incorporate an improved reasoning predictor for prediction. We
will show the results of RLogic+ on KG completion task in the
following section.

Inductive Link Prediction. It is important to note that com-
paring logical rule learning methods with KGE methods solely on
transductive KG completion task is not fair. Different from KGE
methods, which are not capable of reasoning on unseen entities,
logical rules are more powerful in inductive setting. The results
for the inductive link prediction experiment are shown in Table 3.
More detailed settings are in Appendix. We observe that all rule
learning algorithms still achieve similar performances as they did
in transductive setting.

RLogic+. Unlike other baseline methods, RLogic directly learns
rules without enhancing KG completion tasks as a side product.
Although RLogic is able to generate high-quality logic rules, its
performance over KG completion task is severely limited by the
coverage of rules and the incompleteness of KGs due to the lack

of a good reasoning predictor. Following UniKER [4], we resolve
the KG sparsity issue by adding additional triples with high score
using RotatE [35], and then conduct forward chaining to predict
missing triples. The results are shown in Table 4. We can see that
under the help of KG embedding, the performance of RLogic+ over
KG completion task gets significantly improved on all datasets,
especially on FB15k237.

4.2 Quality of Learned Rules in Terms of Rule
Head Prediction Task.

In addition to the promising performance in term of KG completion
task, we also directly evaluate the correctness of rules learned by each
system on Family dataset. In particular, we propose a novel task
rule head prediction to predict the heads of a set of rule bodies.
Human annotation are used to label the rule bodies for ground truth
preparation.Mean Average Precision (MAP) are taken as evaluation
metric. More detailed settings are in Appendix.

4.2.1 Learn Equal-length Rules. We evaluate RLogic against a num-
ber of logical rule learning methods. Each method is given a set of
closed paths with length 2 as training data and required to predict
the rule head of equal-length rule bodies. The comparison results
are presented in Figure 5. We observed that RLogic outperforms all
other logical rule learning methods with significant gain.

4.2.2 Learn Longer Rules. RLogic incorporates the deductive na-
ture into rule learning and thus can learn longer rules with only
shorter closed paths observed in the training stage. In this experi-
ment, we allow only closed paths with length 2 being observed in
the training stage and require each system to predict rule heads of
longer rule bodies whose lengths range from 2 to 6.

Comparing with Other Methods. Considering that most of
existing logical rule learning methods rely on rule instances to
define the score function for rule evaluation and thus cannot handle
such difficult setting, we construct two baselines by replace the
relation path encoder in RLogic with RNN and LSTM. Experiment
results are shown in the left figures of Figure 6. We observe that:
(1) RLogic performs the best in rule head prediction task, giving
almost completely correct predictions; (2) LSTM performs better

RLogic: Recursive Logical Rule Learning from Knowledge Graphs KDD ’22, August 14–18, 2022, Washington, DC, USA

Model WN18RR FB15K-237 YAGO3-10
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

KGE† - - - - - - - - -
Neural-LP‡ 0.23 20.3 33.1 0.14 9.3 27.6 - - -
DRUM‡ 0.23 20.5 34.4 0.16 10.8 29.3 - - -
AMIE 0.32 33.6 45.5 0.19 13.9 38.0 0.21 15.8 30.1
RLogic 0.43 42.1 50.8 0.29 18.4 48.7 0.32 22.8 47.2
† KGE methods are not applicable in inductive setting.
‡ Neural-LP, NLIL and DRUM exceeds the capacity of our machines on YAGO3-10 dataset
∗ Results on RLogic are taken from the original papers.

Table 3: Inductive link prediction. The bold numbers represent the best performances among all methods.

Model WN18RR FB15K-237 YAGO3-10
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

RNNLogic+ (with emb.)† 0.51 47.1 59.7 0.35 25.8 53.3 - - -
RLogic+ 0.52 46.6 60.4 0.55 51.1 64.3 0.53 42.6 70.3

† Results on RLogic are taken from the original papers.
Table 4: Combine learned rules with KG embedding for KG completion task.

Methods WN18-RR FB15K-237 YAGO3-10
Neural-LP† 21.8 395.0 -

NLIL† 14.9 108.3 -
DRUM† 19.1 373.8 -
AMIE 0.5 13.9 41.3

RNNLogic† 17.4 - > 4 days
RLogic 0.2 5.2 17.3
† Neural-LP, NLIL and DRUM exceeds the capacity of our
machines on YAGO3-10 dataset and RNNLogic exceeds the
capacity of our machines on FB15K-237 dataset.

Table 5: Training time (minutes) of logical rule learning methods
on WN18-RR, FB15K-237 and YAGO3-10 datasets.

than RNN, as it naturally can handle longer sequential data better
compared with RNN.

Effect of Rule Length. To further investigate how the length of
rule body affects the performance, we vary the lengths of rule bodies
among {2, 3, 4, 5, 6} and report corresponding MAP. As depicted in
the right figure of Figure 4, the performances of RNN and LSTM
drop severely when the rule bodies grow longer while RLogic is
less affected by the length of rule body.

Case Study. In addition, we conduct a case study to show the
power of the recursive mechanism which enables RLogic to give
right predictions when rule body grows longer. As shown in the
figure on the top of Figure 7, three queries are manually designed
with rule bodies of length 2, 5 and 6 respectively. The longer queries
are formed by adding new predicates to the end of rule body of
the shorter ones. Top three rule heads inferred are given in the
table at the bottom of Figure 7, associated with their probabilities
(rounded). We observed that RLogic consistently performs well in
all cases while it is more and more challenging for RNN and LSTM
to provide correct prediction with the increase of body length.

4.3 Training Efficiency
RLogic learns rules directly at schema level while other existing
methods learn rules based on instance-level ground rules. There-
fore, RLogic is much more efficient than all existing methods. To
2The code provided by RNNLogic didn’t output the learned rules. Without the learned
rules, we are unable to include RNNLogic in this experiments.

demonstrate the scalability of RLogic, we give the training time of
RLogic and other logical rule learning methods on three benchmark
datasets in Table 5. Considering that it is challenging for baseline
methods to learn long rules, to fairly compare with different meth-
ods, we limit the maximum length of learned rules to be 2. We can
observe that: (1) Neural-LP, NLIL and DRUM do not perform well
in terms of efficiency as they involve large matrix multiplication.
They cannot handle YAGO3-10 dataset due to the memory issue;
(2) It is also challenging for RNNLogic to scale to large scale KGs.
It can neither handle KG with hundreds of relations (e.g., FB15K-
237) nor KG with million entities (e.g., YAGO3-10); (3) Although
performances of RLogic and AMIE are on the same scale, AMIE is
less efficient as it relies on all rule instances for rule evaluation.

4.4 Quality and Interpretability of the Rules
To demonstrate the quality and interpretability of rules mined by
RLogic, we show some logic rules generated on the FB15k-237
dataset in Table 8. Two rules with different lengths are presented
for each head predicate. We highlight the predicates which convey
the same semantic meaning with boldface. We can observed that
the boldfaced predicates in longer rules can be used to infer the
boldfaced predicate in shorter rules. This observation again vali-
dates that RLogic is able to captures the deductive nature of logical
rules. More analysis over the generated rules are in Appendix.

5 RELATEDWORK
Association Rule Mining. Association rule mining learns rules by
searching over a large rule space. The frequency of rule instances is
used to estimate the plausibility of a specific logic. Traditional meth-
ods such as AMIE [11, 12], WARMR [6] and RLvLR [24] rely on all
rule instances for rule evaluation. More recently, several attempts
such as AnyBURL [19] and RARL [25] have been made to sample
rule instances instead to accelerate rule learning. Since methods in
this category rely on observed rule instances to define the score
function for rule evaluation, they usually lack generalization abil-
ity (i.e., a rule cannot be detected without seeing a rule instance).
Instead, RLogic defines a predicate representation learning-based

KDD ’22, August 14–18, 2022, Washington, DC, USA Kewei Cheng et al.

Figure 5: Equal-length rule detection com-
parison on Family dataset2

Figure 6: Longer-length rule detection comparison on Family dataset. Left: overall rule detection
performance, where the lengths of rule bodies are varied among {2, 3, 4, 5, 6}. Right: rule detection
performance w.r.t body length.

speak_language(𝑥, 𝑦) ← geographic_distribution(𝑥, 𝑧) ∧ phone_service_language(𝑧, 𝑦)
speak_language(𝑥, 𝑦) ← geographic_distribution(𝑥, 𝑧1) ∧ tv_network_programs(𝑧1, 𝑧2) ∧ program_language(𝑧2, 𝑦)
location_at_time_zones(𝑥, 𝑦) ← county_at_location(𝑥, 𝑧) ∧ location_at_time_zones(𝑧, 𝑦)
location_at_time_zones(𝑥, 𝑦) ← county_at_location(𝑥, 𝑧1) ∧ location_partially_contains(𝑧1, 𝑧2) ∧ location_at_time_zones(𝑧2, 𝑦)
has_nationality(𝑥, 𝑦) ← write_tv_programs(𝑥, 𝑧) ∧ tv_programs_in_country(𝑧, 𝑦)
has_nationality(𝑥, 𝑦) ← write_tv_programs(𝑥, 𝑧1) ∧ has_regular_tv_appearance(𝑧1, 𝑧2) ∧ headquarters_in_country(𝑧2, 𝑦)

Table 6: Top rules learned by RLogic on FB15K-237. We highlight the predicates which convey the same semantic meaning with boldface.

? (𝒙, 𝒚) ← 𝒉𝒂𝒔𝑩𝒓𝒐𝒕𝒉𝒆𝒓(𝒙, 𝒛𝟏) ∧ 𝒉𝒂𝒔𝑺𝒊𝒔𝒕𝒆𝒓(𝒛𝟏, 𝒚)

? (𝒙, 𝒚) ← 𝒉𝒂𝒔𝑩𝒓𝒐𝒕𝒉𝒆𝒓(𝒙, 𝒛𝟏) ∧ 𝒉𝒂𝒔𝑺𝒊𝒔𝒕𝒆𝒓(𝒛𝟏, 𝒛𝟐)
∧ 𝒉𝒂𝒔𝑭𝒂𝒕𝒉𝒆𝒓(𝒛𝟐, 𝒛𝟑) ∧ 𝒉𝒂𝒔𝑾𝒊𝒇𝒆(𝒛𝟑, 𝒛𝟒)
∧ 𝒉𝒂𝒔𝑯𝒖𝒔𝒃𝒂𝒏𝒅(𝒛𝟒, 𝒚)

? (𝒙, 𝒚) ← 𝒉𝒂𝒔𝑩𝒓𝒐𝒕𝒉𝒆𝒓(𝒙, 𝒛𝟏) ∧ 𝒉𝒂𝒔𝑺𝒊𝒔𝒕𝒆𝒓(𝒛𝟏, 𝒛𝟐)
∧ 𝒉𝒂𝒔𝑭𝒂𝒕𝒉𝒆𝒓(𝒛𝟐, 𝒛𝟑) ∧ 𝒉𝒂𝒔𝑾𝒊𝒇𝒆(𝒛𝟑, 𝒛𝟒)
∧ 𝒉𝒂𝒔𝑯𝒖𝒔𝒃𝒂𝒏𝒅(𝒛𝟒, 𝒛𝟓) ∧ 𝒉𝒂𝒔𝑩𝒓𝒐𝒕𝒉𝒆𝒓(𝒛𝟓, 𝒚)

Query 1

Query 2

Query 3

Query RNN LSTM RLogic

Query 1
hasSister 0.7 hasSister 0.9 hasSister 0.9
hasBrother 0.1 hasBrother 0.0 hasDaughter 0.0
hasMother 0.1 hasNiece 0.0 hasBrother 0.0

Query 2
hasSister 0.8 hasFather 0.8 hasFather 1.0
hasFather 0.1 hasMother 0.1 hasSon 0.0
hasUncle 0.0 hasDaughter 0.1 hasMother 0.0

Query 3
hasBrother 0.3 hasMother 0.8 hasUncle 0.8
hasDaughter 0.3 hasBrother 0.1 hasBrother 0.1
hasSon 0.2 hasFather 0.1 hasAunt 0.0

Figure 7: Case study of RLogic in inferring rules with different
lengths. The figure on the top gives rule bodies with different lengths
(i.e., 2, 5, 6). The table at the bottom presents predicted rule heads
ranked by probabilities. The bold predicates corresponds to the
ground truth answers.

scoring model. For any candidate rule, even without direct evidence
support from its rule instances, we can still compute its score.

Neural Logic Programming. Very recently, neural logic pro-
gramming approaches are proposed to extend the rule mining prob-
lem from counting to learning. Methods such as Neural-LP [42]
enables rule instances to be softly counted via sequences of differ-
entiable tensor multiplication. An neural controller system based
on attention mechanism is used to learn the score of a specific logic.

However, Neural-LP could learn higher score of a meaningless rule
because it shares an atomwith a useful rule. To address this problem,
RNNs are utilized in DRUM [29] to prune the potential incorrect
rule bodies. In addition, Neural-LP can learn only chain-like Horn
rules while NLIL [43] extends Neural-LP to learn Horn rules in
more general form. Because neural logic programming approaches
involve large matrix multiplication and simultaneously learn logic
rules and their weights, which is nontrivial in terms of optimiza-
tion, they cannot handle large KGs, such as YAGO3-10. To address
this issue, RNNLogic [26]) is proposed to separate rule generation
and rule weight learning by introducing a rule generator and a
reasoning predictor respectively. Although the introduction of the
rule generator reduces the search space, it is still challenging for
RNNLogic to scale to knowledge graph with hundreds of relations
(e.g., FB15K-237) or millions of entities (e.g., YAGO3-10).

Inductive Logic Programming. Mining Horn clauses has been
extensively studied in the Inductive Logic Programming (ILP) [20,
21, 23]. Given a set of positive examples, as well as a set of negative
examples, an ILP system aims to learn logic rules which are able to
entail all the positive examples while exclude any of the negative
examples. Some representative methods includes FOIL [28] and
GOLEM [22] and 𝜕ILP [9]. Although ILP has shown its power in
many areas [39, 44], scalability is a central challenge for ILP problem
as it involves several steps that are NP-hard.

Reinforcement Learning Based Approaches. Most reinforce-
ment learning based approaches aim to learn instance level rea-
soning paths in KGs to predict missing triples [5, 31, 40]. Logical
rules are extracted from these instance level reasoning paths as the
side product. Since the reward signals are usually sparse in KGs,
training reinforcement learning agents is usually challenging [16].
Different from the above works, R5 [17] is recently proposed to
directly learn logical rules based on reinforcement learning. Similar
as our work, it also performs recurrent relational prediction. How-
ever, their work assumes that only one head can be derived from

RLogic: Recursive Logical Rule Learning from Knowledge Graphs KDD ’22, August 14–18, 2022, Washington, DC, USA

a relation pair and thus fails to model underlying complex logical
deduction. Because the authors of R5 doesn’t release the code and
they conduct experiments over different datasets, we didn’t include
it as our baseline in the experiments.

6 CONCLUSION
A majority of existing methods entirely rely on observed rule in-
stances to define the score function for rule evaluation and thus
lack generalization ability and suffer from severe computational
inefficiency. Instead of completely relying on rule instances for
rule evaluation, RLogic defines a predicate representation learning-
based scoring model, which is trained by sampled rule instances. In
addition, RLogic incorporates one of the most significant properties
of logical rules, the deductive nature, into rule learning, which is
critical especially when a rule lacks supporting evidence. To push
deductive reasoning deeper into rule learning, RLogic breaks a big
sequential model into small atomic models in a recursive way.

ACKNOWLEDGEMENTS
This work was partially supported by NSF 1705169, 1937599,
2031187, 2106859, 2119643, NIH R35-HL135772, NIH/NIBIB
R01-EB027650, Amazon Research Awards, Cisco research grant
USA000EP280889, NEC Gifts, Picsart Gifts, and Snapchat Gifts.

REFERENCES
[1] Somak Aditya, Yezhou Yang, and Chitta Baral. 2019. Integrating knowledge and

reasoning in image understanding. arXiv preprint arXiv:1906.09954 (2019).
[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. In Advances in neural information processing systems. 2787–2795.

[4] Kewei Cheng, Ziqing Yang, Ming Zhang, and Yizhou Sun. [n. d.]. UniKER: A
Unified Framework for Combining Embedding and Definite Horn Rule Reasoning
for Knowledge Graph Inference. ([n. d.]).

[5] Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar,
Akshay Krishnamurthy, Alex Smola, and Andrew McCallum. 2017. Go for a
walk and arrive at the answer: Reasoning over paths in knowledge bases using
reinforcement learning. arXiv preprint arXiv:1711.05851 (2017).

[6] Luc Dehaspe and Hannu Toivonen. 1999. Discovery of frequent datalog patterns.
Data Mining and knowledge discovery 3, 1 (1999), 7–36.

[7] Li Deng, Geoffrey Hinton, and Brian Kingsbury. 2013. New types of deep neural
network learning for speech recognition and related applications: An overview.
In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
IEEE, 8599–8603.

[8] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018.
Convolutional 2d knowledge graph embeddings. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32.

[9] Richard Evans and Edward Grefenstette. 2018. Learning explanatory rules from
noisy data. Journal of Artificial Intelligence Research 61 (2018), 1–64.

[10] Melvin Fitting. 2012. First-order logic and automated theorem proving. Springer
Science & Business Media.

[11] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M Suchanek. 2015.
Fast rule mining in ontological knowledge bases with AMIE+. The VLDB Journal
24, 6 (2015), 707–730.

[12] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek.
2013. AMIE: association rule mining under incomplete evidence in ontological
knowledge bases. In Proceedings of the 22nd international conference on World
Wide Web. 413–422.

[13] Geoffrey E Hinton et al. 1986. Learning distributed representations of concepts.
In Proceedings of the eighth annual conference of the cognitive science society, Vol. 1.
Amherst, MA, 12.

[14] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[16] Xi Victoria Lin, Richard Socher, and Caiming Xiong. 2018. Multi-hop knowledge
graph reasoning with reward shaping. arXiv preprint arXiv:1808.10568 (2018).

[17] Shengyao Lu, Bang Liu, Keith G Mills, SHANGLING JUI, and Di Niu. 2022. R5:
Rule Discovery with Reinforced and Recurrent Relational Reasoning. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=
2eXhNpHeW6E

[18] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B Tenenbaum, and Jiajun
Wu. 2019. The neuro-symbolic concept learner: Interpreting scenes, words, and
sentences from natural supervision. arXiv preprint arXiv:1904.12584 (2019).

[19] Christian Meilicke, Melisachew Wudage Chekol, Daniel Ruffinelli, and Heiner
Stuckenschmidt. 2019. Anytime Bottom-Up Rule Learning for Knowledge Graph
Completion.. In IJCAI. 3137–3143.

[20] Stephen Muggleton. 1992. Inductive logic programming. Number 38. Morgan
Kaufmann.

[21] Stephen Muggleton and Luc De Raedt. 1994. Inductive logic programming:
Theory and methods. The Journal of Logic Programming 19 (1994), 629–679.

[22] Stephen Muggleton, Cao Feng, et al. 1990. Efficient induction of logic programs.
Citeseer.

[23] Shan-Hwei Nienhuys-Cheng and Ronald De Wolf. 1997. Foundations of inductive
logic programming. Vol. 1228. Springer Science & Business Media.

[24] Pouya Ghiasnezhad Omran, Kewen Wang, and Zhe Wang. 2018. Scalable Rule
Learning via Learning Representation.. In IJCAI. 2149–2155.

[25] Giuseppe Pirrò. 2020. Relatedness and TBox-Driven Rule Learning in Large
Knowledge Bases. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 34. 2975–2982.

[26] Meng Qu, Junkun Chen, Louis-Pascal Xhonneux, Yoshua Bengio, and Jian Tang.
2020. Rnnlogic: Learning logic rules for reasoning on knowledge graphs. arXiv
preprint arXiv:2010.04029 (2020).

[27] Meng Qu and Jian Tang. 2019. Probabilistic logic neural networks for reasoning.
In Advances in Neural Information Processing Systems. 7710–7720.

[28] J. Ross Quinlan. 1990. Learning logical definitions from relations. Machine
learning 5, 3 (1990), 239–266.

[29] Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang.
2019. Drum: End-to-end differentiable rule mining on knowledge graphs. arXiv
preprint arXiv:1911.00055 (2019).

[30] Eric Salvat and Marie-Laure Mugnier. 1996. Sound and complete forward and
backward chainings of graph rules. In International Conference on Conceptual
Structures. Springer, 248–262.

[31] Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, and Jianfeng Gao. 2018.
M-walk: Learning to walk over graphs using monte carlo tree search. arXiv
preprint arXiv:1802.04394 (2018).

[32] Raymond M Smullyan. 1995. First-order logic. Courier Corporation.
[33] Frank Spitzer. 2013. Principles of random walk. Vol. 34. Springer Science &

Business Media.
[34] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core of

semantic knowledge. In Proceedings of the 16th international conference on World
Wide Web. 697–706.

[35] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. Rotate: Knowl-
edge graph embedding by relational rotation in complex space. arXiv preprint
arXiv:1902.10197 (2019).

[36] Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal, Partha Talukdar, and Yiming
Yang. 2019. A re-evaluation of knowledge graph completion methods. arXiv
preprint arXiv:1911.03903 (2019).

[37] Kristina Toutanova and Danqi Chen. 2015. Observed versus latent features
for knowledge base and text inference. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and their Compositionality. 57–66.

[38] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2016. Complex embeddings for simple link prediction. In International
Conference on Machine Learning. PMLR, 2071–2080.

[39] Kazuhisa Tsunoyama, Ata Amini, Michael JE Sternberg, and Stephen H Muggle-
ton. 2008. Scaffold hopping in drug discovery using inductive logic programming.
Journal of chemical information and modeling 48, 5 (2008), 949–957.

[40] Wenhan Xiong, Thien Hoang, and William Yang Wang. 2017. Deeppath: A
reinforcement learning method for knowledge graph reasoning. arXiv preprint
arXiv:1707.06690 (2017).

[41] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014. Em-
bedding entities and relations for learning and inference in knowledge bases.
arXiv preprint arXiv:1412.6575 (2014).

[42] Fan Yang, Zhilin Yang, and William W Cohen. 2017. Differentiable learning of
logical rules for knowledge base reasoning. In Advances in Neural Information
Processing Systems. 2319–2328.

[43] Yuan Yang and Le Song. 2019. Learn to Explain Efficiently via Neural Logic
Inductive Learning. arXiv preprint arXiv:1910.02481 (2019).

[44] John M Zelle and Raymond J Mooney. 1993. Learning semantic grammars with
constructive inductive logic programming. In AAAI. 817–822.

https://openreview.net/forum?id=2eXhNpHeW6E
https://openreview.net/forum?id=2eXhNpHeW6E

KDD ’22, August 14–18, 2022, Washington, DC, USA Kewei Cheng et al.

Dataset # Data # Relation # Entity

FB15K-237 310,116 237 14,541
WN18RR 93,003 11 40,943
YAGO3-10 1,089,040 37 123,182
Family 28,356 12 3007

Table 7: Data statistics.

A USE LOGICAL RULES FOR KNOWLEDGE
GRAPH COMPLETION

An existing algorithm called forward chaining [30] can used to
derive missing facts from logical rules efficiently.

Given a query (ℎ, 𝑟, ?), let A be the set of candidate answers
which can be discovered by any learned rule using forward chaining.
For each candidate answer 𝑒 ∈ 𝐴, the score of triple (ℎ, 𝑟, 𝑒) can be
calculated as∑

𝛿 ∈rule space
∑
path∈𝑃 (ℎ,𝑟,𝑒) 𝑠 (𝛿).

Taking the test KG in Figure. (1) in main context as an example.
Starting from known facts (e.g., hasMother (Lily, Jane), hasMother
(Jane, Betty) and hasSon (Betty, Tom)), it triggers rule 𝛿2 whose
premise is satisfied (e.g., hasUncle (Lily, Tom)← hasMother (Lily,
Jane) ∧ hasMother (Jane, Betty)) ∧ hasSon (Betty, Tom)). The score
of its conclusion (e.g., hasUncle (Lily, Tom)) becomes 𝑠 (𝛿2). Then,
the conclusion hasUncle (Lily, Tom) will be added to the known
facts as the inferred missing fact.

Considering that RLogic can only learn chain-like horn rules,
which is in the form as shown in Eq. (5) in the main context. The
conjunctive body of a ground chain-like Horn rules is essentially
a path in a KG and thus can be extracted efficiently using sparse
matrix multiplication.

B EXPERIMENT
B.1 Datasets
FB15K237,WN18RR and YAGO3-10 are the most widely used bench-
mark datasets for KGE models, which don’t suffer from test triple
leakage in the training set. The Family dataset is selected due to
better interpretability and high intuitiveness. Because inverse re-
lations are required to learn rules, we preprocess the KGs to add
inverse links.

• FB15k-237 is the most commonly used benchmark knowl-
edge graph datasets introduced in [37]. It is an online collec-
tion of structured data harvested from many sources, includ-
ing individual, user-submitted wiki contributions.
• WN18RR is also a widely used benchmark knowledge graph
datasets introduced in [8]. It is designed to produce an intu-
itively usable dictionary and thesaurus, and support auto-
matic text analysis. Its entities correspond to word senses,
and relationships define lexical relations between them.
• YAGO3-10 is another widely used benchmark knowledge
graph datasets introduced in [34]. It is a subset of YAGO,
which is a large semantic knowledge base, derived from
Wikipedia, WordNet, WikiData, GeoNames, and other data
sources.

• Family contains family relationships among members of a
family [13].

Experimental Setup RLogic is implemented over PyTorch and
trained in an end-to-end manner. Adam [14] is adopted as the
optimizer. Embeddings of all predicates are uniformly initialized and
no regularization is imposed on them. The detailed hyperparameter
settings can be found as follows: we set embedding dimension of
predicates as 1024, batch size as 512, learning rate as 0.005 and the
maximum number of training epochs as 20. To fairly compare with
different baseline methods, we set the parameters for all baseline
methods by a grid search strategy. The best results of baseline
methods are used to compared with our proposed RLogic. All the
experiments are run on Tesla V100 GPUs.

B.2 Quality of Learned Rules in Terms of KG
Completion Task

Experiment Setup for Transductive Link Prediction Consider-
ing that the majority of logical rule learning methods are unable
to handle long rules due to the scalability issue, we thus limit the
maximum length of learned rules to be 2. We sample 50,000, 100,000,
200,000 paths for WN18RR and FB15K237 and YAGO3-10 in order
to learn rules and we select 2400 rules for each of these datasets to
predict links.

Experiment Setup for Inductive Link Prediction It is im-
portant to note that comparing logical rule learning methods with
KGE methods solely on transductive KG completion task is not
fair. Unlike KGE methods, logical rule learning methods are not de-
signed specifically for transductive KG completion task. The severe
incompleteness of KGs usually limits the power of logical rules in
transductive KG completion task. Besides, KGE methods are not
capable of reasoning on unseen entities, which results in their in-
ability in dealing with the inductive setting. To show the power of
rule learning methods in inductive setting, we randomly divide the
all triples in KG into training, validate and test sets with ratio of
7:1:2 with disjoint entities.

B.3 Quality of Learned Rules in Terms of Rule
Head Prediction Task.

Dataset and Evaluation Metric. Throughout this section we use
the Family dataset for demonstration purposes as it is more tangible.
A set of closed paths with maximum length as 2 are sampled from
Family KG to construct the training dataset. Meanwhile, 3910 rule
bodies whose length ranges from 2 to 6 are taken as the test dataset.
We use human annotation to annotate the rule heads for all rule
bodies in test dataset for ground truth preparation. Mean Average
Precision (MAP) are taken as evaluation metric as it is widely used
for evaluating the ranked retrieval results.

B.4 Impact of Closed Path Sampler
To further investigate how the number of sampled closed paths af-
fects the performance, we vary the number of sampled closed paths
among {50, 100, 500, 1000, 5000, 10000} and report performance in
terms of KG completion task on Family dataset. As depicted in
Figure 8, the performances increase severely when the number
of sampled closed paths increases from 50 to 100. After that the

RLogic: Recursive Logical Rule Learning from Knowledge Graphs KDD ’22, August 14–18, 2022, Washington, DC, USA

Neural-LP RLogic
brother(𝑥,𝑦) ← inv_sister(𝑥,𝑦) brother(𝑥,𝑦) ← brother(𝑥, 𝑧) ∧ sister(𝑧,𝑦)
brother(𝑥,𝑦) ← sister(𝑥, 𝑧) ∧ inv_brother(𝑧,𝑦) brother(𝑥,𝑦) ← son(𝑥, 𝑧) ∧ father(𝑧,𝑦)
brother(𝑥,𝑦) ← inv_sister(𝑥, 𝑧) ∧ inv_sister(𝑧,𝑦) brother(𝑥,𝑦) ← brother(𝑥, 𝑧) ∧ brother(𝑧,𝑦)
wife(𝑥,𝑦) ← inv_husband(𝑥, 𝑧) ∧ inv_husband(𝑧,𝑦) wife(𝑥,𝑦) ← mother(𝑥, 𝑧) ∧ inv_father(𝑧,𝑦)
wife(𝑥,𝑦) ← inv_husband(𝑥,𝑦) wife(𝑥,𝑦) ← mother(𝑥, 𝑧) ∧ daughter(𝑧,𝑦)
wife(𝑥,𝑦) ← inv_husband(𝑥, 𝑧) ∧ daughter(𝑧,𝑦) wife(𝑥,𝑦) ← mother(𝑥, 𝑧) ∧ son(𝑧,𝑦)
son(𝑥,𝑦) ← brother(𝑥,𝑦) ∧ inv_mother(𝑧,𝑦) son(𝑥,𝑦) ← brother(𝑥, 𝑧) ∧ inv_father(𝑧,𝑦)
son(𝑥,𝑦) ← inv_mother(𝑥, 𝑧) ∧ inv_mother(𝑧,𝑦) son(𝑥,𝑦) ← brother(𝑥, 𝑧) ∧ son(𝑧,𝑦)
son(𝑥,𝑦) ← brother(𝑥,𝑦) son(𝑥,𝑦) ← son(𝑥, 𝑧) ∧ inv_wife(𝑧,𝑦)

Table 8: Top 3 rules learned by Neural-LP v.s. RLogic on Family dataset.

Figure 8: Performance in terms of KG completion task w.r.t.
sampled closed paths on Family dataset.

aunt(𝑥,𝑦) ← inv_brother(𝑥, 𝑧) ∧ sister(𝑧,𝑦)
mother(𝑥,𝑦) ← inv_wife(𝑥, 𝑧) ∧ inv_daughter(𝑧,𝑦)
aunt(𝑥,𝑦) ← inv_son(𝑥, 𝑧) ∧ inv_wife(𝑧,𝑦)
aunt(𝑥,𝑦) ← uncle(𝑥, 𝑧) ∧ sister(𝑧,𝑦)
father(𝑥,𝑦) ← inv_wife(𝑥, 𝑧) ∧ niece(𝑧,𝑦)
Table 9: Low-accuracy rules learned by RLogic.

performance stay steady length. This is attractive in real-world
application as a small number of sampled closed paths can already
gives great performance.

B.5 Quality and Interpretability of the Rules
We also sort the rules generated by RLogic and Neural-LP on Family
dataset based on their assigned confidences and show the three
top rules in Table 8. Logically incorrect rules are highlighted by
red while rules which do not always hold true are highlighted by
blue. This experiment shows that many of the top ranked rules
generated by Neural-LP are either incorrect or partially correct.
The major reasoning is that Neural-LP tend to learn higher score of
a meaningless rule by mistake when it shares an atom with a useful
rule. Due to the introduction of deductive nature, RLogic can learn
more accurate logical rules.

To better understand RLogic, we also provide rules with lowest
confidences learned by RLogic in Table 9. We can observe all of
these low-accuracy rules are completely logically incorrect.

Figure 9: Visualization of Predicate Embeddings.

B.6 Visualization of Predicate Embeddings
Note that predicates in FB15K-237 dataset are grouped hierarchi-
cally into domains, we regard the predicates that share the same
root domain (e.g. award, tv) as similar predicates. To show the
proximity of similar predicates, we visualize the embeddings of
predicates on FB15k237 dataset, which are plotted as PCA projec-
tions in Figure 9. Four different root domains, including award, tv,
film andmusic are given. We highlight the similar predicates by
red while others by grey. We can observe that the similar predicates
are lined up in a vertical line, showing their proximity.

	Abstract
	1 Introduction
	2 Preliminaries and Problem Definition
	3 Approach
	3.1 A New Measure for Rule Evaluation
	3.2 Framework - RLogic
	3.3 Rule Extraction

	4 Experiments
	4.1 Quality of Learned Rules in Terms of KG Completion Task
	4.2 Quality of Learned Rules in Terms of Rule Head Prediction Task.
	4.3 Training Efficiency
	4.4 Quality and Interpretability of the Rules

	5 Related Work
	6 Conclusion
	References
	A Use Logical Rules for Knowledge Graph Completion
	B Experiment
	B.1 Datasets
	B.2 Quality of Learned Rules in Terms of KG Completion Task
	B.3 Quality of Learned Rules in Terms of Rule Head Prediction Task.
	B.4 Impact of Closed Path Sampler
	B.5 Quality and Interpretability of the Rules
	B.6 Visualization of Predicate Embeddings

