Table of Contents

LI o4 1
TablE Of CONMENES . . .ot e e e e 2
FaCtS RUIES AN QUENTES . .. oottt et et et e e e e e e e e e et e e e e e e e 4
MOTE 0N RUIES . . . e e e et e e e e e e e e 8
LDL++ BUII-IN PrediCatesttt et e e e e e e e e e e e et e e e 14
S o1 £ o o 15
1IN L= o 7= 1 18
Complex TEMSBNA SEISottt e e e et e e e e e e e e 20
LDL++ BUII-IN PrediCatesttt et e e e e e e e e e e e e e e e e e e 26
TOP DO . o e e 27
ThelF-THEN-ELSE CONSITUCLo oo et e e e e e e e e 29
Thesingleand MUIti TUIESo e et et e e et e e e e e e et e e e 33
D2 S = 11T 1T I 40
Meta Programming in LD L4 . ..t 46
Datahase UPUaLESottt e e e e e e e e e e e e e 48
External SQL ReEAiONSt e e 53
Connecting to External Database With IDBCo 54
Foreign Language FUNCLIONS oottt ettt e e et e e e et e e e et e e e et e e e e 56
IN N e a0E . . oo 59

Jan 05, 1999

Tutorial 01/05/99

EDEA++
“Deductive
Dafabase -
System: .. S S
LDL - Tutorial
(For Version 5.1)

December 1998 Revision

Carlo Zaniolo

Computer Science Department
UCLA
zaniolo@cs.ucla.edu

Acknowledgements
Severa parts of thistutorial are based on a previous tutorial prepared by Shalom (Dick) Tsur. The
sections on meta-predicates, external DBs, and foreign language functions are due to Natraj Arni,

and Kayliang Ong. The sections on XY -gtratification and user-defined aggregates are largely due to
Haixun Wang.

HTML Tutorial: Table of Contents

PDF Version of Tutorial-- recommended for printing

C:\tutorial\ldlcourse.html Page 1 of 61

Table of Contents

01/05/99

LDL* Tutorial: Table of Contents

Facts, Rules, and Queries

0 Cities Database

0 Database: Facts and Schema
0 Rulesand Queries

O Queries and Query Forms

0 Constructs

Bottom Up Computation of rules

0 Moreon Rules

0 Semantics of Rules
0 Bottom-up Evaluation
o Equality Predicate
0 Safety

o Arithmetic

o Arithmetic: Example

Recursion
0 Recursion
0 Transitive Closure
0 Recursion: Bill of Materials

Negation and Stratification

o Negation
o Stratification

Complex Terms, Sets, and Aggregates

0 Complex Termsand Lists
0 Setsand SetTerms

0 Builtin Set Aggregates
o Duplicates and Aggregates

Top-Down Execution

If-Then-Else and Choice

o The If-The-Else Construct
o Existential Variables
0 Nondetermism with Choice

User-Defined Aggregates

0 Thesingle and multi rules
o Thereturn rules

o Monotone Agaregates

XY-Stratification

0 XY-stratified Programs

O Copy and Delete Rules
Optimization

0 Returning Results and
Termination

0 Choice and User-Defined

Adggregates
Meta Predicates
Updates and | mperative Constructs

Database Updates

Semantics of Update Constructs
Updates: Limitations

Updates. Failing Goals

The Forever construct
Imperative Programs

External DBs (client-server

connection

O o o o o o

External Databases via JDBC

Foreign L anguage Functions

Stand Alone | nterface

C:\tutorial\nodel.html

Page 2 of 61

Table of Contents 01/05/99

Programs and associated factsin thistutoria are aways downloadable by clicking
the following icons at the topright corner of the section.

/i i ;
(PRoc e FPACTS .
LDL++ programs Associated facts

The programs and facts are available under the shared directory of LDL++ Java Interface.

Carlo Zaniolo, 1997

C:\tutorial\nodel.html Page 3 of 61

Facts Rules and Queries

A»| Cities Database

Consider the following two examples:

C:\tutorial\node2.html

CITY
NAME STATE | POPULATION
Houston Texas 3,000,00
Dallas Texas | 2,000.000
Huntsville | Texas 150,000
Austin Texas 750,000
Corsicana || Texas 60,000
Shreveport | Luisiana || 90,000
Bastrop Texas 6,000
San Antonio || Texas 1,500,000

01/05/99

N Y

Page 4 of 61

Facts Rules and Queries 01/05/99

DISTANCE

CITY1 CITY2 MILES
Huston Bastrop 130
Huston Huntsville 60
Huntsville Dallas 100
Austin Waco 110
Waco Dallas 100
Ddllas Shreveport 200
Austin Bastrop 30
Austin San Antonio || 80
San Antonio | Huston 190

wlhl»i Database: Factsand Schema

Facts

® Facts Corresponds to tuplesin the database: For example,

city('Houston', 'Texas', 3000000).
di stance(' Austin', 'Wco', 110).
assenbl y(wheel , spoke, 36).

* Variables start with capital letters.
¢ Constants that begin with a capital letter are enclosed in single quotes.
¢ city("Houston', 'Texas, 30000) corresponds to the row

('Houston', 'Texas, 30000) in the city table.

Schema

dat abase({ city(Name:string, State:string, Population:integer),
distance(CGityl:string, Gty2:string, D stance:integer)
}).

¢ Each predicate (relation) is named.

C:\tutorial\node2.html Page 5 of 61

Facts Rules and Queries 01/05/99

* Each column is (optionally) named.

¢ Each columnisassigned a data type.

¢ Datatypesare: integer, real, string, any.

* Columns of type any can contain complex terms (functors).

sif»] Rulesand Queries

Derivated predicates and rules
* New (or derived) predicates are defined by rules.

* Example: derive the city in Texas with more than 400,000 people

It city(C, Pop) <- city(C, “Texas', Pop), Pop > 400000.
* Ruleshave apurely declarativerole, similar to virtual viewsin relational databases

* Queries have an imperative role: when the query is executed then the results tha satisfy the query are
returned

* Example: List all citiesin Texas with where the popul ation exceeds 400,000.

query It_city(C, Pop)
¢ Thisquery will return:

It_city(Huston", 3000000)
It _city('Dallas’, 2000000)
It _city(Austin’, 750000)

It_city(San Antonio , 1500000)
* But queries without variables (aka closed queries) return ayes/no answer (no in this case since Austin
does not have 2,000,000 inhabitants)
The command

query It_city(Austin, 2000000)

will actually be used in the regular interface, while in the Java interface the user will select an item from the
menu.

sihl»| Queriesand Query Forms

Query Forms are a.k.a. Exports
* A query form, or export, is a generic query that specifies for the £BLH compiler which of the

arguments will be given and which are expected as output when a query of that typeisissued.
¢ Thegiven bindingsin an export allow the compiler to optimize the access to the data.

C:\tutorial\node2.html Page 6 of 61

Facts Rules and Queries 01/05/99

* Exports can be specified for base predicates as well as derived predicates that are defined viathe
programs rules.

For instance, if the program file contains:
export It_city($X, Y)
Then, the user can compile this export, and then run the following query:
query It_city CAustin’, Pop)
The answers are then returned (but if no export match this bound/free pattern an error message is returned)
Example of Query Forms
* export It_city($X, Y).
Xisgivenand Y isexpected.
* export It_city(X, $Y).
X isexpected and Y isgiven.

* export It_city($X, $Y).
Both X and Y are given and the response is True/False.

=lhl» Constructs

Basic Language Constructs

® Numbers-—--integer or real.
¢ Constants.

A congtant is a string of symbols beginning with alowercase |etter. Constants are names of
objects such as chain_stay, joe. If we want to use constants starting with an uppercase | etter,
then we must enclose them in quotes, e.g., 'Houston'.

® Variables.

A variableisastring of symbols beginning with an uppercase |etter. Examples are Subpart,
Price, X123. Variables denote unspecified values that are assigned during the execution of an
L£LDLH program.

* Numbers, constants, and variables are included in the syntactic subclass called terms.

Carlo Zaniolo, 1997

C:\tutorial\node2.html Page 7 of 61

More on Rules 01/05/99

s ldi» Moreon Rules

Rules: Definitions
* A ruleisan expression of the form:
A+—B,B,, ..,B,.

where A and B, through B,, are predicates. A is called the head of the rule and the expression
to theright of the "«—" is called the body.

part _cost1(X, Y) <- part_cost(top_tube, X Y, 2).

* A rulethat contains no variablesisa ground ruleor an instantiated rule.
run_for_your _life <- physician(Dr. Frankenstein').

* A rulewith no body isaunit clause.

di stance(Cty, Cty, 0).
* A ground unit clauseis fact.

di stance(Austin’, “Waco', 110).

Facts are normally stored in the database (but facts occasionally occur in the program.)

Head and Body:

head bﬂfy
rgligible_bachelar(Xj — fsingle(X), handsome(X),rich(X).

sihl»! Semanticsof Rules

Rules: Union The two rules,

C:\tutorial\node7.html Page 8 of 61

More on Rules 01/05/99

arelogically equivalent to
(B—A)& (C—A)
whichis
(BYC)—A.

Wewill refer to a predicate such as A, which isthe result of the union of two (or more) rules, asa
union predicate.

Rules: Interpretation
A rule,
A+—B,B,, ..,B,.
islogicaly equivalent to: the conjunction of By, B, ..., B, implies A.

When the truth value of each predicate in the body is TRUE, the head predicateis also TRUE.

=ikl»| Rules Bottom-up Evaluation

(@) h1(X,Y) <- p(X,Y).
(b) h2(X) <- h1(X,Y).
(©) p(X,Y) <- b(X,Y).

b(1,2).
b(2,4).

1. Rule(c) isthe only one whose body contains only a base predicate. Matching the body with
the data produces {p(1,2),p(2,4)} asnew facts.
The partial result isthe set {b(1,2),b(2,4),p(1,2),p(2,4)}

2. Now rule (a) can be evaluated using the results of step (1).
Theresultis {b(1,2),b(2,4),p(1,2),p(2,4),h1(1,2),h1(2,4)}.

3. Rule(b) isevaluated using the result of step (2).
Theresultis {b(1,2),b(2,4),p(1,2),p(2,4),h1(1,2),h1(2,4),h2(1),h2(2)} .

4. No more results are produced.

i R

A Equality Predicate ‘rrocrae.. FACTS

I

C:\tutorial\node7.html Page 9 of 61

More on Rules 01/05/99

Say that t(X, Y, Z) isabase predicate; X,Y,Z areintegers. Then,
sums(X) <-t(X,Y,2), X =Y + Z.

returnsall a,b,c such that the tuple t(a,b,c) appearsin t
and a=b + c. The equality servesas atest.

t(3,2,1).
1(5:2,3).
1(8,4,3).
t(7,4,3).
t(7,3,4).

export sums(X); query sums(X) returns {sums(3), sums(5), sums(7)}
export sums($X); query sums(5) returns TRUE, query sums(8) returns FALSE.

Equation Solving

t1(X, Z) isabase predicate; X, Z areintegers.

sumsl(Y) <-t1(X, Z2), X = Y*Y + Z.

Fails at compiletime! Although X, Z are known, the system cannot solve the equation for Y.
(The current £BL£HF will however solve simple linear equations.)

Equality Predicate Operating as single Assignment

t1(X, Z) isabase predicate, X, Z areintegers.

sums2(Y) <-t1(X, Z2), Y =X + Z.

export sums2(X)

compiles correctly! In thisform the equality is used as a single assignment.

t1(1,2).
t1(3,5).

query sums2(X) returns {sums2(3), sums2(8)}.
export sums2($X); query sums2(3) returns TRUE, query sums2(4) returns FALSE.

=lfie] Safety

Safety isaprogram property that ensures that the values of program variables can be effectively
computed.

C:\tutorial\node7.html Page 10 of 61

More on Rules 01/05/99

Safety thus depend on the exectution used (e.g., bottom-up, top-down, or a combination of the two).

1. For the bottom-up execution, the safe predicates are those that are derivable from from
database relations (possibly using arithmetic and equality assignements).

2. For top-down exectution, safety also depends from the binding pattern of the export.

3. Assumethat goalsin the rules are evaluated from left to right. Then the re-ordering of the
goadl s could make a safe rule unsafe or vice-versa

4. Thesafe binding patterns for equality and disequality predicatess are summarized in the
following table.

Safety: Example

good_sal ary(X) <- X > 80000.

export good_salary(X) does not compile!
* Query formisunsafe.

export good_salary($X) is safe.

* query good_salary(100,000) is TRUE.
* query good_salary(50,000) is FALSE.

In £P2LH the bound values in the exports are always propagated down to the defining predicates---if
these are not recursive. For recursive predicates the situation is more complex and will be discussed
later.

Safety: Modified Example

wel | _pai d_enpl oyee(Nane, Sal ary) <-
enpl oyee(Nare, Sal ary), Salary > 80000.

Now
export well_paid_employee(Name,Sa ary)
issafe.

L JEEmE T

=lfi»! Arithmetic ‘rrocrAl . FACTS %

Examples of Arithmetic Terms:

Y +Z
X*(Y12)

C:\tutorial\node7.html Page 11 of 61

More on Rules 01/05/99

* All participating variables must be bound to numeric values.
* Theresult of the evaluated term replaces the expression.
* External functionsin C can be incoroporated in the term.

Arithmetic: Precedence

level | operator order
1 * right to left
2 mod right to left

B + - right to left
Example: Theterm A /B * C + D will be evaluated in the following order:
1. r = B * C
2. My = A/T‘l
3. g = 'y —+ D

Arithmetic: Result Types

* Integer arithmetic returns integers.
* Mixed (real and integer) arithmetic returns real numbers.

Example:
result(X) <- b(A, B), X =A /B.
b(1, 2).

query result(X) returns result(0) when A,B are declared as integersin the schema, it returns
result(0.500) when A,B are declared real numbers.

ETEEL = E.

sibl» Arithmetic: Example 'procrAk: . FACTN

o,

Express the distance from Austin to Bastrop in feet
Two equivaent formulations:
distance feet1(X, Z, W) <- distance(X, Z, Y), W =5280* Y.

or,

C:\tutorial\node7.html Page 12 of 61

More on Rules 01/05/99

di stance_feet (X, Z, 5280 * Y) <- distance(X, Z, Y).
export distance feet($X, $Z, V).

When the user types:

query distance_feet('Austin', 'Bastrop', 2)

the system returns:

di stance_feet('Austin', 'Bastrop', 158400).
-- 1 solution

““List all cities which are within 100 miles of Austin”.
close(X, Y, Z) <- distance(X Y, W, W< Z
export close($X Y, $2).

query close('Austin', Cty, 100)

close('Austin', 'San_antonio', 100).
close('Austin', 'Bastrop', 100).
-- 2 solutions

The query form: export close($X, Y, Z) will not compile. Why?
Arithmetic: Safety

Also, the program

closel(X Y, Z2) <- W< Z, distance(X, Y, W.
export closel($X Y, $2)

will not compile, since W is unbound when used in the comparison. Predicates must be permuted in the
body to render it safe.

Carlo Zaniolo, 1997 &

C:\tutorial\node7.html Page 13 of 61

LDL++ Built-in Predicates

C:\tutorial\builtinsl.html

Built-in Predicates for Terms

Predicate name | Safe Binding Comments
and Arguments|| Patterns
3L, $R L, Rarbitrary terms
L=R L, $R Lisavariable
$L,R Risavariable
L~= $L, $R L#R
L>R $L, $R
L<R $L, $R
L<=R $L, $R L<R
L>=R $L, $R L>R

01/05/99

Page 14 of 61

Recursion 01/05/99

=ihl»| Recursion B

P

Recursion isaform of predicate definition, using the predicate itself in the rule body.

Example: “"Derive all even numbers up to 98"

even(0).
even(Y) <- even(X), Y =X+ 2, Y < 98.

export even(X)

query even(X)

{even(0)}
{even(0), even(2)}

.{é;/en(O), ..., even(98)}
Recursion: Bottom-up Evaluation

even(0).
even(Y) <- even(X), Y=X+2, Y>0.

export:even(X) would pass the safety test of the compiler, but it will start printing all integersin an
infinite loop. (Use Control*C to stop it).

export even($X) will also run in the same loop, although it might not print-out anything.

k| | " L. S tpops ‘“‘
&> Transitive Closure 'rrocrdie. . PACTS

We have a database relation called parents: e.g.,

parent (j oe, jack).
parent (joe, jill).
parent (sam j ack).
parent (j ack, nmary).
parent (mary, |ucy).

Y isan ancestor of X if Yisa parent of X or if there existsa Z such that Zisa parent of Xand Yisan
ancestor of Z.

ancestor (X, Y) <- parent(X, V).
ancestor (X, Y) <- parent(X, Z), ancestor(Z, Y).

export:ancestor (X, V)
query ancestor (X, V)

Recursion: Transitive Closure Evaluation

C:\tutorial\nodel4.html Page 15 of 61

Recursion 01/05/99

Stepl: Start with the rule whose body is the base relation.

S, = { ancestor(joe, jack), ancestor(joe, jill), ancestor(sam, jack), ancestor(jack, mary), ancestor(mary,
lucy) }

Result = 5.

Step2: Result isjoined with parent. New tuples are pairs of hodes that can be reached along some path
in 2 steps.

S, ={ancestor(joe, mary), ancestor(sam, mary), ancestor(jack, lucy)}

Result = 5, U 5y

Step3: Result isjoined again with parent. New tuples are pairs that are reachable along apath in 3
steps.

S, ={ancestor(joe, jucy), ancestor(sam, lucy)}

Hesult = 5, U 5, U 55.

No pairs can be reached along paths of more than 3 steps, and the computation terminates. We say that
the computation has reached fixpoint.

Switching the rule order and the order of the goals within the rules will not change the result of this
trangitive closure.

: ETREL g W L
|

“»! Recursion: Bill of Materials ‘procrAk . FACTS

-

-

Bill of materials (BOM) problems are related to assemblies containing superparts composed of
subparts that are eventually composed of elementary parts. The assembly(Part, Subpart, Qty) predicate
in the parts database contains parts, their immediate subpart, and the quantity with which they are used
inthe part. part_cost(BasicPart, Supplier, Cost, Time) contains the basic parts.

The following rule serves as a constraint and should be part of the specifications.

violation <-
part _cost(BasicPart, _, _, _), assenbly(BasicPart, _ ,).

That is, a part cannot be both a basic part and a superpart within this database.

For each part find all the subparts---not just the immediate subparts

all _subparts(Part, Part).

C:\tutorial\nodel4.html Page 16 of 61

Recursion 01/05/99

all _subparts(Part, Sub2) <-
al |l _subparts(Part, Subl),
assenbl y(Subl, Sub2).

Safe query form for thisrule:

export all_subparts($X, Y),
export all_subparts(X, $Y),
export all_subparts($X, $Y).
For each part, basic or otherwise, find all of the basic subparts, only

Let usthink bottom-up for this.
% A basic part is a subpart of itself.

basi c_sub_parts(BasicPart, BasicPart) <-
part _cost(BasicPart, _ , _).
basi c_sub_parts(Part1, Sub) <-
basi c_sub_parts(Part, Sub),
assenbl y(Part1l, Part).

For each part, basic or otherwise, find all of the basic subparts, only
Let usthink bottom-up for this.

% A basic part is a subpart of itself.

basi c_sub_parts(BasicPart, BasicPart) <-

part _cost(BasicPart, _ , _).
basi c_sub_parts(Part1, Sub) <-

basi c_sub_parts(Part, Sub),

assenbl y(Part1l, Part).

Carlo Zaniolo, 1997

C:\tutorial\nodel4.html Page 17 of 61

Negation 01/05/99

Existential Variables

Existential variables are those which only appear once in the rule (alias singleton variables). They have a
meaning "there exists in positive goals and “there does not exists in negated goals.

print_nice_peopl e(X) <- person(X), ~nasty(X).
print_nice_peopl e(everybody is nice') <- ~nasty(Y).

Thevariable Y inthelast ruleand W inthe previous one could be replaced by an underscore; it is called an
existential variable. Programs with existential variables in negated goals can be transformed into equivalent
programs without. For instance the last rule can be re-written as:

print_ni ce_peopl e(everybody is nice') <- ~someonenasty.
soneonenasty <- nasty(Y).

This re-writing defines the evaluation used by the system.
Negation: safety rules

The appearence of variablesin negated goals does not make them safe. For instance, Y inthefollowing ruleis
always unsafe (the safety of X depends on the export used)

p(X) < Y>X ~r(X Y.
An unbound variable appearing in a negated goals can never be used in later goals of the rule. For instance
print_nasty_people(X) <- ~nice(X), person(X).
This rule will not compile. Thus, the order of goalsin the rules must be switched.

mihl»| Stratification FoRoar Ale:

i

We cannot use negation in a recursive definition. We say that such aprogram is non-stratified.

Example: A non-stratified program, see Predicate Connection Graph.

even(0).
even(Y) <- ~even(X), Y = X + 1.

The correct way to specify this programiis:
int(1).

int(Y) <- int(X), Y=X+1.

C:\tutorial\node18.html Page 18 of 61

Negation 01/05/99

odd(X) <- int(X), X md 2 ~= 0.
even(X) <- int(X), ~odd(X).

Now the negation is out of the recursion.

Carlo Zaniolo, 1997 alwl

C:\tutorial\node18.html Page 19 of 61

Complex Terms and Sets 01/05/99

1
1
el

L JEEmE T

i»! Complex Terms ‘rrocrAk:. . FACTN .

Every argument in a predicate can itself be a complex term consisting of afunctor and several
arguments (which in turn can be complex terms). The following example illustrates the use of complex
terms to store shapes of different structure and of using these in performing computation.

%\ DB of flat parts described by their geonetric shape and wei ght.
%D fferent geometric shapes require a different number of
Y%paranmeters. Al so actualkg is the actual weight of the

Y%art, but wunitkg is the specific weight where the actual

%nei ght can be easily derived fromthe area of the part

query: part-wei ght(No, Kilos)

part-wei ght(No, Kilos) <- part(No, _ , actualkg(Kilos)).
part-wei ght(No, Kilos) <- part(No, Shape, unitkg(K)),
area(Shape, A), Kilos= K* A

area(circle(Dntr), Al) <- A= Dntr * Dntr * 3.14/4.
area(rectangl e(Base, Height), Al) <- Al= Base*Hei ght.

% part# shape , wei ght
part (322, circle(11), actual kg(34)).
part (121, rectangl e(10, 20), unitkg(2.1)).

In computing this query on the first part we find that the goal in thefirst rule yields No=322 and
Kilos=34 (the operation by which this goal and fact are made equal is called unification). The goal of
thefirst rule failsto unify with the first fact, and instead unifies with the second one, yielding No=121,
Shape=rectangle(10, 20), and K=2.1. Unsing these values, the area rules compute A and then then
Kilos.

Lists

Lists are terms with two arguments, called the head and the tail of the list. Because lists are so common,
aspecia notation is supported for lists, asfollows:

[] denotes an empty list,
* [X|Y]isalistwithhead X and tail Y
* [ab,c, ..]isashort handfor [a|[b][c...]]]

Say for instance that we have facts as follows:
part (socks, [red, black, blue]).

From these facts we might want to list al the items, colors pairs (i.e., deriving aflat relation from a
nested one) asfollows:

C:\tutorial\complex.html Page 20 of 61

Complex Terms and Sets 01/05/99

query: part-color(ltem Col or)

part-color(l, © <- allcolors(l, [C_])-.
subL(l, Rest) <- subL(l, [C Rest]).
subL(l, CL) <- part(l, CL).

R S H

slhi»| Setsand Set Terms ferocrass: . FACTS™:

I

Whilein lists the order of the itemsisimportant and the same item can be repeated several times, order
and repetions are immaterial in sets. Thus, in the folowing list of parents and their children thereisno
way to tell which children was born first, nor to have two different children sharing the same name:

father(joe, {peter, mary}).
father(janmes, {lucy, arnold, jint).
father(joe, {ann}).

father(jack, {}).

nmot her (magret, {peter, mary}).

mot her (1inda, {john, junior}).

query father(X, S) returnsall father facts.

query father(joe, S) returns
{father(joe, { peter, mary}), father(joe, {ann})}

query mother(X, { mary, peter}) returns mother(magret, { peter, mary}),

since { mary, peter} ={ peter, mary} because the ordering is not important. In general set equality and
unification of set terms accounts for the commutativity and idempotence properties:

® Commutativity:---sets having the same elements but a different order are equal.
Example: {a, b} ={b, a}.
by contrast, [a, b] 7 [b, a].

® |dempotence:---sets having repetitious el ements are equal to the same sets without the

repetitions.
Example: {a, a ={a}.

by contras, [a, & 7 [d]

The set properties are "built-in"; when lists are used to represent sets, the maintenance of these
properties is the programmer's responsibility.

Sets Terms: Joining and Equality
Predicates can be joined on set arguments.

Example: “create all pairs of parents having the same children”

C:\tutorial\complex.html Page 21 of 61

Complex Terms and Sets 01/05/99

sane_children(X, Y, S) <- father(X, S), nother(Y, S).

Thisruleisequivalent to

sane_children(X, Y, S) <- father(X, 9),
mot her (Y, S1), S = Sl.

The equality predicate can thus be applied to sets. The system supports various _builtin functions on
sets, including set union, difference, intersection, membership, membership, subset_of and the predicate

aggregate that computes set aggregates.

L E
iy

«ihl»| Builtin Aggregates Mrnocnie | FACTS

e

Again say that we the followin facts:

father(joe, {peter, mary}).
father(jim {lucy, arnold, jin}).

Then to list the number of children for each father we can use a LDL ++ builtin called aggr as follows:

query: no_of _children(X, No)
no_of children(X, No) <- father(X, C_ Set),
aggr (count, C Set, No).

Thiswill return:

no_of _children(joe, 2)
no_of _children(jim 3)

Thus, an aggr goal applies the aggregate in of first argument (count in the example) to the set shown in
the second argument (C_Set in the example), yielding the value of the aggregate as its thirds argument
(Noin the example).
L DL ++ supports SQL 's five basic aggregates:

sum, count, max, min, avg.

When applied to an empty set { }, sum and count, return O, while the other aggregates fail.

Asdiscuss later, L DL ++ supports user-defined aggregates.

Grouped-by Head Sets

C:\tutorial\complex.html Page 22 of 61

Complex Terms and Sets 01/05/99

L DL ++ uses pointed brackets < > to structure the atoms derived in the head of the rules as nested
relations. For instance, with suppp(Sup, Part, Price) a supplier-part-price relation, we can group by the
parts, where the priceis greater than 5 by suppliers asfollows:

sup_parts(Sup, <Part>) <-
suppp(Sup, Part, Price), Price >5.

Thus, the pointed brakets denote set of values being grouped by the remaining arguments in the head.
The sets so constructed can then be used to compute aggregates. Thus, to count the parts costing more
than $5 sold by each supplier has, we can write;

count _parts(Sup, Cp) <- sup_parts(Sup, Part_set),
aggr(count, Part_set, Cp).

LDL ++, however support the computation of aggregates while the head sets are being computed. Thus,
the number of parts costing more than $5 supplied by each supplied, can be expressed as follows:

sup_set of _parts(Sup, count<Part>) <-
suppp(Sup, Part, Price), Price >5.

Therefore, set aggregates can be used directly in the head of the rules or applied to a set using the
aggr predicate.

| i

[PROGRARE:

athlw] Duplicatesin LDL ++

The LDL++ system uses the following policy for duplicate elimination:

Duplication in base relations is controlled by the keys of the relations

Duplicates are eliminated from the tuples returned as query answers

Duplicates are eliminated during the computation of recursive predicates

Duplicates are NOT eliminated during the computation of nonrecursive rules

For ahead sets of the form p(X, <Y>) <- ... each value of X isreturned only once (with its
associated set of Y -values).

For ahead aggregate such as p(X, count<Y>) <- ... thefirst argument X isaunique key for the
values produced by thisrule. Similar rules apply to all other builtins.

Duplicatesin Builtin Aggregates
Following SQL conventions, LDL++ tow different versions of builtin aggregates:

* count_dist, sum_dist, avg_dist disgregard duplicates for the builtins aggregates
* count_al, sum_all, avg_all takesinto account duplicates

C:\tutorial\complex.html Page 23 of 61

Complex Terms and Sets 01/05/99

Take for instance:

g(X, count_dist<Y>) <- p(X Y, 2).
e(X, count_all<Y>) < p(X Y, 2).
p(a, b, 1).
p(a, b, 2).
p(b,c, 1).

Then query: q(X,C) returnsg(a, 1), q(b, 1).
But query: e(X,C) returns e(a, 2), e(b, 1).
Moreover,
* these differences are only significant for head predicates; aggregates called using aggr operate
on sets which contain no duplicates, thus both versions return the same results.
* Thereisonly one version, for the extrema aggregates min, and max

* The names sum, avg, and count are also allowed for these aggregates: in the current LDL++
implementation they, respectively, behave assum_all, avg_all, and count_all.

The SEQ aggregates

Startin with version 5, LDL ++ supports the two builtins seq and seq_dist. Thefirst adds an unique
sequence humber to the tuples returned in the head, while the second does so after eliminating
duplicates.

’ Seq<>) <- p(Xv Y) .
,seq_di st<>)<-p(XY).

<<

a(X
f(X

p(a, b).
p(a, c).
p(a, b).

Here query: g(X,C,S) returns:

But query: f(X,C,S) returns:

f(a, b, 1)
f(a, ¢, 2).

Observe that:

* seq<> and seq_dist<> are only used with an empty list of arguments
* seq dist provides an efficient means to eliminate aggregates in the tuples produced by arule

C:\tutorial\complex.html Page 24 of 61

Complex Terms and Sets 01/05/99
The following table summarizes the built aggregates:
Built-in Aggregatesin LDL ++
Name Semantics SQL Equivalent
sum (sum_all) Compute the sum of itemsin column including duplicates SUM
sum di st Compute the sum of itemsin column excluding duplicates SUM DISTINCT
avg Compute the average of itemsin column including AVG
(avg_al) duplicates
avg_dist Compute the average of |§erns in column excluding AVG DISTINCT
duplicates
count Count the itemsin column including duplicates COUNT
(count_all) g dup
count_dist Count the items in column excluding duplicates COUNT DISTINCT
max Find the maximum value in column MAX
min Find the minimum value in column MIN
seq Compute the sum of itemsin column including duplicates Not Applicable
seq_dist Compute the sum of itemsin column excluding duplicates Not Applicable
Carlo Zaniolo, 1997 Alw
C:\tutorial\complex.html Page 25 of 61

LDL++ Built-in Predicates

01/05/99

Built-in Predicates for Sets

C:\tutorial\builtins2.html

Predicate name Safe Binding Comment
and Aguments Patterns omments
$E, $S .
member(E, S) Eebd
El $S
$S1, $S , ,
subset(S1, S) S1CS
S1, $S
$S1, $32, S
$S1, $S2, $S
ion(S1, S2,
union(S $SL 2 $S
S1, $32, $S
S1, S2, $S
i $S1, $S2, S
difference(S1, S2,S) ————-S=S1-X
$S1, $S2, $S
.) $S1, $32, S
intersection(S1, 82, S) ————————| g1
$S1, $S2, $S
- $S,N
cardinality(S, N) N=|S|
$S, $N
aggregate(N, S, R) SN, $S, R [abbr: aggr
Carlo Zaniolo
2/13/1998

Page 26 of 61

Top Down 01/05/99

1
1
el

i»! Top-Down Execution of Programs Eﬁ;fsa@m ACTS

[P SR E

In abottom-up execution the goals of aruler, are computed before the head of r;, and the results just
obtained in the head are then used to compute the goals of other rules. A top-down execution occurs
when values of some of the variablesin the head are computed first, and their values are used in the
computation of the goals. For instance:

%\ DB of flat parts described by their geonetric shape and wei ght.
%D fferent geometric shapes require a different number of
Y%paranmeters. Al so actualkg is the actual weight of the

Y%part, but wunitkg is the specific weight where the actual

%nei ght can be easily derived fromthe area of the part

query: part_wei ght (No, Kil os)
rl: part_weight(No, Kilos) <- part(No, _ , actual kg(Ki

(Kil
r2: part_weight(No, Kilos) <- part(No, Shape, unitkg(K)
area(Shape, A), Kilos= K

0s)).
),
* A

r3: area(circle(Dmtr), Al) <- A= Dmtr * Dmtr * 3.14/4.
r4: area(rectangl e(Base, Height), Al) <- Al= Base*Height.

%6 part# shape , wei ght
fl: part(22, circle(11), actual kg(34)).
f2: part(121, rectangl e(10, 20), unitkg(2.1)).

The computation of this query can begin in a bottom-up fashion since fact f1 saitsfiesthe goal inrulerl,
and thus we obtain part_weight(22, 34). Now, f2 satisfies the first goal in r2, binding the variable
Shape rectangle(10,20). Now, the second goal in r2, passes down the current value of Shape to the head
of f2. Theresult isthat Base and Height are now bound to 10 and 20, respectively and the goal in the
body can now be safely computed yielding A1=200. Thisvalueisthen returned to A in rule r2 and used
in the computation of the last goal of the rule. Therefore, the area rules operate as a procedure that is
called from the area goals in the rule. This top-down passing of parameters from goalsto rule headsis
often required for effective computation. The procedure calling analog is often applicable to top-down
computation. For instance if have a set of facts similar to this describing the colors in which a given
item comes:

part (socks, [red, black, blue]).

From these facts we might ask a query such as, find how many colors a given part comesin:
query: part-color($Mitem Color)

part-color(ltem Color) < - part(ltem ColorlList), menber(C, ColorlList).

menber (C, [_]).
menber (C, [_ | Crest]) <- menber(C, Crest).

C:\tutorial\topdown.html Page 27 of 61

Top Down 01/05/99

Here the value of $Myitem is passed down to the first argument in part-color and Item. Thisis very
similar to procedure calls where the actual parameters are passed down to the formal parametersin the
procedure head. Consider now the body of the part-color rules, where the goals are executed from left to
right. The goal part(Item, ColorList) isfirst execute with the first arguent bound to $\tt Item =
\$Myitem$, binding ColorList. For instance if Myitems = socks then ColorList= [red, black, blug]=
[red | [black | [blue] 1] Then thislist is passed to the second argument of member using $unification$,
to yield C=red and Crest=[black|[blu€e]]. The recursive calls to member then proceed, always returning
the head of thelist until the tail isthe empty list []. Observe that in the execution of the rule above, the
actual work is performed during the actual recursive call when the second argument in the body is
extracted from the second argument in the head, as per the equivalent formulation of the previous
recursiverule as:

menber (C, L) <- L=[_ | Crest], nenber(C, Crest).

In Datalog, thisis caled right-linear recursion, which islargely equivalent to tail-recursion in Lisp.
Right-linear recursive rules (and symmetrically, left-recursive rules where whole the computation is
performed after the recursive call) rules are supported efficiently in LDL++, using a single fixpoint
computation. We might have linear rules where computation must be performed before and after the
recursive cal. Consider for instance the following rules that count length of the list:

length([H T], Cl) <- length(T, ¢, Cl=C+l
length([], 0).

For these recursive rules, some computation takes place before the recursive call and some computation
after. Thusthey will be supported using using the supplementary magic set method that requires two
fixpoint computations. However, the length of alist can also be computed as follows:

length(L, LI) <- clen(L, O, LI).
clen([HT], C LI) <- C1=C+1, clen(T, C1, LI).
clen([], C ©O.

This program uses a right-linear rule, where the computation is performed before the recursive call. In
general, while the left/right-linear formulation of programs should be attempted whenever possible,
many computations (e.g., list-append) cannot be expressed in this form and will be implemented using
the supplementary magic method.

Carlo Zaniolo, 1998

C:\tutorial\topdown.html Page 28 of 61

The IF-THEN-EL SE Construct 01/05/99

=ihl»! ThelF-THEN-EL SE Construct

If---then---else only in the body of arule
The meaning of
h <- if(p then g else w).
isstrictly logical. The semantics of thisruleisthe same as:

h < p, «q
h <- ~p, w

Thus, e.g., the compiler requires that the original program, so expanded must be stratified.

However, if-then-elseisimplemented directly, i.e., without rewriting the program. Thus it adds
efficiency, since p is executed only once.

When there are side effectd, e.g., in updates, the meaning is no longer the same.

Example: Compare two length measures, expressed in yards and inches.

gt_or_eq(length(Y1l,11), length(Y2, 12)) <-
if(YL =Y2then |1l >=12 else Y1 > Y2).

Note that the syntax of the if-predicate) isthe same as that of a predicate.
Omitting the else clause: The abbreviation,

h<-if(pthenq).
isalso allowed. Itsmeaning is

h <- if(p then g else true),

8w |f-then-else and Existential Variables

A common programming mistake istheimplicit use of the else true clause, which may result in an
unsafe rule, as per the following example.

“If exceptions occur, then take corrective action and report the problem, otherwise take normal
action."

report _probl ems(X) <-
if(problem X) then corrective_action el se nornal _action).

C:\tutorial\node22.html Page 29 of 61

The IF-THEN-EL SE Construct 01/05/99

export:report_problem($X) issafe but export:report_problem(X) is not; what do we report when
thereis no problem? A correct formulation would be:

report _problenm(X) <-
if(problem(Y) then X =Y, corrective_action else X = "noprobl en', nornal _action).

LDLH forees you to write complete specifications.
A common mistake is to write the previous rules as:

report _problenm(X) <-
if(problem X) then corrective_action el se X = noproblem nornal _action).

This can be re-expressed using negation as follows:

report_problem(X) <- problemX), corrective_action.
report _problem(X) <- ~problemX), X = noproblem normal _action.

The error isthat a non-existential variable is used beforeiit is bound.

=ikl Nondeterministic Reasoning: Choice

The set-oriented semantics of logic programs lead to the generation of all answers satisfying a given set
of rules. | many pratical situations, thereis the need for picking an element out of of a set of candidate in
nondeterministic fashion. Interesting enough, choosing an element, can be viewed as enforcing a
functional dependency constraint.

Example: Say that, our university database contains facts describing professors and fact describing

students. In fact, say that our toy database contains only the following facts:

student (' Jim Bl ack', ee, senior).

prof essor (' Chnl, ee).
professor('Bell', ee).

Now, the ruleis that the major of a student must match his/her advisor's major area of specialization.
Then €eligible advisors can be computed as follows:

eligadv(S, P) <- student(S, Mjor, Year),
pr of essor (P, Maj or) .

Thisyields:

elig_adv('JimBlack', 'Chn)
elig_adv('JimBlack', '"Bell")

C:\tutorial\node22.html Page 30 of 61

The IF-THEN-EL SE Construct 01/05/99

But, since a student can only have one advisor, choice goal will be used to force the selection of a
unique advisor, out of the eligible advisors, for a student. Thus we obtain the following choice rule:

actual adv(S, P) <- student(S, Mjor, Levl),
prof essor (P, Major), choice((S),(P)).

The goal can aso be viewed as enforcing a functional dependency (FD) ; thus, in, the second column
(professor name) is functionally dependent on the first one (student name).

The result of executing this ruleis nondeterministic. It can either give a singleton relation containing
eithe of the following two tuples<

elig_adv('JimBlack',"Onm), elig_adv('JimBlack','Bell")
A rule (program) where the rules contain choice goals is called a choice rule (program).

The semantics of a choice program P can be defined by transforming into a program with negation,
SV(P), called the stable version of P, which exhibits amultiplicity of total stable models, each obeying
the FDs defined by the choice goals.

The use of choiceiscritical in many applications. For instance, the following nonrecursive rules can be
used to determine whether there are more boys than girls in a database containing the unary relations
boy and girl:

Example: Are there more boys than girlsin our database?

mat ch(Bnanme, Gnane) <- boy(Bname), girl(Grane).
choi ce ((Bnane), (Grane)),
choice ((Grane), (Bnane)) .

mat chedboy(Bnane) <- nmatch(Bnane, Ghane).

nor eboys <- boy(Bnane), ~matchedboy(Bnane).

The most significant applications of choice involve the use of choice in recursive predicates. For
instance, the following program computes the spanning tree, starting from the source node , for agraph
where an arc from node ato node b is represented by the database fact g(a,b):

Example: Computing a spanning tree:

st(root, a).

st(X,V)<- st(,X), g(XY), Y ~=a, choice((Y),(X)).

In this example, the goa ensuresthat, in, the end-node for the arc produced by the exit rule has an
in-degree of one; likewise, the goal ensures that the end-nodes for the arcs generated by the recursive

rule have an in-degree of one.

Example: Ordering a domain

C:\tutorial\node22.html Page 31 of 61

The IF-THEN-EL SE Construct 01/05/99

ordered-d(root, root).
ordered-d(X, Y) <- orderedd(_, X), d(V),
choice((X),(Y)), choice((Y),(X)).

Example:The sum of the elements in d(X)

sund(root, root, 0) <- d(_).
sumd(X, Y, SY) < sund(, X, SX), d(YV)

choi ce((X), (Y)), choice((Y), (X)),
SY=SX+Y.
totald(Sum) <- sumd(_, X, Sum, ~sumd(X, _ , _).

If we eliminate the choice goal from this program obtain a program that is stratified with respect to
negation. Stratified choice programs always have stable models Moreover, these stable models can be
computed by strata, as any other stratified program.

The choice construct is significant for both nondeterministic and deterministic queries. A
nondeterministic query is one where any answer out of a set is acceptable. Thisis, for instance, in the
previous example where an advisor ws assigned to a student. The use of choice to compute a
deterministic query isillustrated by the sum example: the sum of the elements of a set isindependent
from the order in which these are visited.

Carlo Zaniolo, 1998

C:\tutorial\node22.html Page 32 of 61

The single and multi rules 01/05/99

ETEEL =

sihl»i User-Defined Aggregates 'procrAR: | gcrsj‘*-;m.

The user can define a new aggregate, called newaggr, by writing the rules that support:
single(newaggr, Y, NV) and multi(newaggr, Y, OV, NV).

where

* dsingleisthe computation to be performed on asingleton set having Y asits only element.
* multi denotes how to compute the aggregate value NV for aset S' obtained by adding a new
element Y to thethe set S, where the value of the aggregate for SisOV.

For instance, if we had to define the max aggregate we would write:

single(max, Y, Y).
multi (max, Y, MO, M) <- Y > MD, MEY.
multi (max, Y, MO, M) <- Y <= M) MEM

For efficiency considerations, we might use the if-then-el se construct. to combine the last two rules
Likewise, in LDL++, count and sum could have been defined as shown by the two pairs of rules below:

single(count, Y, 1).
mul ti(count, Y, AOd, New) <- New= O d+1.

single(sum Y, Y).
multi(sum Y, Od, New) <- New= O d+Y.

The count and sum so defined behave as count_all and sum_all since these rules accumulate the
Old value with the new Y, without checking whether the same Y value had already occurred.

User-defined aggregates can also be called by means of aggr goals. In this case, when applied to the
empty set, the compiler will search for empty rule defining the behavior of that particular aggregate on
an empty set. For instance, the our built-in aggregates behave as if they were defined by the following
rules:

empty(sum 0).
enpty(count, 0).
enpty(max, 0) <- fal se.

On empty set, aggr will return O for sum and count, and will fail on max (also fails on min and avg).

Severa new aggregates can be defined using the single and multi rules. For instance in SQL, after the
maximum is found, a second sub-query is needed to return al the values associated with the maximum.
In LDL++, if sppp denotes a supplier-part-price relation, to find, for each supplier their most expensive
items and their common price of these items, we can write:

findmax(S, nmymax<(ltmPric)>) <- sppp(S, Itm Pric).

single(nmynmax, (ltem Pr), (ltem Pr)).

C:\tutorial\user_aggrs.html Page 33 of 61

The single and multi rules 01/05/99
mul ti (nymax, (Sit,Sp),(AQt,0p), (Sit, Sp)) <- Sp >= Op.
mul ti (nymax, (Sit,Sp),(0t,0p), (Gt, O)) <- Sp < Op.
This exampleillustrates that:

1. Aggregates can return full tuples, such asthe pair (Item, Pr) produced by mymax
2. Morethan one vaue/tuple can be returned from the computation of an aggregate.

i TF JrreE

=ldl»! Return Rules ‘procrA. . FACTS .

The aggregates defined via single and multi rules suffer from the following limitations:

* Vauesare not returned until the end of the computation. To express on-line aggregates,
temporal aggregates on time series, and a number of aggregates required for data mining,
values must be returned while the computation is still progressing.

* The aggregate returns values in one column. Often we want to return valuesin severa
columns.

To overcome these limitations LDL ++, Version 5.0 and above, supports the the predicate
return whereby the productions of answers can be explicitly controlled through rules. In its simplest
form, the predicate return has four argument (same as multi):

return(newaggr, NewY, AdV, VR <-

Whilein multi the last argument is stored in the accumulator, in return it is returned as a (partial) result.
This value can be computed by user-defined rule from the new value in the input and the old value in
the accumulator---same as for the multi rule. When no return rule is given for an aggregate being
defined, then the last argument of multi is returned at the end of the computation--for compatibility with
previous versions of LDL ++.

Early Returns

Example. Find suppliers who supply morethan 7 items

sel ect (Sup) <- allcounts(Sup, CC, CC7 .
al l counts(Sup, cntol<ltnmp) <- sppp(Sup, Itm Price).

where cntol can be defined as follows:

single(cntol, _, 1).
multi(cntol, S, Ad, New) <- New= O d+1.
return(cntol, S, Add, Value) <- Ad ~= nil, Value=d d+1.

Thereturn ruleis applied after each new value generated by either the single or the multi rule. But the
singlerule leaves the value of of Old equal to nil. To avoid atype error that will follow from the
computation of Old+1, therefore, we have the condition Old ~= nil. The following example, illustrates
the use of nil, to emulate the choice congtruct. Under the following definition of mychoice:

C:\tutorial\user_aggrs.html Page 34 of 61

The single and multi rules 01/05/99

singl e(mychoice, Y, Y).
mul ti (nmychoice,Y, nil, nil) <- fail.
return(mychoice, Y, nil, Y).

The following two rules are equivalent:

P(X Y) < a(X Y), choice((X), V).
p(X, mychoice<Y>) <- q(X, V).

At the end of the dataset the value of the next input is set to nil.
This can be used to control the values returned at the end of the computation.
Example. The aggregate avg could have been defined as follows:

single(avg, X, (X 1)).
multi (avg, X, (08, 0C), (NS, NC)) <- NS=0S+X, NC=0C+1.
return(avg, nil, (0S, 00, Avg) <- Avg= OS/ CC.

The computation of average can be performed by computing the sum and the count and then returning
their ratio every seven records. The value nil in the first argument of the return rule denotes that we
have reached the end of the computation; nil isin fact produced by the system when the end of the
dataset isreached .

Using return rules, an assortment of very useful aggregates, e.g., those used for data mining
applications, can be defined. Moving window aggregates, for instance, are of common usage in
time-series analysis.

Example. Moving time window aggregation : Average the prices of IBM stocks over the last five days.
p(mbavg<A>) <- stock-closing('IBM,A).
singl e(mbavg, X, [X]).
nmul ti (mdavg, X, OL, NL) <- if(OL= [X1, X2, X3, X4, X5]
then L = [X1, X2, X3, X4]
else L=A), NL =[X] L].

return(mbavg, _, [X5, X4, X3, X2, X1], Avg) <-
Avg= (X1+X2+X3+X4+X5)/ 5.

Arbitrary Number of Columns

The previous example that find the max priced items and their prices can be rewritten as follows:
findmax(S, maxtwo<(ltmPric)>) <- sppp(S, Itm Pric).
singl e(maxtwo, (ltem Pr), (ltem Pr)).

mul ti (maxtwo, (Sit,Sp),(Ot,0p), (Sit,
mul ti (maxtwo, (Sit,Sp),(4Gt,0p), (Gt, O)) <- Sp <=

8

return(maxtwo, nil, (Sit, Sp), Sit, Sp).

C:\tutorial\user_aggrs.html Page 35 of 61

The single and multi rules 01/05/99

The first three arguments in the head of areturn rule denoted the name of the aggregate, the new vaue
in the stream, and the old value in the accumulator. Any additional argument isreturned in a
separate column. Thus, in our case maxtwo returns Sit (max priced item) and Sp (its price) in two
separate column. Thus, findmax is now treated as aternary predicate. The occurrence of nil in the last
rule denotes that we are defining a return that takes place when al the input values have been visited.
When the heads of return rules only have three arguments, thisis boolean aggregate, which
produces no argument in the output. For instance the following aggregate determines whether the count
exceeds the value of 7.

single(count?7, _, 1).
multi (count7, _, Ad, New) <- Ad<7, New=d d+1.
return(count7, _, dd) < dd=7.

Thus, to find suppliers who supply more than 7 items we can write the following rule:

sel ect (Sup, count7<ltm> <- sppp(Sup, Itm Price).

Multiple Aggregatesin the Head

Multiple aggregates are allowed in the same head,
p(K1, K2,...,Km aggrl<Al>, aggr2<A2>, ..., aggrN<An>) <- Rul e Body.
under the following conventions:

1. Theargumentsin the head, that is, K1,Kmand A1,...,An must all appear in the body of the
rule.

2. aggrl,...,aggrN can either be builtin aggregates or user-defined aggregates.

3. Eachaggri<Al>, aggr2<A2>, ..., aggrN<An> is grouped by K1,K2,....Km where m denote a
non-negative integer (thus an empty group-by list is also allowed).

4. The cartesian product of the results of aggrl, ...,aggrN will be returned for each new value X.
Thus, if any of the N aggregatesfail for agiven X no valueisreturned at that point.

=8| Monotone Aggregation

Traditional aggregates defined without an explicit return rule are nonmonotonic. A fina return rulesis
one where the second argument in the head of the ruleis the distinguished symbol nil. Aggregates
defined using fina return rules are nonmonotonic.

However, aggregates that have early return rules and no fina return rules are monotonic. These
aggregates can be used in recursive programs without restrictions. This leads to the simpler expression
of complex algorithms.

Suppose we define a count-like predicate mcount as follows:

singl e(ncount, Y, 1).

mul ti (nmcount, Y, Ad, New <- New=Q d+1.

return(ncount, Y, Od, New) <- if(dd=nil then New=1l
el se New=A d+1).

C:\tutorial\user_aggrs.html Page 36 of 61

The single and multi rules 01/05/99

Since the return rule operates on the new value of input and the old value of the accumulator, the
situation Old=nil definesthe value

to be returned after the application of the single rule. Thereforeif p is a database predicate with n facts,
then the rule

g(nmcount <X>) <- p(X).

returns1,={ q(1), q(2), ..., q(n) }. If the original set of factsisincreased to anew set of cardinality m >
n, then, our rulereturns: 1,.={q(1), q(2), ..., a(m)}, where ., isasuperset of |,. Therefore:

Program rules with mcount define monotone deter ministic mappings.
All aggregatesinductively defined using single, multi and early-return rules define monotone mappings,
although in general these mapping are nondeterministic (unlike mcount). The examples which follow
show that, deterministic or otherwise, monotone aggregates provide a powerful and flexible tool for
advanced applications.

Join the Party: Some people will come to the party no matter what, and their names are stored in a
sure(Person) relation. But many other persons will join only after they know that at least K of their
friends will be there. Here, friend(A, B) denotesthat A views B asafriend.

willcome(P)<- sure(P).}
willcome(P)<- c_friends(P, K), K >= 3.
c_friends(P, ncount<F>) <- willconme(F), friend(P, F).

Here, we have set K=3 as the number of friends required for a person to come to the party.

By specidizing the count aggregate, we can further improve the efficiency of the computation. Let us
define an aggregate kcount as follows:

si ngl e(kcount, (K Y), 1).
mul ti (kcount, (K, Y),d d, New) <- 4 d<K, New=Q d+1.
return(kcount, (K, Y), KL, yes) <- Kl+l=K

Thus, the early return rule succeeds (producing ayes) only when the count reaches the value of K. Since
we assume that k>1 we do not need to return the values produced by single. Also, the computation of
multi fails after we return the value. Thus, the computation of party goers becomes:

w | cm(F, yes) <- sure(F).
w |l cm(X, kcount<(3,F)>) <- wlcmF, _), friend(X F).

Unlike in the previous formulation, where anew tuple ¢_friends is produced every time anew friend is
found, a new wllcm tuple is here produced only when the threshold of 3 is crossed. Rather than
returning yes we should have programmed our aggregate to return no argument, i.e., to act as a boolean
predicate. Then our program simplifies as follows:

single(zcount, (K X), 1).
mul ti(zcount, (K X), Od, New <- Add < K New=d d+1.
return(zcount, (K, X), K1) <- Kl~=nil, K=K1+1.

W |l comF) <- sure(F).
W | com(X, zcount<(3,F)>) <- wlcon(F), friend(X, F).

Next, we define msum and mmin that provide monotone extensions for sum and min.

C:\tutorial\user_aggrs.html Page 37 of 61

The single and multi rules 01/05/99

For msum we have:

single(msum Y, Y).

multi(msum Y, Od, New) <- New=04dd + Y.

return(msum Y, Ad, New <- if(Ad = nil then New=sY
el se New=Q d+1).

For mmin, we will return the last value if thisis anew min.

single(min, Y,Y).
multi(mrin, Y, Od,New) <- if(Y<dd then NewY

el se New=d d).
return(mmn, Y, Ad, Y) < if(dd ~=nil thenY < Ad).

L east-Distance Connections: Given agraph g(X,Y, C) where C isthe cost of an edge from node X to
node Y, the least-cost distance between any two nodes can be computed as follows:

Ild(X, Y, mn<C) <- g(XY, O.
1d(X, Y, mmn<C) <- 1d(X 2z C1),

Id(z, Y,), C= C1+C2.
least _dist(X, Y, mn<C) <- 1d(X Z Cl).

Thistransitive-closure like computation adds a new arc Id(X, Y, C) provided that this then becomesthe
new |east-cost arc between the nodes X and Y. The arcs so produced are then used in the next step of
the seminaive computation. At the end of this fixpoint computation, theleast dist ruleis used to select
the least-distance arc between these two nodes, out of the succession of arcs of decreasing C values
produced in the computation. For a given graph, the values obtained during the computation of 1d can
vary depending on the order in which the arcs are considered. The final valuesin least_dist, however,
are always the same (a nondeterministic computation producing a deterministic answer).

Company Control: Another interesting example is transitive ownership and control of corporations. Say
that owns(C1, C2, Per) denotesthat corporation C1 owns a percentace Per of the shares of corporation
C2. Then, C1 controls C2 if it owns more than, say, 49% of its shares. In general, to decide whether

C1 controls C3 we must also add the shares owned by corporations such as C2 that are controlled by
C1. Thisyieldsthe transitive control predicate defined as follows:

control (C, O <- owns(C, _,).

control (Cl, C) <- twons(Cl, C2, Per), Per>49.

towns(Cl, C3, nsunxPer>) <- contrl(Cl, C2),
owns(C2, C3, Per).

Thus, every company controlsitself, and a company C1 that has transitive ownership of more than 49%
of C2's shares controls C2 . In the last rule, twons computes transitive ownership with the help of
msum that adds up the shares of controlling companies. Observe that any pair (C2,C3) is added at most
once to control, thus the contribution of C2 to C1's transitive ownership of C3 isonly accounted once.
To further smplify the program and expedite the computation we can introduce a boolean aggregate as
follows:

singl e(sunmt9, Y, .

mul ti (sumd9, Y, Ad, 2) <- dd<49, Z= Ad+Y.

return(sum9, Y, Ad) <- if(dd=nil then Y>49
el se A d+Y>49).

Then the recursive rules become:

C:\tutorial\user_aggrs.html Page 38 of 61

The single and multi rules 01/05/99

cntrl (ClL, Q) <- owns(Cl, C2, Per), Per >49.
cntrl (Cl, C3,sumi9<Per>) <- cntrl (Cl, C2),
owns(C2, C3, Per).

Thus, sum49 succeeds only when the 49% threshold is crossed during the summation. Here, the value
of 49 was cast into the very definition of our aggregate. Alternatively, this value could be given asa
parameter, asin the case of kcount.

Bill-of-Materials (BoM) Applications: BoM applications represent an important application area that
requires aggregates in recursive rules. Say, for instance that psb(P1, P2, QT) denotes that P1 contains
part P2 in quantity QT. We also have elementary parts that are purchasable for a price and will be
delivered in a certain number of days: these are described by the relation basic(P, Price, Days). Then,
the following program computes the cost of a part as the sum of the cost of the basic partsit contains.

part_cost(Part, O GCst) <- basic(Part, Cst).

part _cost(Part, ntount<Sh> nsuMKMCst>) <-
part _cost (Sh, ChC, Cst), prolfc(Sh, ChC),
psb(part, Sb, Mult), MCst=Cst*Milt.

Thus, the key condition in the body of the second rule is that a subpart Sb is counted in part_cost only
when al Sb's children have been counted. This occurs when the number of Sb's children counted so far
by mcount is equal to itstotal number of children in the psb graph. Thislast number iskept in the
prolificity table, prolfc, which can be computed as follows:

prol fc(P1, 0) <- basi c(P1, _).
prol fc(P1, count<P2>)<- pshb(P, P2,).

Also, thisBOM computation can be simplified and made more efficient using the zcount aggregate,
yidding:

pcost (Part, Cost) <- basic(Part, Cost).

pcost (Part, zcount<(K, Sb)>, msunxCst>) <-
pcost (Sb, yes, Cst),
psb(Part, Sb, Milt),
prol fc(Part, K),
MCst =Cst *Mul t .

Observe that the prolfc relation is now used to qualify Part in the rule head, rather than its subpartsin
the body. The technique of counting the children could also be used with least_dist problem, above, if
the underlying graph is acyclic. For cyclic graphs we must use the current formulation that exploits the
property that extrema are unaffected by duplicates (idempotence).

Carlo Zaniolo, 1998

C:\tutorial\user_aggrs.html Page 39 of 61

XY -Stretification 01/05/99

siblsl XY-Stratified Programs

In LDL++, negation and aggregates can be used in recursive programs provided that these are

XY -gratified. The LDL++ compiler recognizes these (locally-stratified) programs and generates an
efficient execution plan to construct their stable models. We will now concentrate on the practical
aspects of XY -stratified programs, whereas the theory of these programsis discussed in _Advanced
Database Systems. Recursive predicates defined an XY -stratified program, use their first argument as a
discrete-time temporal argument, or a state counter. Syntactically, atemporal argument is either

1. anon-negativeinteger constant---typically0 asin thefirst rule of the example below, or
2. atemporal variable, such as J, or
3. theexpression J+1 denoting the successor of state J.

Thereis at most one temporal variable per rule. For instance, the ancestors of marc using the
differentia fixpoint (a.k.a. seminaive fixpoint) method can be computed as follows:

Example: Seminaive computation of the ancestors of marc

delta_anc(0, X, Y) <- parent(XY).

delta_anc(J+1, X, Z) <- delta_anc(J, X Y), parent(Y, 2),
~all _anc(J, X 2).

all _anc(J+1, X, V) <- all_anc(J, X, Y).

all _anc(J, X V) <- delta_anc(J, X V).

The second rule and third rule in the example are Y -rules: a 'Y -rule is characterized by te fact that the
temporal argument in the head is J+1, while J appears as the tempora argument in the goal of therule.
This leads to the natural interpretation that J+1 denotes the "new" values, whereas J denotes the "old"
values from the last state.

A rule such asthe last rule in the example above isan X-rule: an X-rule is one where al the temporal
argumentsin the rule areidentical, e.g., inlast rule above they all coincide with J. Thus, aapossible
interpretation, of thisrule, isthat the "old" values of all_anc are derived from the "old" values of
delta_anc. But, if we replace the temporal argument J by 1+1, everywherein the rule, this states that the
"new" values of all_anc are derived from the "new" values of delta_anc. This second view of X-rules
should be used sinceiit leads to the smple view that the "new" valuesin the head are being computed
using a mixture of old and new values from the body. Therefore, rules, 1-4, in the previous example can
be interpreted as follows:

1. At state zero, parents become delta_anc delta_anc only contains marc

2. thenew delta_anc are derived by finding the parents of the old delta_anc---minus those that
already appear in old_anc

3. thenew al_anc contain the old al_anc,

4. thenew al_anc aso include the new delta_anc

C:\tutorial\xy1.html Page 40 of 61

XY -Stretification 01/05/99

The new/old labelling given to the predicates al so used by the compiler to check whether the rules
defining recursive predicate form an XY -gratified program P where, aprogram is XY -stratified if it
satisfies the following two conditions:

1. everyruleinPiseither an X-ruleor aY-rule
2. the program obtained by adding the "new" and "old" tagsto the recursive predicatesin P is
non-recursive

After checking these conditions, the compiler turns the program into an efficient execution plan, where
only the old copy and the new copy of each predicate table are stored; when the computation for the new
copy is completed, this becomes the the old copy and the process repeats.

XY -gratification is very powerful and conducive to the elegant formulation of classical graph-oriented
algorithms, that use aggregatesin their computation. For instance, the computation of Floyd's Algorithm
to compute the shortest distances between nodes in a connected graph can be expressed by the
following program.

Example: Shorters Distance in a graph g(X,Y,C) denotes an arc from X to Y of cost C.

delta(0, X, X 0) <- a(X _,).
delta(o0, Y, Y, 0) <- a(_,Y,).
delta(J+1, X, Z, mn<C) <- delta(J, XY,Cl),
a(y, z,), C=Ci+C2,
if (all(J,X Z C3) then C3>C).

all (J+1, X, Z, O < all(J3,X 20, ~delta(d+1, X Z).
all (J, X z O <- delta(J, X, 2z O.

Floyd's algorithm provides a more efficient computation for the same problem.

Example: Floyd's algorithm: g(X,Y,C) denotes an arc from X to Y of cost C.

delta(0, X, Y, O <- a(Xx Y, 0.
new(J+1, X, Z, C <- delta(J, XY,Cl),

all (v, z,), Cc=Ci+C2,

if (all(J,X Z C3) then C3>C).
new(J+1, X, Z, © <- delta(J, XY,Cl),

all (v, z,), Cc=Ci+C2,

if (all(J,X Z C3) then C3>C).
delta(J, X, Z, mn<c>) <- newm(J, X Y, O.

all (J+1, X, Z, O < all(J3,% 20, ~delta(d+l, X Z).
all(J, X z O <- delta(J, X, Z O.

C:\tutorial\xy1.html Page 41 of 61

XY -Stretification 01/05/99

Because of the lack of monotonicity, the usual differentia fixpoint optimization cannot be used as such
in the bottom-up execution of XY -stratified programs (also, many of these programs express
sophisticated algorithms requiring ad-hoc optimization under the direct control of the programmer).
However, top-down optimization techniques, such as the magic set optimization and the left/right linear
rule optimization, are applied to XY -gtratified programs. For instance, if we ask the question
delta_anc(_,marc,X) LDL++ will use the specialization approach, whereby the second argument in the
recursive predicate is instantiated to marc.

The copy and delete rule optimization, discussed next is unique to XY -stratified programs.

=ikl»| Copy Rulesand Delete Rules

A copy ruleis one where the head isidentical to some argument in the body, except for the temporal
argument. Thelast rule in our ancestor exampleis acopy rule. The LDL++ system maintains a new and
an old copy of each predicate, and stores it without the temporal argument, that is stored globally for all
recursive aggregates. In this scenario, the copy rule, basically tantamounts to the old predicate (all_anc,
in our example), be copied into its new value. Therefore, the LDL++ system, stores only one copy of
predicates such as all_anc, and the "new" and "old" versions are simply pointers to the same table.
Then, acopy rule executes as a zero-cost no-op. The copy rule optimization al so appliesto the situation
where the copy rule body contain goals that only share temporal variables with the copy goal. Thus, for
the previous ancestor example, the last rule modified as follows,

all _anc(J+1, X) <- all_anc(J, X), delta_anc(J+1,).

isstill acopy rule. In fact, the compiler simply evaluates the deltagoal, and if true then the pointer for
the "new" version all_anc is set to point to the "old" copy, otherwiseit is set to point to the empty set.
Consider now the following recursive program that computes the temporal projection by coalescing
overlapping periods into maximal periods.

Example. Coaleshing after temporal projection for emp_dep sal(Eno, D, S, Frm, To)

e_hist(0, Eno, Frm To) <- enp-dep-sal (Eno, D, S, Frm To).

overlap(J+1, Eno, Frnl, Tol, Frn2, To2) <-
e_hist(J, Eno, Frml, Tol),
e_hist(J, Eno, Frn2, To2),
Frml<=Fr n2, FrnR<=Tol,
di stinct(Frnl, Tol, Frn2, To2).
e_hist(J, Eno, Frml, To) <-
overlap(J, Eno, Frml, Tol, FrnR2, To2),
sel ect _l arger(Tol, To2, To).
e_hist(J+1, Eno, Frm To) <-
e_hist(J, Eno, Frm To),
~overlap(J+1, Eno, Frm To, _, _),
~overlap(J+1, Eno, _, _, Frm To).

%eauxi | i ary predicat es%8888%6

di stinct(Frnl, Tol, Frn2, To2)<- Tol ~= To2.
di stinct(Frnl, Tol, Frn2, To2)<- Frml ~= FrnR.

C:\tutorial\xy1.html Page 42 of 61

XY -Stretification 01/05/99

select_larger(X, Y, X) <- X>=V.
select_larger(X, Y, Y) < Y>X

Thefourth rule above is a delete rule; such ruleis defined as follows:

* the head of theruleisidentical to one of itsgoal (the copy goal), except for the temporal
argument

* inaddition to the copy goal, the rule has one or more negated goal having non-temporal
variablesin common with the copy goal,

The procedure to support copy rulesis as follows: construct the new value for the copy predicate by
deleting the value satisfying the negated goals from the old copy predicate. Thus, for the example at
hand, the newly-generated values of overlap are visited, and they are thus deleted from the old e _hist. In
general, the execution strategy used for delete rules is efficient under the assumption that the negated
predicates are significantly smaller than the copy predicate. Another limitation of adelete ruleisthat the
old version of its copy predicate cannot be used by later rules. When this condition is not satisfied, then
the compiler uses the standard two-version approach to support this predicate. Thus, e.g., if the negated
predicates are significantly smaller than the copy predicate, the delete rule rewriting can be avoided by
simply switching the order of these two rules.

=& Returning Resultsand Termination

In acomputation such as the ancestor example, the results can be collected incrementally, by simply
specifying the goal

delta_anc(l, X

The LDL++ system uses pipelining in the computation of XY -stratified programs, whereby, anew tuple
isonly generated when it isimmediately needed by calling goal. Thus when no more tuples are
requested by the our goal above, there is no longer any computation of the XY -rules. For instance, goals
such asdelta_anc(20,), or al_anc(_, anode) are basically existential goals, and they never call the
XY -rules computation again after they succeed.

For the more general situation, thegoal delta anc(l, X) failswhen this deltarelation becomes empty
for some value of | and the XY -rules are never executed again after that. Therefore, while a straight
bottom-up execution of the ancestor program suggest an infinite computation because of copy rules, the
computation isin fact safe when the goal delta_anc(l, X) isused (but the computation would not be safe
if thegoal al_anc(l, X) is used).

In many programs, answers cannot be returned incrementally since only the values at the end of the
computation are of interest. In this case, the programmer, should write rulesto (i) identify the step at
which the computation complete, and (ii) use the values computed at that step. For instance, for the
temporal projection example, the followin rules can be used:

| astperiod(l) <- overlap(l,_, ,_ ,_,_),

~overlap(l+1, , , _,

final _e_hist(Eno, Frm To) <- |astperi oa(l)

C:\tutorial\xy1.html Page 43 of 61

XY -Stretification 01/05/99

e_hist(l, Eno, Frm To).
Thus, the final state isthat for which thereis no successor. Thus, a program calling predicates defined
in XY -rules can only refer to two successive states (since only two states are stored, the previous states
arelost). However, for copy predicates, only one state can be used by external computations (insofar as
only one version of the predicate is kept by the system. For Floyd's algorithm we can write:
lastfloyd(l) <- delta(l,_, _, _),~delta(l+1, _,_,).

floyd_results(X Y,C <- lastfloyd(l), all(l, X Y, O.

=ikl Choice and User-Defined Aggregates

The choice operator can be used in the recursive rules of XY -stratified programs, provided that the
rule's tempora variable appears in the first argument of the choice goal .

For instance, the following program extracts the least spanning tree, rooted in anode a, from an
undirected graph represented by pairs of nodes g(X,Y,C), g(Y,X,C).

Example. Prim's algorithm.

prim(0, nil, a). % nodes sol ved so far
newedgs(l+1, X, Y, O <- solved(l, X), g(X VY,Q, ~prinm(l,_, Y).
| eastedg(l, mn) <- newedgs(l, X Y, O.

prin(l+1, X, Y) <- prin(l,
prim(l,X, Y) <- |eastedg(l
choi ce((I

X, V).
O, newedgs(!,X Y, O,

), ().

Here the choice construct is used to ensure that only one edge is added at each step (otherwise the
resulting graph might not be atree). Observe that the last rule is a choice rule, satisfying the condition
that the temporal variableisin the first argument of choice. The significance of this requirement is that
choice can only be used to enforce FD constraints for the values generated in a certain state (i.e,, for a
particular value of the temporal argument). Choice should not be used used to enforce constraints over
the global temporal history.

Asin SQL, the builtin aggregate min value, but not the edge at which this occur. But LDL ++ supports
the definition of new aggregates, which can be freely used in XY -stratified programs. Thus Prim's
algorithm can also be expressed as follows:

Example. Prim's algorithm using a new aggregate

sol ved(0, a). % nodes sol ved so far

prim(1+1, aleast<(X, Y, O>) <- solved(l, X), g(X Y, O,
~sol ved(1,Y).

C:\tutorial\xy1.html Page 44 of 61

XY -Stretification 01/05/99

sol ved(l+1, X) <- solved(l, X).
solved(l, Y) <- prinm(l, (X Y, Q).

single(aleast, (X Y, O, (XVY,0).
mul ti (al east, (X1, Y1, Cl), (X2,Y2,C2),(X2,Y2,C2)) <- C2 < CL.
mul ti (al east, (X1, Y1, Cl), (X2,Y2,C2),(X1,Y1Cl) < C >= Cl.

Carlo Zaniolo, 1998 &

C:\tutorial\xy1.html Page 45 of 61

Meta Programming in LDL++ 01/05/99

sihl»i Meta Predicates

In LDL++, we provide the capability to reason with predicate names asif they were data. In other
words, the argument to a predicate could be another predicate. The arguments to the inner predicates
could be either constants or variables. If they are variables, we use a different representation for them.
Unlike the regular variables, which are either capitalized or begin with an underscore (e.g.: A, X, Y,
_salary, etc.) these variables are represented as "ldl_var(1), "Idl_var(2)" etc. Let us call these types of
variables "Meta-variables." In the following sections we describe the syntax and semantics of these
"Meta" constructs. We make use of a special built-in predicate called "meta _pred_list." This predicate
is defined, informally, asfollows:

neta_pred_list($Predicates List, $VariableList, BindingList).

Predicates List: At run time, thislist should be bound to either alist of predicates or alist of lists of
predicates. The arguments to these predicates can either be constants or Meta-variables.

Variable List: Thisisalist of Meta-variables that the user isinterest in . Note that every member of this
list should also be amember of the list of all variables occurring as arguments in the previous argument,
Predicates List.

Binding List: Thisregular variable (not a Meta variable) unifies with the previous argument after those
variables are bound.

Example: Using meta_pred_list

L et us show you an instance of the meta-predicate "meta_pred list."

meta_pred_list([father(ldl _var(1), Idl_var(2))],
[Idl_var(1), Idl _var(2))]
[FatherNanme, ChildNane])

The effect of using (or querying) the above meta predicate is the same as making a query on a unique
predicate, say new_pred_1(FatherName, ChildName), where thereisarule of the form:
new pred_1(A B) <- father(A, B).

L et us now show you an example, where the "Predicates List" argument isa"list of lists of predicates:

meta_pred_list([father(ldl _var(1), Idl_var(2)
[mot her (1 dl _var (1), |dl _var(2)
[Idl _var(1), Idl _var(2)],
[Parent Nanme, ChildNane])

~——

]
11,

C:\tutorial\meta.html Page 46 of 61

Meta Programming in LDL++ 01/05/99

The meaning of the above query isthe same as querying a unique predicate, say
new_pred_2(ParentName, ChildName) where the following two rules are defined:

new_pred_2(Parent Nane, Chi | dNanme) <-

fat her(Parent Name, ChildNane).
new_pred_2(Parent Nane, Chi | dNanme) <-

nmot her (Par ent Narre, Chil dNane).

As can be seen from above, you may pass the specifications for any arbitrary ruleinside the
LDL++ metapredicate "meta_pred_list." In the next example, we show acomplete LDL++ program
demonstrating the use of the meta predicate.

The formal definitions of the various termsinvolved in a Meta-Predicate are given below.
* Meta-Variable:

A Meta-Variableis represented as an LDL++ complex object, Idl_var(Vname), where Vnameisthe
name of the Meta-Variable represented by a constant. We denote aLDL++ Meta-Variableas V.

* Meta-Predicate:

A Meta-Predicate is represented as an L DL ++ functor except that it may contain LDL++
Meta-Variables, We denote a LDL ++ Meta-Predicate as P.

Given meta _pred list(Predicatelist, VariableList, BindingList):

1. VariableList should be of theform [V, ..., V] forn>=0,
whereV,, ...V, are Meta-Variables.

2. BindingList should be of theform [T, ..., T,]forn> =0,
where T, ..., T, are LDL++ terms.

3. Predicatelist could be either of the following two forms:
31[P,...,P]forl>=1o0r
3.2[[Py, ..., Pudseers [Py, ooy Pi]] Wherej>= Land k>= 1

Carlo Zaniolo, 1997

C:\tutorial\meta.html Page 47 of 61

Database Updates 01/05/99

/| Database Updates

LD hastwo operators " +" and T-" that can be applied to base relations to add and delete facts from
arelation. Changes to a base fact are accomplished by a delete followed by an addition.

Example:

Delete fromthe city relation all of the cities whose population is below some given threshold Sze.

del ete_small _cities(Size) <-
city(Name, State, Popul ation),
Popul ation < Size,
-city(Nanme, State, Popul ation).

export delete_small _cities($Size)
query delete_small_cities(100000)

When applied to the cities database, the remaining facts are:

ci ty(Houston, Texas, 3000000) .
city(Dallas , Texas, 2000000) .
city(Huntsville, Texas, 150000) .
city(Austin, Texas, 750000) .

city(San Antoni o, Texas, 1500000).

sihl»| Semantics of Update Constructs

Set Oriented Semantics, asin Relational Databases.

Updates (-b, +b) can only be applied to base relations b.

A rule containing an update operation is called an updaterule.

The update rule has two parts: a query part and an update part.

The query part is used to ~“mark” the tuples that will be affected during the update and can use the full
power of £DLH

Once marked, the tuples are added/removed in the update part of therule: snapshot semantics.

query part updnie part

delete_small_cities(Size) «— ::z'ty{_., -, Pop), Pop < Sz'zg,r—l::z'ty{_, - Pﬂpi.

updrie tule

Order of Execution

C:\tutorial\node24.html Page 48 of 61

Database Updates 01/05/99

the order of update specification may affect the result. The query part of the program is still declarative
as before.

Suppose that the employee relation contains two tuples with the same name but different salaries.

employee(pat, 'CHPC', 1000).
employee(pat, 'MCC', 1100).

We define an update rule to give all employees some specified raise.

rai se(P) <-
enpl oyee(Nane, D, Sal),
NewSal = Sal * P,
-enpl oyee(Nane, D, Sal),
+enpl oyee(Nane, D, NewSal).

export: raise($P)

The goals following an update goal see the results of the update. Thus, even if Nameisakey, no key
constraint violation will follow from thisrule.

«ikl»i Updates: Limitations

Limitations: recursion

Updates are not permitted in arecursive rule. The following is incorrect:
P(X) <- p(Y), +b(Y).

This update isincorrect because all of the tuples must be marked in the query part prior to the
updating; thisis, asin negation, arequirement for a stratified program. On the other hand,

P(X) <- a(Y), +b(Y).
where q(Y) itself isrecursively defined is ok.

Limitations: no union rules

No union of update rules. Suppose that we want to give somebody araise of 10% if his’her salary is
below 1000 and otherwise we want to give him/her a 5% raise.

rai se(Name, Sal, NewSal) <-
enpl oyee(Nane, Sal),
Sal <= 1000,
NewSal = Sal * 1.1,
+enpl oyee(Nane, NewSal).
rai se(Name, Sal, NewSal) <-
enpl oyee(Nane, Sal),
Sal > 1000,
NewSal = Sal * 1.05,
+enpl oyee(Nane, NewSal).

C:\tutorial\node24.html Page 49 of 61

Database Updates 01/05/99

export:rai se(Nanme, Sal, NewSal)

This construct isillegal since we do not know the order of execution of these rules. We can use the
if-then-else construct to overcome this problem.

Using Conditionalsinstead of union rules

The correct version of the previous program uses the if-then-else predicate.

rai se(Name, Sal, NewSal) <-
enpl oyee(Nane, Sal),
if(Sal <= 1000 then NewSal
el se NewSal
-enpl oyee(Nane, Sal),
+enpl oyee(Nane, NewSal).

=ikl» Failing Goalsafter Updates

No Failures After Updates

In £PLH failures cannot be tolerated after the update part of arule for two reasons: 1) A failure
entails the ““undoing” of the updates to the base relations---an operation that should be avoided; 2) For
compatibility with relationa databases, e.g., violations of integrity contraints, can be detected
immediately.

Example: If w(X, Y) canfail intherule,

p(X) < a(¥), -b(Y), WX V).

then the rule might not have a clear meaning. The compiler will issue awarning.
The normal solution consists in moving the potentially failing predicate before the update:

pP(X) < a(¥), WX Y), -b(Y).

In some cases this solution isimpractical, because, e.g., we want to see the result of the update. In such
acase we must ensure that the goal after the update is infallible.

Updates and Assignment as Infallible Predicates

Updates and assignment statements are unfailing (see Infallible Predicates) and can be used after
updates. Thus, the following is acceptable.

rai sel(Name, Sal, NewSal) <-
enpl oyee(Name, Sal), Sal <= 1000,
-enpl oyee(Nane, Sal),
NewSal = Sal * 1.1,
+enmpl oyee(Nane, NewSal).

C:\tutorial\node24.html Page 50 of 61

Database Updates 01/05/99

The derived raisel predicate isitself labelled as an update predicate, so it cannot be followed by a
failing goa when used in rules. The compiler checks the condition that no goal is unfailing after updates
and complains otherwise.

IF (Condition ELse True) is Infallible The result of the execution of the if predicate can succeed even
though the condition within the predicate fails.

Example: Thiswill work only for export:p($X).

p(X) <- q(Y), -b(Y), if(WXY) then true).
Herethe “if" succeeds even if w(X, Y) fails. The rule can be modified to work also for export:p(X).

p(xX) <- q(Y), -b(Y), if(WM(X Y) then true else X="empty W).

=ihl»! The Forever Construct

The forever predicatein arule:
h +— g, forever(p), g.

Isinterpreted as:

h+—g, P, P2y - Pry O-

wherep,, k=1, ..., n-1 are successive versions of the goal p al of which succeed and with p, the last
succeeding goal. Note that each 1% operates on the state |eft by the execution of the previous goal

Pi—). If for some i, P causes no updates, then there are no further state changes,

Py, t <. j < nareignored and weresume with g.

Observet that the forever-goas are aso infalible.
Forever: Example

Continue giving 10% salary raises to employees of the toy department until John's salary exceeds
some number N.'

iterRai se(N) <- forever(eds(john,D,S), S<=N, raise(toy)).

rai se(D) <-
eds(E, D, Sal), Sali1= 1.1*Sal,
-eds(E, D, Sal), +eds(E, D, Sal1).

Notethan N isimported into the forever predicate. We cannot however export values as aresult of its
execution; therefore, its effects are manifested throught the update(s) of base relations.

C:\tutorial\node24.html Page 51 of 61

Database Updates 01/05/99

fi»=| |Imperative Programs

Forever: “"Do procedurally what cannot be done declaratively"

Using the Parts database, Find the cost of each part P. Then find all the subparts of P, each with their
quantity and cost, and compute the total cost. We will augment the Parts database by an additional table
cost(Part:string, Cost:integer) which will be updated to contain the cost for each part, basic or
assembly.

% Update cost with all basic parts and their costs.
basi c_costs <- part_cost(Basic_part, -, Cost, _), +cost(Basic_part, Cost).

% Update cost with all assenbled (non-basic) parts and their costs.
assenbly_costs <- forever(assenbly(Part, _, _), ~unresolved_part(Part),

tally_costs(Part, Total), +cost(Part, Total)).

% unresol ved_part contains those parts for which we do not have as yet a cost
%in the cost relation.
unresol ved_part (P) <- assenbly(P, Sub, _), ~cost(Sub, _).

%tally_costs suns up the costs of all sub parts making up a part.
tally_costs(P, Total) <- get_all (P, Set_of_subs), aggregate(sum Set_of_subs, Total).

% get _all conmputes the sub cost of a sub part by multiplying its quantity tinmes
% the unit sub part cost.
get _all (P, <Prod>) <- assenbly(P, Sp, Qy), cost(Sp, SpCost), Prod = SpCost * Q.

Carlo Zaniolo, 1997 AL]M

C:\tutorial\node24.html Page 52 of 61

External SQL Relations 01/05/99

- |

1
]
C ok

»! External Databases (client-server)

LDL++ permits the use of external database relations in addition to locally defined relations. The
program or the rule base makes no semantic distinction between these different kinds of relations. Of
course the syntax for declaring these external relations as schemain a LDL ++ program is possibly
different for different kinds of data sources, eg: Sybase, Ingres etc.

The current release of the LDL ++ system has support Sybase, Oracle and DB2.

The following is the schema declaration needed for Sybase relations:

dat abase({

sybase: : <Rel ation>: (<field 1>: <Type 1>,
<field 1>: <Type 2>,

<field n> <Type n>)

| ocal _name <Local relation nanme>

from <Sybase server nane>

use <Dat abase nane>

user _nanme <User nane>

appl i cati on_nane <Application nane>
interface_fil ename <Sybase interface file name>
password <Passwor d>

})

The schema definition makes use of the following key words:

local_name: Thisisthe local name to be given to the external relation.
This avoids conflicts if we have two relations from different sources with the same
name.Type:string.

from: This specifies the database server we want to use. Type:string.

use: This specifies the database we want to use from a given server.
Type:string.

application_name: The name of the application. Type:string.

interface_filename: This specifies the location of the interfacefile
for sybase applications. Typically thisfile contains the communication port addresses for the
servers. Type:string.

password: The password of the user. Type:string.

Now the sybase relation can be used as alocal relation by using its local name as specified above.

C:\tutorial\extSQL .html Page 53 of 61

Connecting to External Database with JDBC 01/05/99

= 4 »| Connectingto External Database with JDBC

The Java LDL ++ driver (JavalLdlServer.class) connects to external databases using JDBC. LDL++
communicates with this driver which in turn communicates with external databases.

Configuring a Java LDL ++ driver

The Java LDL ++ driver is configured by editing file "jdbc.server" which must be in the same directory as the
driver (JavalLdIS erver.class). The following is a sample configuration for an MySQL database and an Oracle
server:

nmysql . driver = twz1.jdbc. nmysql.jdbcM/sql Driver
nmysql .url = jdbc: zIMySQ.: / / vesuvi o. cs. ucl a. edu: 3306/t est

oracle.driver = oracle.jdbc. Oacl eDriver
oracle.url = jdbc:oracle:

Basically, the configuration specifies two things. One isthe jdbc driver, the other isthe URL of the database
server. This Java L DL ++ driver is configured to talk with MySQL and Oracle database server. The line starting
with "mysqgl.driver" specifies the JDBC specifies the IDBC/MySQL driver. The line starting with "mysqgl.url"
specifiesthe URL and the protocol for the MySQL system.

Using External Database via JDBC

The following syntax is used in the LDL ++ schemato denote an exteranal database accessible via JDBC:

dat abase({
j dbc: : enpl oyee(Nane: string, Dept:string, Sal:integer)
| ocal _nanme enp
from ' vesuvio. cs. ucl a. edu: nysql
user _name hxwang
password | apid

}).

Here, "employee" is atable managed by MySQL and is refered by this LDL ++ program with the local name of
"emp". Also, "vesuvio.cs.uclaedu” is{\em the machine where the Java L DL ++ driver isrunning on}.

The next example showa a connection to an Oracle server. The Java L DL ++ driver in this exampleisrunning
on "cheetah.cs.uclaedu".

C:\tutorial\jdbe.html Page 54 of 61

Connecting to External Database with JDBC

01/05/99

dat abase({
j dbc: :

j dbc: :

).

tenp2(Nane: integer)
| ocal _nane tenp
from ' cheet ah. cs. ucl a. edu: or acl e'
user _name hxwang
password dbpasswd,
temp5(1 D: integer, NAME:varchar, SALARY:fl oat)
| ocal _nanme enp
from ' cheet ah. cs. ucl a. edu: oracl e'
user _name hxwang
password dbpasswd

Carlo Zaniolo. Jul,1998

C:\tutorial\jdbe.html

Page 55 of 61

Foreign Language Functions 01/05/99

A

-

Foreign Language Functions

In LDL++, the user may call functions written in C/C++. These functions (henceforth called functions)
are used as predicates in the LDL ++ system. Since, unlike functions, predicates may possibly return
more than one value, the construction of these functions becomes dightly complicated. We provide a set
of accessory functions to be used in writing these functions. In this section we shall explaining the
mechanisms involved in writing aforeign function with the help of an illustrative example.

The return values for the foreign function have to be passed in as arguments of type L dlObject. Inside
the funtion, the user accesses for reading only the input arguments. Similarly, al the output arguments
are assigned or set in the function. The return value of the function is of type L dIStatus which signifes
wither alogical success of afailure.

Since we might have more than one value being returned after a call to aforeign function, this function
should be prepared to handle multiple calls. This feature requires the function to have some sort of a
state associated with it to distinguish between severa calls in the same session (a session here implies
the duration from the instant the first result is generated until the last result is generated).

We aso need to distinguish between the first time a function is called, with anew set (possibly null) of
values, and subsequent calls. Thisis done typically to create the state structure, initialize any state
variables etc., the first time the function is called. To find out if thiswas the first time the function was
being called, we provide a convenience function Idl_entry_p0. This function returns a non-zero value
if indeed the function was called the first time with anew set of values-—-it returns a zero otherwise.
Various other functions are provided to extract data from LDL ++ objects and to create L DL ++ objects.
Upon a successful execution of the function the user is expected to return the value LDL _SUCCESS,
otherwise the user is expected to return thevalue LDL _FAIL.

The user is expected to compile this external function file and create a binary file. Thisbinary file hasto
be specified as part of theimport declaration in the LDL ++ program. This basically tellsthe LDL++
system where to pick up the definition for the externally defined predicate.

Consider now the example all_letters. This function essentially takes a string as an input parameter and
assigns each letter of the string and its position in the string to the two output parameters. It returns a
valueof LDL_SUCCESS aslong asit can find such apair, or it returnsavalueof LDL_FAIL. Let us
examine each part of this code.

#i ncl ude <l dl _extern. h>
#incl ude <string. h>

Here we are including two files. Thefirst file contains al the declaration of the LDL ++ accessory
functions. It also contains definitions of some LDL ++ objects. The second file, string.h, is the standard
C include file contai ning declarations for string manipulation functions.

extern "C'

{

C:\tutorial\foreign.html Page 56 of 61

Foreign Language Functions 01/05/99

Ldl Status all _letters
(Ldl Obj ect str, Ldl Object ch, Ldl Object pos);
}

Here we enclose the function declaration in an extern statement in order to suppress the name mangling
performed by most C++ compilers. The function is declared to accept three arguments of type
LdIObject and is expected to return avalue of type L dIStatus.

t ypedef struct

int position; // Current position
int length; // Length of string
} State;

Thisisthe definition of the state structure we intend to use for this function. It contains two state
variables, one to store the current position within the string and the other to store the length of the entire
string.

Ldl Status all _letters (Ldl Cbject str, Ldl Object
ch, Ldl Obj ect pos)

{

Stat e* state;

Ldl St at us st at us;

char ret_string [2];

char* c_string;

if (Idl_entry_p())

/1 This is the first time around

/1 Create the state structure

state = (State*)ldl _create_state(sizeof(State))
/1 Initialize the position

state->position = 0;

if (c_string = Idl_get_string(str))
state->length = strlen(c_string);

el se

state->lenth = 0

}

In this section of the code, we examine if this was the first time this function was invoked. If that were
the case, we created the state structure by using a LDL++ system function, Idl_create_state. We pass
to this function the size in bytes of the state structure we are intercede in creating. Once we have the
state, we initialize the state variable position. To initiaize the other variable, length, wefirst need to
extract the C string from the input parameter, str and compute its length. This length is now assigned to
the state variable length. This ends the initialization process. Now we are ready to perform the actua
processing.

/1 Recover the state fromthe LDL++ system
state = (State *)Idl _get_state();

if ((c_string = Idl _get_string(str))

&&

(state->position < state->length))

{

C:\tutorial\foreign.html Page 57 of 61

Foreign Language Functions 01/05/99

ret_string[O0]
ret_string[1]

c_string[state->position];
' \OI ;

I dl _nake_string(ch,
ret_string);

| dl _make_i nt (pos,

st at e- >position);

st at e- >posi ti on++;
status = LDL_SUCCESS;
}

el se
status = LDL_FAI L
return(status);

}

This section of the code is executed every time this function is called. We first recover the state using
the LDL++ system function Idl_get_state. We then examine if our current position isless than the
length of the string. If true, thisimplies that we have some more values to return. We extract the "C"
string from the input parameter and create a string of one character picked up from the current position.
We use the system function, Idl_make_string, to create a string and assign it to the output
parameter.ch. Similarly, using Idl_make _int, we create ainteger denoting the corresponding position
of the character and assign it to the other output parameter, pos. Then we increment the state variable,
position, to look at the next character (if any) during the next call of this function. Finally we return a
valueof LDL_SUCCESS. Once al the characters have been processed, we return a value of
LDL_FAIL.

This link shows a complete | DL ++ program using the external C++ function described above.

In generd, to import an external C/C++ function as a predicate, you need to declare it asfollows:

import foreign

Predi cat eName(Argl: Type,

Arg2: Type, ...) from'filel.o",
"file2.0',,

"l'ibl.o', '"Iib2.0', ... , '"libn.o".

For our example, the declaration would be:

inmport foreign all _letters($Wrd: string,
Letter:string, Position: integer_ from
"fusr/local/ldl ++/ denp/all _letters.o'
"/fusr/lib/libc.a'.

The C++ fileis assumed to be located at '/usr/local/ldl++/demo/all_letters.o'. Once we have this
declaration, all_letters can be treated as an L DL ++ predicate.

C:\tutorial\foreign.html Page 58 of 61

Inlineinterface

4 summary of Ul Commands

01/05/99

pwd

I's [<directory> ...]

cd [<directory>]

popd [<directory>]

pushd [<directory>]

nor e [<filenanme>]

uni x [<unix command string>]

open [<Idl ++ schema and/or rules filenane> ...

| oad [<Idl ++ schema and/or rules filenane> ...

cl ose

initdb [<Idl++ facts filenane> ...]

savedb <l dl ++ dat abase fil enanme>

getdb [<ldl ++ dat abase fil enanme>]

rel easedb

conpi l e [<exported query forne ...]

query [<predicate>]

i nsert [<ground predicate>]

del ete [<predicate>]

di spl ay ["schema" | "rules" | "facts" |

"export" | "inport" | "nodule" |

<predicate nane>"/"<arity>]

def aul t ["rmodule" | "schema"] [<nodul e name>]

exit

1l

I'[<pattern>]

hi story

alias <alias_nanme> [<alias_string>]

unal i as <al i as nane>

set [<option>] [<option value>]

edit ["-e" <editor>] [<filenanme>]

Remarks

[] means optional.
... means a sequence.

UNIX-BASED COMMANDS

pwd
I's

cd
popd
pushd
nor e
uni x

e e — —

REMARKS

C:\tutorial\asciui.html

<directory> ...]
<directory>]
<directory>]
<directory>]
<filenanme>]

<uni x command string>]

Page 59 of 61

Inlineinterface 01/05/99

Similar to the corresponding commands on unix shell.

BASIC COMMANDS

open [<Idl ++ schema and/or rules filenane> ...]

cl ose

initdb [<Idl++ facts filenane> ...]

savedb <l dl ++ dat abase fil enanme>

get db [<ldl ++ dat abase fil enanme>]

rel easedb

conpi l e [<exported query forne ...]

query [<predicate>]

i nsert [<ground predicate>]

del ete [<predicate>]

di spl ay ["schema" | "rules" | "facts" | "export" | "inport" | "nodule" |
<predicate nane>"/"<arity>]

def aul t ["rmodule" | "schema"] [<nodul e name>]

exit

REMARKS: Main commands and their meaning

0 "load" and "open" are the same command and they load schema and rules from afile.
"initdb" initializes the local database with factsin predicate format from afile.
"close" removes the current set of schema, rules and facts.

"savedb" dumpsthelocal database into afile with internal format.

"releasedb” destroys all datain thelocal database.

"getdb" loads the local database from afile with internal format.

"compile" compiles a sequence of query formsinto an interpretive form.
"query" queries against the local database.

"insert" adds atuple into the local database.

"delete" removestuple(s) from thelocal database.

"display" showsall or part of the current environment of the system.

"default" shows or changes the default schema and rule module.

"exit" quits from the system.

[

(m)

O o oo o o o o o

Other Commands

1
I'[<pattern> | <history index>]

hi story

alias <alias_name> [<alias_string>]

unal i as <al i as nane>

edit ["-e" <editor>] [<filename>]

set [<option>] [<option value>]
REMARKS:

o Command completion is provided and the user is prevented from typing in wrong commands.
"II" executes the last command.
"I<pattern>" executes the past command that has a prefix matching the pattern.

0 "I<history index>" executes the past command with that history index.

o "higtory" shows the history of al entered commands.

C:\tutorial\asciui.html Page 60 of 61

Inlineinterface 01/05/99

"alias" alows additional naming of commands.

"unalias’ removes an dias.

"edit" invokes the appropriate editor.

"set" changes the vlaue of the various options, described below:

O o o o

| OPTION | OPTION |DEFAULT
TYPES VALUES | VALUES

| compile { shallow,deep} | shallow

| editor |{ emacs, vi, ... } | emacs

| duplicate | {yes,no} | no

| reorder | {yes no} | no

| trace | {0,1,..4} | 0

| optimizer | {0,1,..} | 0

| timer | {onoff} | off
tecesz¢ | eeae,

Return to: Table of Contents

Carlo Zaniolo, 1997

C:\tutorial\asciui.html Page 61 of 61

