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ABSTRACT
Real-world, multiple-typed objects are often interconnected,

forming heterogeneous information networks. A major challenge
for link-based clustering in such networks is its potential to gener-
ate many different results, carrying rather diverse semantic mean-
ings. In order to generate desired clustering, we propose to use
meta-path, a path that connects object types via a sequence of re-
lations, to control clustering with distinct semantics. Nevertheless,
it is easier for a user to provide a few examples (“seeds”) than a
weighted combination of sophisticated meta-paths to specify her
clustering preference. Thus, we propose to integrate meta-path s-
election with user-guided clustering to cluster objects in network-
s, where a user first provides a small set of object seeds for each
cluster as guidance. Then the system learns the weights for each
meta-path that are consistent with the clustering result implied by
the guidance, and generates clusters under the learned weights of
meta-paths. A probabilistic approach is proposed to solve the prob-
lem, and an effective and efficient iterative algorithm, PathSelClus,
is proposed to learn the model, where the clustering quality and the
meta-path weights are mutually enhancing each other. Our exper-
iments with several clustering tasks in two real networks demon-
strate the power of the algorithm in comparison with the baselines.
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Figure 1: A toy heterogeneous information network containing
organizations, authors and venues.

1. INTRODUCTION
With the advent of massive social and information networks,

link-based clustering of objects in networks becomes increasing-
ly important since it may help discover hidden knowledge in large
networks. Link-based clustering groups objects based on their links
instead of attribute values. This is especially useful when attributes
of objects cannot be fully obtained. Most existing link-based clus-
tering algorithms are on homogeneous networks where links car-
ry the same semantic meaning and only differ in their strengths
(i.e., weights). However, most real-world networks are heteroge-
neous, where objects are of multiple types and are linked via dif-
ferent types of relations or sequences of relations, forming a set of
meta-paths [21]. These meta-paths imply diverse semantics, and
thus clustering on different meta-paths will generate rather differ-
ent results, as shown below.

Example 1.1. (Meta-path-based clustering) A toy heterogeneous
information network is shown in Figure 1, which contains three
types of objects: organization (O), author (A) and venue (V), and
two types of links: solid line represents the affiliation relation be-
tween author and organization, whereas the dashed one the publica-
tion relation between author and venue. Authors are then connected
(indirectly) via different meta-paths. For example, A − O − A is
a meta-path denoting a relation between authors via organizations
(i.e., colleagues), whereas A − V − A denotes a relation between
authors via venues (i.e., publishing in the same venues). A question
then raises: which type of connections should we use to cluster the
authors?

Obviously, there is no unique answer to this question: Differ-
ent meta-paths lead to different author connection graphs, which
may lead to different clustering results. In Figure 2(a), authors are
connected via organizations and form two clusters: {1, 2, 3, 4} and
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Figure 2: Author connection graphs under different meta-
paths.

{5, 6, 7, 8}; in Figure 2(b), authors are connected via venues and
form two different clusters: {1, 3, 5, 7} and {2, 4, 6, 8}; whereas in
Figure 2(c), a connection graph combining both meta-paths gener-
ate 4 clusters: {1, 3}, {2, 4}, {5, 7} and {6, 8}.

This toy example shows that all the three clusterings look reason-
able but they carry diverse semantics. It should be a user’s respon-
sibility to choose her desired meta-path(s). However, it is often dif-
ficult to ask her to explicitly specify one or a weighted combination
of meta-paths. Instead, it is easier for her to give some guidance in
other forms, such as giving one or a couple of examples for each
cluster. For example, it may not be hard to give a few known con-
ferences in each cluster (i.e., field) if one wants to cluster them into
K research areas (for a user-desiredK), or ask a user to name a few
restaurants if one wants to cluster them into different categories in
a business review website (e.g., Yelp).

On the other hand, since we are dealing with heterogeneous
networks, the previous work on user-guided clustering or semi-
supervised learning approaches on (homogeneous) graphs [11, 30,
31] cannot apply. We need to explore meta-paths that represent
heterogeneous connections across objects, leading to rich seman-
tic meanings, hence diverse clustering results. With user guidance,
a system will be able to learn the most appropriate meta-paths or
their weighted combinations. The learned meta-paths will in turn
provide an insightful view to help understand the underneath mech-
anism for the formation of a specific type of clustering. For exam-
ple, which meta-path is more important to determine a restaurant’s
category?—the meta-path connecting them via customers, or the
one connecting them via text in reviews, or the kNN relation deter-
mined by their locations?

In this paper, we integrate the meta-path selection with the user-
guided clustering for better clustering a user-specified type of ob-
jects, i.e., the target objects, in a heterogeneous information net-
work, where the user guidance is given as a small set of seeds in
each cluster. For example, to cluster authors into 2 clusters in Ex-
ample 1.1, a user may seed {1} and {5} for two clusters, which
implies a selection of meta-pathA−O−A; or seed {1}, {2}, {5},
and {6} for four clusters, which implies a combination of both
meta-paths A−O − A and A− V − A with about equal weight-
s. Our goal is to (1) determine the weight of each meta-path for a
particular clustering task, which should be consistent with the clus-
tering results implied by the limited user guidance, and (2) output
the clustering result according to the user guidance and under the
learned weights for each meta-path.

We propose a probabilistic model that models the hidden clus-
ters for target objects, the user guidance, and the quality weights
for different meta-paths in a unified framework. An effective and
efficient iterative algorithm PathSelClus is developed to learn the
model, where the clustering quality and the meta-paths quality mu-
tually enhance each other. The experiments with different tasks on
two real networks show our algorithm outperforms the baselines.
Our contributions are summarized as follows:

Paper

Author
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User

BusinessTerm

(b) Yelp

Figure 3: Examples of heterogeneous information networks.

1. We propose to integrate meta-path selection with user-guided
clustering for arbitrary heterogeneous networks, and study a
specific form of guidance: seeding some objects in each cluster;

2. A probabilistic model is proposed to put hidden clusters, user
guidance, and the quality of meta-paths into one unified frame-
work, and an iterative algorithm is developed where the cluster-
ing result and weights for each meta-path are learned alterna-
tively and mutually enhance each other; and

3. Experiments on real heterogeneous information networks have
shown the effectiveness and efficiency of our algorithm over
baselines, and the learned weights of meta-paths provide knowl-
edge for better understanding of the cluster formation.

2. PRELIMINARIES
In this section, we introduce preliminary concepts in heteroge-

neous information networks and define the problem of integrating
meta-path selection with user-guided object clustering.

2.1 Heterogeneous Information Network
A heterogeneous information network [22] is an information net-

work with multiple types of objects and/or multiple types of links.
Here we introduce two heterogeneous information networks that
are used in the experiment section in this paper, which are the D-
BLP network and the Yelp network.

Example 2.1. (The DBLP bibliographic network1) DBLP is a
typical heterogeneous information network (see schema in Figure
3(a)), which contains 4 types of objects, namely paper(P), author
(A), term (T), and venue (V) including conferences and journals.
Links exist between authors and papers by the relation of “write”
and “written by”, between papers and terms by “mention” and
“mentioned by”, and between venues and papers by “publish” and
“published by”. “Citation” relation between papers can be added
further using other data source, such as Google scholar.

Example 2.2. (The Yelp network2) Yelp is a website where users
can write reviews for businesses. The Yelp network (see schema in
Figure 3(b)) used in this paper contains 4 types of objects, namely
business (B), user (U), term (T), and review (R). Links exist be-
tween users and reviews by the relation of “write” and “written by”,
between reviews and terms by “mention” and “ mentioned by”, be-
tween businesses and reviews by “commented by” and “comment”,
and between users by "friendship" (not included in our dataset).

Following the work [21], we use the concept of meta-path to
describe the possible relations that can be derived from a heteroge-
neous network between two types of objects in a meta level. Meta-
path is defined by a sequence of relations in the network schema,

1http://www.informatik.uni-trier.de/∼ley/db/
2http://www.yelp.com/



and can be described by a sequence of object types when there is
no ambiguity. For example, A − P − A is a meta-path denoting
the co-authorship between authors, and A− P − V is a meta-path
denoting the publication relation between the author and the venue
type. Note that, a single relation defined in the network schema can
be viewed as a special case of meta-path, e.g., the citation relation
P → P .

2.2 The Meta-Path Selection Problem
Link-based clustering is to cluster objects based on their connec-

tions to other objects in the network. In a heterogeneous informa-
tion network, we need to specify more information for a meaningful
clustering.

First, we need to specify the type of objects we want to cluster,
which is called the target type. Second, we need to specify which
type of connection, i.e., meta-path, to use for the clustering task,
where we call the object type that the target type is connecting to
via the meta-path as the feature type. For example, when cluster-
ing authors based on the venues they have published papers in, the
target type is the author type, the meta-path to use is A − P − V ,
and the feature type is the venue type.

In a heterogeneous information network, target objects could
link to many types of feature objects by multiple meta-paths. For
example, authors could connect to other authors by meta-path
A − P − A, or connect to terms by meta-path A − P − T . The
meta-path selection problem is then to determine which meta-paths
or their weighted combination to use for a specific clustering task.

2.3 User-Guided Clustering
User guidance is critical for clustering objects in the network. In

this study, we consider the guidance in the form of object seeds in
each cluster given by users. For example, to cluster authors based
on their (hidden) research areas, one can first provide several repre-
sentative authors in each area. On one hand, these seeds are used as
guidance for clustering all the target objects in the network. On the
other hand, they provide information for selecting the most relevant
meta-paths for the specific clustering task. Note that in practice, a
user may not be able to provide seeds for every cluster, but only for
some clusters they are most familiar with, which should be handled
by the algorithm too.

2.4 The Problem Definition
In all, given a heterogeneous information network G, a user

needs to specify the following as inputs for a clustering task:

1. The target type for clustering, type T .
2. The number of clusters,K, and the object seeds for each cluster,

say L1, . . . ,LK , where Lk denotes the object seeds for cluster
k, which could be an empty set. These seeds will be used as the
hints to learn the purpose/preference of the clustering task.

3. A set of M meta-paths starting from type T , denoted as
P1,P2, . . . ,PM , which might be helpful for the clustering task.
These meta-paths can be determined either according to users’
expert knowledge, or by traversing the network schema starting
from type T with a length constraint.

For each meta-path Pm, we calculate the adjacency matrix Wm,
which we call relation matrix, between the target type T and the
feature type Fm, by multiplying adjacency matrices for each rela-
tion along the meta-path. For example, the relation matrix W for
meta-path A−P −V , denoting the number of papers published by
an author in a venue, is calculated by W = WAP ×WPV , where
WAP and WPV are the adjacency matrices for relation A−P and
P − V respectively.

The output of the algorithm includes two parts: (1) to determine
the weight αm ≥ 0 of each meta-path Pm for a particular clus-
tering task, which should be consistent with the clustering result
implied by the limited user guidance, and (2) to output the clus-
tering result according to the user guidance and under the learned
weights for each meta-path, that is, to associate each target objec-
t ti in T with a K-dimensional soft clustering probability vector,
θi = (θi1, . . . , θiK), where θik is the probability of ti belonging
to cluster k, i.e., θik ≥ 0 and

∑K
k=1 θik = 1.

3. THE PROBABILISTIC MODEL
In this section, we propose a probabilistic approach to model the

problem into a unified framework.
A good clustering result is determined by several factors: first,

the clustering result should be consistent with the link structure;
second, the clustering result should be consistent with the user
guidance; third, the importance of each meta-path is implied by
the user-guided clustering, which should be modeled and learned
to further enhance the clustering quality. In the following, we first
introduce the modeling for the three aspects respectively, and then
propose a unified model that takes consideration of all of them.

3.1 Modeling the Relationship Generation
To model the consistency between a clustering result and a re-

lation matrix, we propose a clustering-based generative model for
relationship generation.

For a meta-path Pm, let its corresponding relation matrix be-
tween the target type T and the feature type Fm be Wm. For
each target object ti, we model its relationships as generated from
a mixture of multinomial distributions, where the probability of
ti ∈ T connecting to fj,m ∈ Fm is conditionally independent on
ti given the hidden cluster label of the relationship is known. Let
πij,m = P (j|i,m) be the generative probability of the relationship
starting from ti and ending at fj,m, where

∑
j πij,m = 1, then

πij,m = P (j|i,m) =
∑
k

P (k|i)P (j|k,m) =
∑
k

θikβkj,m (1)

where θik = P (k|i) denotes the probability of ti belonging
to cluster k and βkj,m = P (j|k,m) denotes the probability
of fj,m appearing in cluster k. In other words, let πi,m =
(πi1,m, . . . , πi|Fm|,m) be the generative probability vector for tar-
get object ti, then each πi,m can be factorized as a weighted sum-
mation of ranking distributions of feature objects in each cluster.
The factorization idea is similar to that of PLSA [10], PHITS [7],
and RankClus [22], but is built on meta-path-encoded relationships
rather than immediate links. This extension will capture more and
richer link-based features for clustering target objects in heteroge-
neous networks.

By assuming each target object ti is independent with each oth-
er and each relationship generated by ti is independent with each
other, the probability of observing all the relationships between all
the target objects and feature objects is the production of the prob-
ability of all the relationships following meta-path Pm:

P (Wm|Πm,Θ, Bm) =
∏
i

P (wi,m|πi,m,Θ, Bm) =
∏
i

∏
j

(πij,m)wij,m

(2)
where Πm = ΘBm is the probability matrix with cells as πij,m’s,
Θ is the parameter matrix for θik’s,Bm is the parameter matrix for
βkj,m’s. and wij,m is the weight of the relationship between ti and
fj,m. Note that, each meta-path Pm corresponds to a different gen-
erative probability matrix Πm to model the relationship generation.
The factorization of these probability matrices share the same soft



clustering probabilities Θ, but different ranking distributions Bm

in different meta-paths.

3.2 Modeling the Guidance from Users
Further, we take the user guidance in the form of object seeds for

some clusters as the prior knowledge for the clustering result Θ, by
modeling the prior as a Dirichlet distribution rather than treating
them as hard labeled ones.

For each target object ti, its clustering probability vector θi is
assumed to be a multinomial distribution, which is generated from
some Dirichlet distribution. If ti is labeled as a seed in cluster k∗,
θi is then modeled as being sampled from a Dirichlet distribution
with parameter vector λek∗ + 1, where ek∗ is a K-dimensional
basis vector, with the k∗th element as 1 and 0 elsewhere. If ti is
not a seed, θi is then assumed as being sampled from a uniform
distribution, which can also be viewed as a Dirichlet distribution
with parameter vector of 1. The density of θi given such priors is:

P (θi|λ) ∝
{∏

k θ
1{ti∈Lk}λ
ik = θλik∗ , if ti is labeled and ti ∈ Lk∗ ,

1, if ti is not labeled.
(3)

where 1{ti∈Lk} is an indicator function, which is 1 if ti ∈ Lk

holds, otherwise 0.
The hyper-parameter λ is a nonnegative value, which control-

s the strength of users’ confidence over the object seeds in each
cluster. From Eq. (3), we can find that:

• when λ = 0, the prior for θi of a labeled target object becomes
a uniform distribution, which means no guidance information
will be used in the clustering process.

• when λ → ∞, the prior for θi of a labeled target object con-
verges to a point mass, i.e., P (θi = ek∗) → 1 or θi → ek∗ ,
which means we will assign k∗ as the hard cluster label for ti.

In general, a larger λ indicates a higher probability of that θi is
around the point mass ek∗ , and thus a higher confidence for the
user guidance.

3.3 Modeling the Quality Weights for Meta-
Path Selection

Different meta-paths may lead to different clustering results,
therefore it is desirable to learn the quality for each meta-path for
the specific clustering task. We propose to learn the quality weight
for each meta-path by evaluating the consistency between its rela-
tion matrix and the user-guided clustering result.

In deciding the clustering result for target objects, a meta-path
may be of low quality for the following reasons:

1. The relation matrix derived by the meta-path does not contain
an inherent cluster structure. For example, target objects are
connecting to the feature objects randomly.

2. The relation matrix derived by the meta-path itself has a good
inherent cluster structure, however, it is not consistent with the
user guidance. For example, in our motivating example, if the
user gives a guidance as: K = 2,L1 = {1},L2 = {2}, then
the meta-path A − O − A should have a lower impact in the
clustering process for authors.

The general idea of measuring the quality of each meta-path is to
see whether the relation matrix Wm is consistent with the detected
hidden clusters Θ and thus the generative probability matrix Πm,
which is a function of Θ, i.e., Πm = ΘBm.

In order to quantify the weight for such quality, we model the
weight αm for meta-path Pm as the relative weight for each rela-
tionship between target objects and feature objects following Pm.

In other words, we treat our observations of the relation matrix as
αmWm rather than original Wm. A larger αm indicates a higher
quality and a higher confidence of the observed relationships, and
thus each relationship should count more.

Then, we assume the multinomial distribution πi,m has a prior
of Dirichlet distribution with parameter vector φi. In this paper, we
consider a discrete uniform prior, which is a special case of Dirich-
let distribution with parameters as an all-one vector, i.e., φi,m = 1.
The value of αm is determined by the consistency between the ob-
served relation matrix Wm and the generative probability matrix
Πm. The goal is to find the α∗

m that maximizes the posterior prob-
ability of πi,m for all the target objects ti, given the observation of
relationships wi,m with relative weight αm:

α∗
m = argmax

αm

∏
i

P (πi,m|αmwi,m,θi, Bm) (4)

The posterior of πi,m = θiBm is another Dirichlet distribution
with the updated parameter vector as αmwi,m + 1, according to
the multinomial-Dirichlet conjugate:

πi,m|αmwi,m,θi, Bm ∼ Dir(αmwij,m+1, . . . , αmwi|Fm|,m+1)
(5)

which has the following density function:

P (πi,m|αmwi,m,θi, Bm) =
Γ(αmni,m + |Fm|)∏
j Γ(αmwij,m + 1)

∏
j

(πij,m)αmwij,m

(6)
where ni,m =

∑
j wij,m, the total number of path instances from

ti following meta-path Pm.
By modeling αm in such a way, the meaning of αm is quite clear:

• αmwij,m + 1 is the parameter of jth dimension for the new
Dirichlet distribution.

• The largerαm, the more likely it will generate a πi,m with a dis-
tribution as the observed relationship distribution, i.e., πi,m →
wi,m/ni,m when αm → ∞, where ni,m is the total number of
path instances from ti following meta-path Pm.

• The smaller αm, the more likely it will generate a πi with a
uniform distribution (which means randomly), i.e., πi,m →
(1/|Fm|, . . . , 1/|Fm|) when αm → 0, where |Fm| is the to-
tal size of feature objects in meta-path Pm.

Note that, we do not consider negative αm’s in this model, which
means relationships with a negative impact in the clustering process
are not considered, and the extreme case of αm = 0 means the
relationships in a meta-path are totally irrelevant for the clustering
process.

3.4 The Unified Model
By putting all the three factors together, we have the joint proba-

bility of observing the relation matrices with relative weights αm’s,
and the parameter matrices Πm’s and Θ:

P ({αmWm}Mm=1,Π1:M ,Θ|B1:M ,Φ1:M , λ)

=
∏
i

(∏
m

P (αmWm|Πm,θi, Bm)P (Πm|Φm)
)
P (θi|λ) (7)

where Φm is the Dirichlet prior parameter matrix for Πm, and an
all-one matrix in our case. We want to find the maximum a posteri-
ori probability (MAP) estimate for Πm’s and Θ, which maximizes
the logarithm of posterior probability of {Πm}Mm=1, given the ob-
servations of relation matrices with relative weights {αmWm}Mm=1

and Θ, plus a regularization term over θi for each target object de-
noting the logarithm of prior density of θi:

J =
∑
i

(∑
m

logP (πi,m|αmwi,m, θi, Bm) +
∑
k

1{ti∈Lk}λ log θik
)

(8)



By substituting the posterior probability formula in Eq. (6) and the
factorization form for all πi,m, we get the final objective function:

J =
∑
i

(∑
m

(∑
j

αmwij,m log
∑
k

θikβkj,m

+ log Γ(αmni,m + |Fm|)−
∑
j

log Γ(αmwij,m + 1)
)

+
∑
k

1{ti∈Lk}λ log θik
)

(9)

4. THE LEARNING ALGORITHM
In this section, we introduce the learning algorithm, PathSelClus,

for the model (Eq. (9)) proposed in Section 3. It is a two-step iter-
ative algorithm, where the clustering result Θ and the weights for
each meta-path α mutually enhance each other. In the first step,
we fix the weight vector α, and learn the best clustering results Θ
under this weight. In the second step, we fix the clustering matrix
Θ and learn the best weight vector α.

4.1 Optimize Θ Given α

When α is fixed, the terms only involving α can be discarded in
the objective function Eq. (9), which is then reduced to:

J1 =
∑
m

αm

∑
i

∑
j

wij,m log
∑
k

θikβkj,m

+
∑
i

∑
k

1{ti∈Lk}λ log θik
(10)

The new objective function can be viewed as a weighted summation
of the log-likelihood for each relation matrix under each meta-path,
where the weight αm indicates the quality of each meta-path, plus
a regularization term over Θ representing the user guidance. Θ and
the augmented parameter Bm’s can be learned using the standard
EM algorithm, as follows.

E-step: In each relation matrix, we use zij,m to denote the cluster
label for each relationship between a target object ti and a feature
object fj,m. According to the generative process described in Sec-
tion 3.1, P (zij,m = k) = θik, and fj,m is picked with probability
βkj,m. The conditional probability of the hidden cluster label given
the old Θt−1 and Bt−1

m values is:

p(zij,m = k|Θt−1, Bt−1
m ) ∝ θt−1

ik βt−1
kj,m (11)

M-step: We have the updating formulas for Θt and Bt
m as:

θtik ∝
∑
m

αm

∑
j

wij,mp(zij,m = k|Θt−1, Bt−1
m ) + 1{ti∈Lk}λ (12)

βt
kj,m ∝

∑
i

∑
j

wij,mp(zij,m = k|Θt−1, Bt−1
m ) (13)

From Eq. (12), we can see that the clustering membership vector θi

for ti is determined by the cluster labels of all its relationships to
feature objects, in all the relation matrices. Besides, if ti is labeled
as a seed object in some cluster k∗, θi is also determined by the
label. The strength of impacts from these factors is determined by
the weight of each meta-path αm, and the strength of the cluster
labels λ, where αm’s are learned automatically by our algorithm,
and λ is given by users.

4.2 Optimize α Given Θ

Once given a clustering result Θ and the augmented parameter
Bm’s, we can calculate the generative probability matrix Πm for

each meta-path Pm by: Πm = ΘBm. By discarding the irrelevant
terms, the objective function of Eq. (9) can be reduced to:

J2 =
∑
i

(∑
m

(∑
j

αmwij,m log πij,m + log Γ(αmni,m + |Fm|)

−
∑
j

log Γ(αmwij,m + 1)
))

(14)
It is easy to check that J2 is a concave function, which means

there is a unique α that maximizes J2. We use gradient descent
approach to solve the problem, which is an iterative algorithm with

the updating formula as: αt
m = αt−1

m +ηtm
∂J2
∂αm

∣
∣∣
αm=αt−1

m

, where

the partial derivative of αm can be derived as:

∂J2

∂αm
=

∑
i

∑
j

wij,m log πij,m +
∑
i

ψ(αmnim + |Fm|)ni,m

−
∑
i

∑
j

ψ(αmwij,m + 1)wij,m

where ψ(x) is the digamma function, the first derivative of

log Γ(x). The step size ηtm is usually set as a small enough num-
ber, to guarantee the increase of J2. In this paper, we follow the
trick used in non-negative matrix factorization (NMF) [12], and set

ηtm =
αt−1
m

−∑
i

∑
j wij,m logπij,m

. By using the above step size, we

can get updating formula for αm as:

αt
m = αt−1

m

∑
i

(
ψ(αt−1

m nim + |Fm|)ni,m −∑
j ψ(α

t−1
m wij,m + 1)wij,m

)

−∑
i

∑
j wij,m log πij,m

(15)
which guarantees to be a non-negative value. Also, by looking
at the denominator of the formula, we can see that a larger log-
likelihood of observing relationships wij,m under model probabil-
ity πij,m, which means a smaller denominator as log-likelihood is
negative, generally leads to a larger αm. This is also consistent
with the human intuition.

4.3 The PathSelClus Algorithm
The PathSelClus algorithm is then summarized in Algorithm 1.

Overall, it is an iterative algorithm that optimizes Θ and α alter-
natively. The optimization of Θ contains an inner loop of EM-
algorithm, and the optimization of α contains another inner loop
of gradient descent algorithm. We discuss some details of the algo-
rithm implementation in the following.
The Weight Setting of Relation Matrices. Given a heteroge-
neous information networkG, we calculate the relation matrixWm

for each given meta-path Pm by multiplying adjacency matrices a-
long the meta-path. It can be shown that, scaling Wm by a factor
of 1/cm leads to a scaling of the learned relative weight αm by a
factor of cm. Therefore, the performance of the clustering result
will not be affected by the scaling of the relation matrix, which is a
good property of our algorithm.
Initialization Issues. For the initial value of α, we set it as an all-
one vector, which assumes all the meta-paths are equally important.
For the initial value of Θ in the clustering step given α, if ti is not
labeled, we assign a random clustering vector to θi; while if ti is
labeled as a seed for a cluster k∗, we assign θi = e∗

k.
Time Complexity Analysis. The PathSelClus algorithm is very
efficient, as it is proportional to the number of relationships that
are used in the clustering process, which is about linear to the
number of target objects for short meta-paths in sparse network-
s. Formally, for the inner EM algorithm that optimizes Θ, the
time complexity isO(t1(K

∑
m |Em|+K|T |+K∑

m |Fm|)) =



Input: Network: G, Meta-path: {P}Mm=1, Number of cluster: K ,
Object seeds: {L1, . . . ,LK}, User belief: λ;

Output: The clustering result Θ; the weight vector for meta-paths α;

Normalize the weight of each relation matrix Wm into Wm∑
ij Wij,m

;

α = 1;
repeat

Initialize Θ0 and B0;
repeat

1. E-step: update p(zij,m = k|Θt−1, Bt−1
m ) by Eq. (11);

2. M-step: update Θt and Bt
m by Eqs. (12) and (13);

until reaches cluster change threshold;
Θ = Θt ;
α0 =α ;
repeat

1. update αt by Eq. (15) ;
until reaches inner α difference threshold;
α = αt ;

until reaches α difference threshold;
Output Θ and α;

Algorithm 1: The PathSelClus Algorithm.

O(t1(K
∑

m |Em|)), where |Em| is the number of non-empty re-
lationships in relation matrix Wm, |T | and |Fm| are the number-
s of target objects and feature objects in meta-path Pm, which
are typically smaller than |Em|, and t1 is the number of itera-
tions. For the inner gradient descent algorithm, the time com-
plexity is O(t2(

∑
m |Em|)), where t2 is the number of itera-

tions. The total time complexity for the whole algorithm is then
O(t(t1(K

∑
m |Em|)+ t2(∑m |Em|))), where t is the number of

outer iterations, which usually is a small number.

5. EXPERIMENTS
In this section, we will compare PathSelClus with several base-

lines, and show the effectiveness and efficiency of our algorithm.

5.1 Datasets
In this paper, we use two real information networks for perfor-

mance test, the DBLP network and the Yelp network. For each
network, we design multiple clustering tasks provided with differ-
ent user guidance, which are introduced in the following.
1. The DBLP Network. For the DBLP network introduced in
Example 2.1, we design three clustering tasks in the following.

• DBLP-T1: Cluster conferences in the “four-area dataset” [23],
which contains 20 major conferences and all the related papers,
authors and terms in DM, DB, IR, and ML fields, according to
the research areas of the conferences. The candidate meta-paths
include: V − P − A− P − V and V − P − T − P − V .

• DBLP-T2: Cluster top-2000 authors (by their number of pub-
lications) in the “four-area dataset”, according to their research
areas. The candidate meta-paths include: A−P −A,A−P −
A− P −A,A− P − V − P −A, and A− P − T − P −A.

• DBLP-T3: Cluster 165 authors who have been ever advised
by Christos Faloutsos, Michael I. Jordan, Jiawei Han, and Dan
Roth (including these professors), according to their research
groups. The candidate meta-paths are the same as in DBLP-T2.

2. The Yelp Network. For the Yelp network introduced in Ex-
ample 2.2, we are provided by Yelp a sub-network3, which include
6900 businesses, 152327 reviews, and 65888 users. Hierarchical

3http://www.yelp.com/academic_dataset

categories are provided for each business as well, such as “Restau-
rants”, “Shopping” and so on. For Yelp network, we design three
clustering tasks in the following.

• Yelp-T1: We select 4 relatively big categories (“Health and
Medical”, “Food”, “Shopping”, and “Beauty and Spas”), and
cluster 2224 businesses with more than one reviews according
to two meta-paths: B−R−U−R−B andB−R−T−R−B.

• Yelp-T2: We select 6 relatively big sub-categories under
the first-level category “Restaurant” (“Sandwiches”, “Thai”,
“American (New)”, “Mexican”, “Italian”, and “Chinese”), and
cluster 554 businesses with more than one reviews according to
the same two meta-paths.

• Yelp-T3: We select 6 relatively big sub-categories under
the first-level category “Shopping” (“Eyewear & Opticians”,
“Books, Mags, Music and Video”, “Sporting Goods”, “Fash-
ion”, “Drugstores”, and “Home & Garden”), and cluster 484
businesses with more than one reviews according to the same
two meta-paths.

5.2 Effectiveness Study
First, we study the effectiveness of our algorithm under different

tasks, and compare it with several baselines.

5.2.1 Baselines
Three baselines are used in this paper. Since none of them

has considered the meta-path selection problem, we will use al-
l the meta-paths as features and prepare them to fit the input of
each of these algorithms. The first one is user-guided information
theoretic-based k-means clustering (ITC), which is an adaption of
seeded k-means algorithm proposed in [4], by replacing Euclidean
distance to KL-divergence as used in information theoretic-based
clustering algorithms [8, 2]. ITC is a hard clustering algorithm. For
the input, we concatenate all the relation matrices side-by-side into
one single relation matrix, and thus we get a very high dimensional
feature vector for each target object.

The second baseline is the label propagation (LP) algorithm pro-
posed in [31], which utilizes link structure to propagate labels to the
rest of the network. For the input, we add all the relation matrices
together to get one single relation matrix. As LP is designed for ho-
mogeneous networks, we confine our meta-paths to ones that start
and end both in the target type. LP is a soft clustering algorithm.

The third baseline is the cluster ensemble algorithm proposed
in [18], which can combine soft clustering results into a consen-
sus, which we call ensemble_soft. Different from the previous two
baselines that directly combine meta-paths at the input level, cluster
ensemble combines the clustering results for different meta-paths
at the output level. Besides, we also use majority voting as another
baseline (ensemble_voting), which first maps each clustering result
for each target object into a hard cluster label and then pick the clus-
ter label that is the majority over different meta-paths. As we can
use either ITC or LP as the clustering algorithm for each ensemble
method, we then get four ensemble baselines in total: ITC_soft,
ITC_voting, LP_soft, and LP_voting.

5.2.2 Evaluation Methods
Two evaluation methods are used to test the clustering re-

sult compared with the ground truth, where the soft clustering is
mapped into hard cluster labels.

The first measure is accuracy, which is used when seeds are
available for every cluster and is calculated as the percentage of
target objects going to the correct cluster. Note that, in order to
measure whether the seeds are indeed attracting objects to the right



Table 1: Clustering Accuracy for DBLP Tasks
(a) DBLP-T1

#S Measure PathSelClus LP ITC LP_voting LP_soft ITC_voting ITC_soft

1
Accuracy 0.9950 0.6500 0.6900 0.6500 0.6650 0.6450 0.5100

NMI 0.9906 0.6181 0.6986 0.6181 0.5801 0.5903 0.5316

2
Accuracy 1 0.7500 0.8450 0.7500 0.8200 0.8950 0.8700

NMI 1 0.6734 0.7752 0.6734 0.7492 0.8321 0.7942

(b) DBLP-T2
#S Measure PathSelClus LP ITC LP_voting LP_soft ITC_voting ITC_soft

1
Accuracy 0.7951 0.2122 0.3284 0.2109 0.3529 0.2513 0.2548

NMI 0.6770 0.0312 0.1277 0.0267 0.0301 0.4317 0.4398

5
Accuracy 0.8815 0.2487 0.3223 0.5117 0.3685 0.3311 0.3495

NMI 0.6868 0.0991 0.1102 0.4402 0.0760 0.3092 0.4316

10
Accuracy 0.8863 0.5586 0.3694 0.4297 0.3880 0.4891 0.2969

NMI 0.6947 0.4025 0.1261 0.1788 0.1148 0.4045 0.4204

(c) DBLP-T3
#S Measure PathSelClus LP ITC LP_voting LP_soft ITC_voting ITC_soft

1
Accuracy 0.8067 0.9273 0.5376 0.7091 0.5424 0.4770 0.2358

NMI 0.6050 0.7966 0.5120 0.5870 0.7182 0.3008 0.3416

2
Accuracy 0.9036 0.9394 0.5285 0.7333 0.3267 0.5176 0.4085

NMI 0.7485 0.8283 0.5056 0.5986 0.8087 0.3898 0.3464

4
Accuracy 0.9248 0.9576 0.7624 0.7636 0.9255 0.6370 0.5485

NMI 0.7933 0.8841 0.6280 0.6179 0.9057 0.4437 0.4634

cluster, we do not map the outcome cluster labels to the given class
labels. The second measure is normalized mutual information (N-
MI), which does not require the mapping relation between ground
truth labels and the cluster labels obtained by the clustering algo-
rithm. The normalized mutual information of two partitions X and
Y is calculated as: NMI(X,Y ) = I(X;Y )√

H(X)H(Y )
, where X and Y

are vectors containing cluster labels for all the target objects. Both
measures are in the range of 0 to 1, and a higher value indicates a
better clustering result in terms of the ground truth.

5.2.3 Full Cluster Seeds
We first test the clustering accuracy when cluster seeds are given

for every cluster. In this case, all the three baselines can be used
and compared. Performances under different numbers of seeds in
each cluster are tested. Each result is the average of 10 runs.

The accuracy for all the 6 tasks for two networks are summa-
rized in Table 1 and Table 2 respectively. From the results we can
see that, PathSelClus performs the best in most of the tasks. Even
for the task such as DBLP-T3 where other methods give the best
clustering result, PathSelClus still gives clustering results among
the top. This means, PathSelClus can give consistently good result-
s across different tasks in different networks. Also, by looking at
the clustering accuracy trend along with the number of seeds used
in each cluster, we can see that, more seeds generally leads to better
clustering results.

5.2.4 Partial Cluster Seeds
We then test the clustering accuracy when cluster seeds are only

available for some of the clusters. We perform this study on DBLP-
T3 using PathSelClus, which includes 4 clusters, and the results are
shown in Fig. 4. We can see that even if user guidance is only
given to some clusters, those seeds can still be used to improve the
clustering accuracy. In general, the fewer number of clusters with
seeds, the worse the clustering accuracy, which is consistent with
the human intuition. Note that, label propagation-based methods
like LP cannot deal with partial cluster labels. However, in reality
it is quite common that users are only familiar with some of the
clusters and are only able to give good seeds in those clusters. That
is another advantage of PathSelClus.

Table 2: Clustering Accuracy for Yelp Tasks
(a) Yelp-T1

%S Measure PathSelClus LP ITC LP_voting LP_soft ITC_voting ITC_soft

1%
Accuracy 0.5384 0.3381 0.2619 0.1632 0.1632 0.2564 0.2769

NMI 0.5826 0.0393 0.0042 0.0399 0.0399 0.1907 0.2435

2%
Accuracy 0.5487 0.3444 0.2798 0.1713 0.1713 0.3581 0.3790

NMI 0.5800 0.0557 0.0062 0.0567 0.0567 0.2281 0.2734

5%
Accuracy 0.5989 0.3732 0.3136 0.1965 0.1965 0.5215 0.5250

NMI 0.5796 0.1004 0.0098 0.0962 0.0962 0.2583 0.2878

(b) Yelp-T2
%S Measure PathSelClus LP ITC LP_voting LP_soft ITC_voting ITC_soft

1%
Accuracy 0.7435 0.1137 0.1758 0.2112 0.2112 0.2430 0.2022

NMI 0.6517 0.0323 0.0178 0.0578 0.0578 0.2308 0.2490

2%
Accuracy 0.8004 0.1264 0.1910 0.2202 0.2202 0.2762 0.2792

NMI 0.6803 0.0487 0.0150 0.0801 0.0801 0.2099 0.2907

5%
Accuracy 0.8125 0.2653 0.2200 0.2437 0.2437 0.3049 0.3240

NMI 0.6894 0.1111 0.0220 0.1212 0.1212 0.2252 0.2692

(c) Yelp-T3
%S Measure PathSelClus LP ITC LP_voting LP_soft ITC_voting ITC_soft

1%
Accuracy 0.4736 0.2789 0.1893 0.0682 0.0682 0.2593 0.1775

NMI 0.4304 0.0568 0.0155 0.0626 0.0626 0.1738 0.2065

2%
Accuracy 0.4597 0.4008 0.1948 0.0764 0.0764 0.2318 0.2033

NMI 0.4359 0.0910 0.0172 0.0755 0.0755 0.1835 0.1822

5%
Accuracy 0.4393 0.5351 0.2233 0.1033 0.1033 0.3337 0.3083

NMI 0.4415 0.1761 0.0194 0.1133 0.1133 0.1793 0.2285
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Figure 4: Clustering accuracy under partial guidance: DBLP-
T3 with #seeds = 1.

5.3 Efficiency Study
Now, we study the scalability of our algorithm using synthetic

datasets, due to that we can manipulate the size of network flexibly.
In Fig. 5(a), we keep the size of target objects and the total number
of relationships they issued as fixed, and vary the size of feature
objects. We can see that the average running time for one iteration
of the inner EM algorithm is about linear to the size of the feature
objects; and the average running time for one iteration of the inner
gradient descent algorithm is almost constant, as it is only linear to
the number of relationships in the network. In Fig. 5(b), we keep
the size of feature objects as fixed, and vary the number of target
objects. We keep the average relationships for each target object as
constant. From the result we can see that the average running time
for one iteration of both the inner EM algorithm and the gradient
descent algorithm is linear to the size of target objects, since the
number of relationships is also increasing linearly with the size of
target objects. From the efficiency test, we can see that PathSelClus
is very scalable and can be applied to large-scale networks.

5.4 Parameter Study
In this section, we study the impact of the only parameter in

the algorithm, λ, to the performance of our algorithm. We select
DBLP-T1 and Yelp-T2 as the test tasks. From the results in Fig. 6,
we can see that the clustering results is in general not sensitive to
the value of λ, as long as it is a positive value. In practice, we set it
as 100 for our experiments. Notice that in Fig. 6, we do not show
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Figure 5: Scalability test on synthetic networks.

the accuracy value when λ = 0, as when there is no guidance from
users, the accuracy cannot be correctly defined.
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Figure 6: Parameter study of λ.

5.5 Case Study on Meta-Path Weights
One of the major contributions of PathSelClus is that it can se-

lect the right meta-paths for a user-guided clustering task. We now
show the learned weights of meta-paths for some of the tasks.

In DBLP-T1 task, the total weight αm for meta-path V − P −
A−P −V is 1576, and the average weight per relationship (a con-
crete path instance following the meta-path) is 0.0017. The total
weight for meta-path V −P − T −P − V is 17001, while the av-
erage weight per relationship is 0.0003. This means that generally
the relationships between two conferences that are connected by an
author are more trustable than the ones that are connected by a ter-
m, which is consistent with human intuition since many terms can
be used in different research areas and authors are typically more
focused on confined research topics. However, as there are much
more relationships following V − P − T − P − V than following
V −P −A−P −V , the former overall provide more information
for clustering.

In the Yelp network, similar to DBLP-T1 task, in terms of the av-
erage weight for each relationship, meta-path B−R−U −R−B
is with higher weight than B −R− T −R−B; while in terms of
total weight, meta-path B−R−T −R−B is with higher weight.
An interesting phenomenon is that, for Yelp-T2 task, which tries
to cluster restaurants into different categories, the average weight
for relationships following B −R − U −R −B is 0.1716, much
lower than the value (0.5864) for Yelp-T3 task, which tries to clus-
ter shopping businesses into finer categories. This simply says that
most users actually will try all different kinds of food, therefore
they will not be served as a good connection between restaurants as
they are in other categories.

6. DISCUSSION
In this section, we briefly discuss some interesting issues.

1. The Strength of Meta-Path Selection. Different meta-paths
in heterogeneous networks could be viewed as different sources
of information for defining link-based similarity between object-
s. There are several ways to handle different meta-paths: (1) to
combine them at relation matrix level, such as in baselines ITC
and LP; (2) to combine the clustering results at the output level,
such as in ensemble baselines; (3) to learn and improve the qual-

ity weights for each meta-path iteratively, such as in PathSelClus.
Only the third approach is able to select different meta-paths ac-
cording to different clustering tasks, while the other two can only
output an “average” clustering result using all the information. It
turns out that, in most cases, the third approach is more flexible to
combine information from different sources, and its advantage has
been shown in the experiment section.
2. Meta-Paths vs. Path Instances. In this paper, we only consider
the different semantics encoded by different meta-paths. In prac-
tice, different concrete paths (path instances) between two objects
may also differ from each other, e.g., two objects may be linked
via a “bridge” or via a “hub”, indicating different meanings. The
difference between the two concepts, i.e., meta-path and path in-
stance, is similar to the difference between a source of features and
a concrete feature in a vector space. Due to limited scope, this
paper only discusses the selection of meta-paths. It is possible to
select path instance at the object level, and the concrete method is
left for future research.

7. RELATED WORK
Recently, there are many clustering algorithms proposed for net-

works, such as spectral clustering-based methods [19, 15], link-
based probabilistic models [7, 1], modularity function-based al-
gorithms [17, 16], and density-based algorithms [26, 25] on ho-
mogenous networks; and ranking-based algorithms [22, 23], non-
negative matrix factorization [12, 24], spectral clustering-based
methods [13], and probabilistic approaches [14] on heterogeneous
networks. However, while all these clustering methods use the in-
formation given in the networks, none considers that different users
may have different purposes for clustering, nor do they ask user-
s to help select different information for link-based clustering. In
this paper, we show that different types of relationships encoded
by meta-paths have different semantic meanings in determining the
similarity between target objects, and the selection of these meta-
paths should be done with user guidance in order to derive user-
desired clustering results.

There are several lines of research on how to add user guidance
to derive good clustering results, consistent with users’ demand in
vector space or networked data.

Clustering with constraints. In [4, 5, 11], clustering algorithms
that consider constraints either in the form of seeds in each cluster
or pairwise constraints as must-link or cannot-link are proposed. A
probabilistic model with an HMRF (hidden Markov random field)
as a hidden layer that models the must-link and cannot-link be-
tween objects is proposed to solve the problem [5]. This approach
can also be extended to graph data with the use of kernels instead of
vector-based features [11]. However, these methods assume there is
one trustable information source to either define the feature of each
object or define the network structure between objects. The goal is
to output the clustering result that is consistent with both the simi-
larity defined by the data as well as the user guidance. In this paper,
we dig further and study which type of information source encoded
with meta-paths is more trustable in a heterogeneous network.

Semi-supervised learning on graphs. In [30, 31], algorithms that
propagate labels for a small portion of objects into the rest of the
network are proposed, which are based on harmonic functions de-
fined between objects using the network structure. Again, this kind
of methods totally trust the given network and determine the best
labels of the rest of the nodes according to the cost function defined
on the network.

Semi-supervised metric learning. In [6, 3], algorithms that learn
the best distance metric functions according to the constrains for
the clustering task are proposed. This line of problem is closer to



the meta-path selection problem, but still differs significantly. First,
they study features of objects in vector space instead of network;
second, the metric functions should be given in an explicit format,
which is very difficult to determine in a network scenario. In this
paper, we are not finding an explicit metric function that determines
the similarity between any two target objects, instead, we model
and learn the quality weight for each meta-path in the clustering
process, which can be viewed as an implicit way to determine the
similarity between two target objects.

User-guided clustering in relational data. CrossClus [28] deals
with another type of guidance from users: the attribute set of the
target object type. The algorithm extracts a set of highly relevan-
t attributes in multiple relations connected via linkages defined in
the database schema, and then use the whole attribute set as the
feature set to apply traditional vector space-based clustering algo-
rithm. CrossClus works for relational data with complete attributes,
but not for purely link-based clustering.

Cluster ensemble [20, 18] is a method that combines clustering
results of different methods or different datasets to a single con-
sensus. Most of these cluster ensemble methods try to find a mean
partition given different partitions of target objects. However, in
reality these clusterings may conflict with each other, represent-
ing different purposes of clustering tasks, and a consensus does not
necessarily lead to a clustering desired by users. In this study, we
do not combine clustering results at the output level, but use inter-
mediate clustering results as feedback to adjust the weight of each
meta-path, and thus the clustering results and the quality weight for
each meta-path can mutually enhance each other.

Our work also differs from traditional feature selection [9] and
recently emerged semi-supervised feature selection [29, 27], which
focus on vector space features, and do not have an immediate ex-
tension of solutions to our problem. For our meta-path selection
problem, each meta-path provides a source of features instead of a
concrete feature, and we have shown that simple combinations of
features from different sources may lead to no good solution.

8. CONCLUSIONS
Link-based clustering for objects in heterogeneous information

networks is an important task with many applications. Different
from traditional clustering tasks where similarity functions between
objects are given and with no ambiguity, objects in heterogeneous
networks can be connected via different relationships, encoded by
different meta-paths. In this paper, we integrate the meta-path s-
election problem with the user-guided clustering problem in het-
erogeneous networks. An algorithm PathSelClus that can utilize
very limited guidance from users in the form of seeds in some of
the clusters and automatically learn the best weights for each meta-
path in the clustering process, is proposed. The experiments on d-
ifferent tasks on real datasets have demonstrated that our algorithm
can output the most stable and accurate clustering results compared
with the baselines. Also, the learned weights for each meta-path
are very insightful to explain the hidden similarity between target
objects under a particular clustering task.
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