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A sliding windows model is an important case of the streaming model, where only the
most “recent” elements remain active and the rest are discarded. The sliding windows
model is important for many applications (see, e.g., Babcock, Babu, Datar, Motwani and
Widom (PODS 02); and Datar, Gionis, Indyk and Motwani (SODA 02)). There are two
equally important types of the sliding windows model - windows with fixed size (e.g.,
where items arrive one at a time, and only the most recent n items remain active for some
fixed parameter n), and timestamp-based windows (e.g., where many items can arrive in
“bursts” at a single step and where only items from the last ¢t steps remain active, again
for some fixed parameter t). Random sampling is a fundamental tool for data streams, as
numerous algorithms operate on the sampled data instead of on the entire stream. Effective
sampling from sliding windows is a nontrivial problem, as elements eventually expire. In
fact, the deletions are implicit; i.e., it is not possible to identify deleted elements without
storing the entire window. The implicit nature of deletions on sliding windows does not
allow the existing methods (even those that support explicit deletions, e.g., Cormode,
Muthukrishnan and Rozenbaum (VLDB 05); Frahling, Indyk and Sohler (SOCG 05)) to be
directly “translated” to the sliding windows model. One trivial approach to overcoming the
problem of implicit deletions is that of over-sampling. When k samples are required, the
over-sampling method maintains k’ > k samples in the hope that at least k samples are not
expired. The obvious disadvantages of this method are twofold:

(a) It introduces additional costs and thus decreases the performance; and

(b) The memory bounds are not deterministic, which is atypical for streaming algorithms
(where even small probability events may eventually happen for a stream that is long
enough).

Babcock, Datar and Motwani (SODA 02), were the first to stress the importance of
improvements to over-sampling. They formally introduced the problem of sampling from
sliding windows and improved the over-sampling method for sampling with replacement.
Their elegant solutions for sampling with replacement are optimal in expectation, and
thus resolve disadvantage (a) mentioned above. Unfortunately, the randomized bounds do
not resolve disadvantage (b) above. Interestingly, all algorithms that employ the ideas of
Babcock, Datar and Motwani have the same central problem of having to deal with a
randomized complexity bound (see, e.g., Datar and Muthukrishnan (ESA 02); Chakrabarti,
Cormode and McGregor (SODA 07)). Further, the proposed solutions of Babcock, Datar and
Motwani for sampling without replacement are based on the over-sampling method and thus
do not solve problem (a). Therefore, the question of whether we can solve sampling on
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sliding windows optimally (i.e., resolve both disadvantages) is implicit in the paper of
Babcock, Datar and Motwani and has remained open for all variants of the problem. In
this paper we answer these questions affirmatively and provide optimal sampling schemas
for all variants of the problem, i.e. sampling with or without replacement from fixed
or timestamp-based windows. Specifically, for fixed-size windows, we provide optimal
solutions that require O (k) memory; for timestamp-based windows, we show algorithms
that require O (klogn) space,! which is optimal since it matches the lower bound by
Gemulla and Lehner (SIGMOD 08). In contrast to the work of Babcock, Datar and Motwani,
our solutions have deterministic bounds.

© 2011 Published by Elsevier Inc.

1. Introduction

Random sampling and sliding windows are two fundamental concepts for data streams. Sampling is a very natural
way to summarize data properties with sublinear space; indeed, it is a key component of many streaming algorithms and
techniques. Just to mention a few, the relevant papers include Aggarwal [2]; Alon, Duffield, Lund and Thorup [3]; Alon,
Matias and Szegedy [4]; Babcock, Babu, Datar, Motwani and Widom [8]; Babcock, Datar and Motwani [10]; Bar-Yossef [13];
Bar-Yossef, Kumar and Sivakumar [16]; Buriol, Frahling, Leonardi, Marchetti-Spaccamela and Sohler [19]; Chakrabarti, Cor-
mode and McGregor [20]; Chaudhuri and Mishra [23]; Chaudhuri, Motwani and Narasayya [24]; Cohen [25]; Cohen and
Kaplan [26]; Cormode, Muthukrishnan and Rozenbaum [27]; Dasgupta, Drineas, Harb, Kumar and Mahoney [30]; Datar
and Muthukrishnan [32]; Duffield, Lund and Thorup [33]; Frahling, Indyk and Sohler [36]; Gandhi, Suri and Welzl [38];
Gemulla [39]; Gemulla and Lehner [40]; Gibbons and Matias [41]; Guha, Meyerson, Mishra, Motwani and O’Callaghan [46];
Haas [47]; Kolonko and Wadsch [50]; Li [53]; Palmer and Faloutsos [56]; Szegedy [58]; and Vitter [60]. These papers illus-
trate the vitality of effective sampling methods for data streams. Among other methods, uniform random sampling is the
most general and well understood. Most applications maintain multiple samples using two popular methods: namely, sam-
pling with replacement and sampling without replacement. The former method assumes independence among samples; the
latter forbids repetitions. While sampling without replacement preserves more information, sampling with replacement is
sometimes preferred due to its simplicity; thus both schemas are important for applications.

The concept of sliding windows expresses the importance of recent data for applications. In this model, analysis is
restricted to the most recent portion of the stream; the outdated elements must not be considered. The importance of
the sliding windows model is well illustrated by the considerable amount of relevant papers in both theory and database
communities. A small sample subset of relevant papers includes the work of Arasu, Babcock, Babu, Cieslewicz, Datar, Ito,
Motwani, Srivastava and Widom [5]; Arasu and Manku [6]; Ayad and Naughton [7]; Babcock, Babu, Datar, Motwani and
Thomas [9]; Babcock, Babu, Datar, Motwani and Widom [8]; Babcock, Datar and Motwani [10,11]; Babcock, Datar, Motwani
and O’Callaghan [12]; Das, Gehrke and Riedewald [29]; Datar, Gionis, Indyk and Motwani [31]; Datar and Motwani, Chap-
ter 8 [1]; Datar and Muthukrishnan [32]; Feigenbaum, Kannan and Zhang [34]; Gibbons and Tirthapura [42]; Golab, DeHaan,
Demaine, Lopez-Ortiz and Munro [43]; Golab and Ozsu [44]; Lee and Ting [52]; Li, Maier, Tufte, Papadimos and Tucker [54];
and Tatbul and Zdonik [59].

Two types of sliding windows are widely recognized. Fixed-size (or sequence-based) windows define a fixed amount of the
most recent elements to be active. For instance an application may restrict an analysis to the last trillion elements. Fixed-
size windows are important for applications where the arrival rate of the data is fixed (but still extremely fast), such as
sensors or stock market measurements. In timestamp-based windows the validity of an element is defined by an additional
parameter such as a timestamp. For instance, an application may restrict an analysis to elements that arrived within the
last hour. Timestamp-based windows are important for applications with asynchronous data arrivals, such as networking or
database applications.

The importance of both concepts raises two natural questions of optimal sampling from sliding windows:

Question 1.1. How to maintain a uniform random sampling from sliding windows using provably optimal memory bounds?
Question 1.2. Is sampling from sliding windows algorithmically harder than sampling from the entire stream?

In this paper we answer both questions. Informally, what we show is that it is possible to “translate” (with optimal
deterministic memory bounds for all sampling-based algorithms) sampling with and without replacement on the entire
stream to sampling with or without replacement in all variants of the sliding windows model. We state precise results in
Theorems 2.1, 2.2, 3.9, 4.4 and 5.1.

1 Here and henceforth we use n to denote the size of the sliding window, i.e., the number of active elements.
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1.1. Discussion and related work

In spite of their apparent simplicity, both Questions 1.1 and 1.2 have no trivial solution. Indeed, the sliding windows
model implies eventual deletions of samples; thus, none of the well-known methods for insertion-only streams (such as
the reservoir method [60]) is applicable. Moreover, the deletions are implicit, i.e., they are not triggered by an explicit user’s
request. Thus, the algorithms for streams with explicit deletions (such as [27,36]) do not help. Let us illustrate the inherent
difficulty of sampling from sliding windows with the following example. Consider the problem of maintaining a single
sample from a window of the last 230 elements. Assume that the 100-th element is picked as an initial sample. Eventually,
the (239 4+ 100)-th element arrives, in which case the sample is outdated. But at this time, the data has already been passed
and cannot be sampled.

Babcock, Datar and Motwani [10] were the first to address the problem of sampling from sliding windows. The key idea
of the elegant algorithms in [10] is a “successors list”; in fact, this idea has been used in almost all subsequent papers.
The successors list method suggests backing up a sample with a list of active successors. When a sample expires, the next
successor in the list becomes a sample; thus a sample is available at any moment. Based on this idea, Babcock, Datar
and Motwani built solutions for sampling with replacement. For sequence-based windows of size n, their chain sampling
algorithm picks a successor among n future elements, and stores it as it arrives. They show that such schema has an
expected memory bound of O (k) and with high probability will not exceed O (klogn). For timestamp-based windows, their
priority sampling method associates a priority with every new element. A priority is a random number from (0, 1); a sample
is an element p with highest priority; and a sample’s successor is an element with the highest priority among all elements
that arrived after p. Priority sampling requires O (klogn) memory words in expectation and with high probability. There is
a lower bound of §2(klogn) for timestamp-based windows that was shown in [40]. Thus, the methods of Babcock, Datar
and Motwani are optimal in expectation. However, the inherent problem of the replacement method is that the size of the
successors list is itself a random variable; thus this method cannot provide worst-case optimal bounds. Moreover, Babcock,
Datar and Motwani suggested over-sampling as a solution for sampling without replacement; thus the problem of further
improvements is implicitly present in their paper. In his excellent survey, Haas [47] gave a further detailed discussion of
their solutions.

Zhang, Li, Yu, Wang and Jiang [61] provide an adaptation of reservoir sampling to sliding windows. However, their ap-
proach requires storing the window in memory; thus it is applicable only for small windows. In an important work, Gemulla
and Lehner [40] addressed the question of sampling without replacement for timestamp-based windows. They suggest a nat-
ural extension of priority sampling by maintaining a list of elements with the k highest priorities. This gives an expected
O (klogn) solution. However, their memory bounds are still randomized. Gemulla [39] and Gemulla and Lehner [40] re-
cently addressed the problem of random sampling from timestamp-based windows with a bounded memory. This setting is
different from the original problem of Babcock, Datar and Motwani [10]. Namely, it introduces additional uncertainty in the
following sense: there is no guarantee that a sample is available at any moment. They provide a “local” lower bound on the
success probability that depends on the window’s data. However, there is no “global” lower bound; as Gemulla [39] states
in his thesis:

We cannot guarantee a global lower bound other than 0 that holds at any arbitrary time without a priori knowledge of the data
stream.

Thus, the problem of optimal sampling for the entire life-span of the stream from sliding windows remained an open
problem for all versions until today. We stress that, while this problem is important in its own right, it also has further
implications for many other problems. Indeed, uniform random sampling is a key tool for many streaming problems (see,
e.g., [55]). “Translations” to sliding windows using previous methods introduce randomized complexity instead of determin-
istic memory bounds (see, e.g., [20]).

1.2. Our contribution

In this paper we answer affirmatively to Questions 1.1 and 1.2 for all variants of the problem, i.e., for sampling with and
without replacement from fixed-size or timestamp-based windows. Our solutions have provable optimal memory guarantees
and are stated precisely in Theorems 2.1, 2.2, 3.9, 4.4 and 5.1. In particular, we give O (k) bounds for fixed-size windows
(for sampling with or without replacement) and O (klogn) bounds for timestamp-based windows (for sampling with or
without replacement). This is a strict improvement over previous methods that closes the gap between randomized and
deterministic complexity, an important fact in its own right.

Finally, this paper introduces simple (yet novel) techniques that are different from all previous approaches. In particular,
we reduce the problem of sampling without replacement to the problem of sampling with replacement for all variants of
the sliding windows model. This may be of independent interest, since the former method is a more general case than the
latter; thus our paper also proves equivalence for sliding windows, as discussed in the next section.
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1.3. High-level ideas of our approach

We start by describing four key ideas: equivalent-width partitions, covering decomposition, generating implicit events, and
black-box reduction from sampling without replacement to sampling with replacement. Also, we outline our approach by giving
high-level descriptions of the most important steps.

1.3.1. Equivalent-width partitions

Our methods for the sequence-based windows are based on a simple (yet novel) idea of equivalent-width partitions:
consider sets A, B,C such that CCBC AUC and ANC = and |B| =|A|. Our goal is to obtain a sample from B, given
samples from A and C. We use the following rule: if a sample from A belongs to B, then we assign it to be a sample
from B; otherwise, we assign a sample from C to be a sample from B. The direct computations show the correctness of this
schema, i.e., the result is always a uniform sample from B.

As a next step, observe that the above idea can be applied to the sliding windows model. We partition (logically) the
entire stream into disjoint intervals (we call them buckets) of size n, where n is the size of the window. For each bucket
we maintain a random sample using any one-pass algorithm (e.g., the reservoir sampling method). If the window coincides
with the most recent bucket, then our task is easy; we assign this bucket’s sample to be the output. Otherwise, the window
intersects the two most recent buckets. It must be the case that the most recent bucket is “partial”; i.e., not all elements have
arrived yet. But this case matches precisely our key idea: the most recent bucket corresponds to C, our window corresponds
to B and the second-most recent bucket corresponds to A. We thus can apply the above rule and obtain our sample using
only samples from the two buckets. Since we need only these samples, the optimality of our schema is straightforward.

The above idea can be generalized to sampling without replacement. Indeed, we show that, given k-samples without
replacement from A and C, we take the portion of A’s sample that belongs to B and complete it with the random portion
from C’s sample. We show that the result is a k-sample without replacement from B. As before, we apply this idea to
sliding windows; the detailed proofs can be found in the main body of this paper.

1.3.2. Covering decomposition and generating implicit events

For timestamp-based windows, the size of the window is unknown; moreover, it was shown (see, e.g., [31]) that the
size of the window cannot be computed precisely with sublinear memory. This negative result is a key difference between
timestamp-based windows and all other models, such as insertion-only streams and streams with explicit deletions (the
turnstile model). In fact, this negative result is one of the main reasons for the randomized bounds in previous solutions.
Indeed, it is not clear at all how to obtain uniformity if even the size of the sampled domain is unknown.

Our key observation is that it is possible to sample from a window without knowledge of its size. As before, consider
disjoint sets A, B, C such that CC B C AUC and ANC = . In the current scenario we do not assume that |A| = |B| and
still obtain samples from B. We show that if |A| < |B|, and it is possible to generate random events w.p. %, then it is
possible to “combine” the samples from A and C into a sample from B. The new rule is a generalization of our above ideas.
We assign the sample from A to be a sample from B if the A’s sample belongs to B (for technical reasons, we decrease the
probability of this event by ‘I%I‘ multiplicative factor). Otherwise, we assign the sample from C to be the sample from B. We
show that this rule gives a uniform sample from B.

To apply this idea to sliding windows, we need to overcome two problems. First, we must be able to maintain such an A
and C (as before we associate B with our window). This task is nontrivial, since the size of the window is unknown. Our
second key idea is a novel covering decomposition structure. Using this structure, we are able to maintain such an A and C
at any moment.

Second, we need the ability to generate events w.p. H which is still an unknown probability since |B| is the size of
our window. Our third key idea is a novel technique that we call generating implicit events. At the heart of our technique
lies the idea of gradually decreasing the probabilities, starting from 1, until we achieve the desired probability of |A|/|B]. In
particular, we show that it is possible to generate a non-uniform distribution over the elements of A, where the probability
of picking an element is a function of the element’s timestamp (or index). The function is constructed in such a way that
the probability of picking an element among the last i elements of A is equal to =—. That is, the probability of picking an

[CI+i
expired element is %. Since |A| < |C| and since we know the values of |A| and |C|, it is possible to generate events w.p.
%. The details can be found in the main body of this paper.

1.3.3. Black-box reduction from sampling without replacement to sampling with replacement

Finally, we show that a k-sample without replacement may be generated from k independent samples, Ry,..., Rg_1.
We apply our fourth key idea, a black-box reduction from sampling without replacement to sampling with replacement. The
novelty of our approach is based on sampling from different domains; in fact, R; samples all but i last active elements. Such
samples can be generated if, in addition, we store the last k elements.

1.3.4. Independence of disjoint windows
Our algorithms generate independent samples for non-overlapping windows. The independence follows from the nice
property of the reservoir algorithm (that we use to generate samples in the buckets). Let Ry be a sample generated for the
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bucket B, upon arrival of i elements of B. Let R, be a fraction of the final sample (i.e., the sample when the last element
of B arrives) that belongs to the last |B| — i elements. The reservoir algorithm implies that R; and R, are independent.
Since the rest of the buckets contain independent samples as well, we conclude that our algorithms are independent for
non-overlapping windows.

1.4. Roadmap and notations

We use the following notations throughout our paper. We denote by D a stream and by p;, i > 0 its i-th element. For
0 <x <y we define [x, y] ={i, x <i< y}. Finally, bucket B(x, y) is the set of all stream elements between py and py_1:
B(x,y) ={pi, i €[x,y — 1]}. We use logx notation for the logarithm of x to the base 2.

Our bounds are expressed in memory words; that is we assume that a single memory word is sufficient to store a stream
element or its index or a timestamp.

Section 2 presents sampling for sequence-based windows, with and without replacement. Sections 3 and 4 are devoted
to sampling for timestamp-based windows, with and without replacement. Section 5 outlines possible applications for our
approach.

2. Equivalent-width partitions and sampling for sequence-based windows
2.1. Sampling with replacement

Let n be the predefined size of a window. We say that a bucket is active if all its elements have arrived and at least one
element is non-expired. We say that a bucket is partial if not all of its elements have arrived. We show below how to create
a single random sample. To create a k-random sample, we repeat the procedure k times, independently.

We divide D into buckets B(in, (i+1)n), i =0, 1,.... At any point in time, we have exactly one active bucket and at most
one partial bucket. For every such bucket B, we independently generate a single sample, using the reservoir algorithm [60].
We denote this sample by Xp.

Let B be a partial bucket and C C B be the set of all arrived elements of B. The properties of the reservoir algorithm?
imply that Xp is a random sample of C.

Below, we construct a random sample Z of all non-expired elements. Let U be the active bucket. If there is no partial
bucket, then U contains only all non-expired elements. Therefore, Z = Xy is a valid sample. Otherwise, let V be the partial
bucket. Let U, = {x: x € U, x is expired}, Uy = {x: x € U, x is non-expired}, V, ={x: x € V, x arrived}.

Note that |V,| = |Ue| and let s = |Vg4]|. Also, note that our window is U; UV, and Xy is a random sample of V,.
The random sample Z is constructed as follows. If Xy is not expired, we put Z = Xy, otherwise Z = Xy. To prove the
correctness, let p be a non-expired element. If p € Uy, then P(Z=p)=P(Xy =p) = % If p e Vg, then

s1 1
P(Z=p)=P(Xy €Ue, Xy =p) =P(Xy € Ue)P(Xy =p) = i
Therefore, Z is a valid random sample. We need to store only samples of active or partial buckets. Since the number of such
buckets is at most two and the reservoir algorithm requires @ (1) memory, the total memory of our algorithm for k-sample
is ® (k). Thus,

Theorem 2.1. It is possible to maintain k samples with replacement for sequence-based windows using O (k) memory words.

2.2. Sampling without replacement

We can generalize the idea above to provide k samples without replacement. In this section k-sample means k-random
sampling without replacement.

We use the same buckets B(in, (i + 1)n), i =0, 1,.... For every such bucket B, we independently generate a k-sample
Xp, using the reservoir algorithm.

Let B be a partial bucket and C C B be the set of all arrived elements. The properties of the reservoir algorithm imply
that either Xp = C, if |C| <k, or X is a k-sample of C. In both cases, we can generate an i-sample of C using Xp only, for
any 0 <i < min(k, |C|).

Our algorithm is as follows. Let U be the active bucket. If there is no partial bucket, then U contains only all active
elements. Therefore, we can put Z = Xy. Otherwise, let V be the partial bucket. We define U,, Uy, V4, s as before and
construct Z as follows. If all elements of Xy are not expired, Z = Xy. Otherwise, let i be the number of expired elements,
i=|U. N Xy|. As we mentioned before, we can generate an i-sample of V, from Xy, since i < min(k, s). We denote this
sample as X%, and put

Z=XyNUgUXL,.

2 We recall that the reservoir algorithm [60] maintains a sample from an unbounded stream.
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We will prove now that Z is a valid random sample. Let Q = {pj,,..., pj,} be a fixed set of k non-expired elements such
that ji <jz <--- < jx. Leti=[Q NVal,s0o {pj;,....Pj_;} SUqand {pj,_;,,,..., Pjy} S Vq. If i=0, then Q CU and

1
(o)

Otherwise, by independence of Xy and X{,

PZ=Q)=P(Xy=0Q)=

P(Z=Q)=P(IXu NUel=1i, {pjy,---, Pjri} S Xus Xy ={Pji 11+--+ Pji})
= P(|XU NUel=1, {Pjis--» Pji} S XU) * P(X§/ = {pjl<—i+1""’pjk})
S
: 1 1
= Q * I Ty
W 6 ©
Therefore, Z is a valid random sample of non-expired elements. Note that we store only samples of active or partial

buckets. Since the number of such buckets is at most two and the reservoir algorithm requires O (k) memory, the total
memory of our algorithm is O (k). Thus,

Theorem 2.2. It is possible to maintain k samples without replacement for sequence-based windows using O (k) memory words.

3. Sampling with replacement for timestamp-based windows

Let n =n(t) be the number of non-expired elements. For each element p, the timestamp T(p) represents the moment
of p’s entrance. For a window with (predefined) parameter to, p is active at time t if t — T(p) < to. We show below how to
create a single random sample. To create a k-random sample, we repeat the procedure k times, independently.

3.1. Notations

A bucket structure BS(x, y) is a tuple

{p)u X, ¥, T(px)s Rx.y, Qx.y, rsQ},

where T(py) is the timestamp of py, Rxy and Qy y are independent random samples from B(x, y) and r,q are indexes of
the picked (for random samples) elements. We denote by N(t) the index of the last element of D at the moment ¢ and by
I(t) the index of the earliest active element at the moment t. Note that N(t) < N(t + 1), I(t) <I(t+ 1) and T(p;) < T(Pi+1)-

3.2. Covering decomposition

Definition 3.1. Let a < b be two indexes. A covering decomposition of a bucket B(a, b), ¢(a, b), is an ordered set of bucket
structures with independent samples inductively defined below

¢(b,b) :=BS(b,b+1),
and for a < b,

¢(a, b) :=(BS(a, c), ¢ (c, b)),

where ¢ = a + 2llogG+1-a)]—1

Note that
|¢(a, b)| = 0(log (b — )),

so ¢(a,b) uses O(log (b —a)) memory.
Given pp41, we inductively define an operator Incr(¢(a, b)) as follows.

Incr( (b, b)) := (BS(b, b + 1), BS(b +1,b +2)).
For a < b, we put
Incr(¢(a, b)) == (BS(a, v), Incr(¢ (v, b)),

where v is defined below.

If [log(b+2—a)] = |log(b+1—a)], then we put v =c, where BS(a, ¢) is the first bucket structure of ¢(a, b). Otherwise,
we put v =d, where BS(c,d) is the second bucket structure of ¢(a, b). (Note that ¢(a, b) contains at least two buckets for
a<b.)
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We show how to construct BS(a, d) from BS(a, ¢) and BS(c, d). We have in this case |log(b+2—a)| = [log(b+1—-a)] +1,
and therefore b +1 —a =2! — 1 for some i > 2. Thus ¢ —a = 2108@'-DI-1 _3i=2 54

|logb+1—0)]=|log(b+1—a—(c—a)|= Llog(zi—zi’z—l)J =i—1.

Thus d — ¢ = 2Uesb+1-0J-1 — 2i-2 — ¢ _ g Now we can create BS(a,v) by unifying BS(a,c) and BS(c,d): BS(a,v) =
{Pa.a, v, T(pa), Rad, Qua.7.q'}. We put Ry 4 = Ry with probability % and Ry 4 = R4 otherwise. Since d —c=c —aq,
and Rc g, Rq,c are distributed uniformly, we conclude that R, 4 is distributed uniformly as well. Qg 4 is defined similarly and
r’,q" are indexes of the chosen samples. Finally, the new samples are independent of the rest of ¢’s samples. Note also that
Incr(¢ (a, b)) requires O (log (b — a)) operations.

Thus, we conclude

Fact 3.2. The size of covering decomposition ¢(a, b) is bounded by O (log (b — a)). Incr(¢(a, b)) requires O (log (b — a)) time
and memory.

Definition 3.3. Two bucket structures BS(a, b) and BS(c,d) are equal if a =b and c =d. Two sequences of bucket structures
are equal if the sequences are of the same size and their i-th elements are equal for each i.

Lemma 3.4. For any a and b, the lists Incr(¢ (a, b)) and ¢(a, b + 1) are equal (in the sense of Definition 3.3).

Proof. We prove the lemma by induction on b —a. If a = b then, since b+ 1 = b + 21008 (b+D+1-b)]=1 e haye, by definition
of £(b,b+1),

¢(b,b+1)=(BS(b,b+1),¢(b+1,b+1))=(BS(b,b+1),BS(b + 1,b + 2)) = Incr( (b, b)).

We assume that the lemma is correct for b —a < h and prove it for b —a = h. Let BS(a, v) be the first bucket of Incr(¢(a, b)).
Let BS(a, c) be the first bucket of ¢(a, b). By definition, if |log(b+2 —a)] = [log(b+ 1 —a)] then v =c. We have

v=a-+ 2Llog(b+1—a)j—1 —a+ gllogb+2—-a)] -1

Otherwise, let BS(c,d) be the second bucket of ¢(a,b). We have from the above |log(b+2 —a)| = [log(b+1—a)] + 1,
d—c=c—a and v =d. Thus

v:dzzc_azz(a_l_z\_log(b—&-]—a)J—])_a:a+2Llog(b+l—a)J :a+2Llog(b+2—a)J—1.

In both cases v = a + 2108 (b+D+1-0)]-1 and, by definition of ¢
¢(a,b+1)=(BS(a,v),s(v,b+1).

By induction, since b — v < h, we have Incr(¢(v,b)) = ¢(v,b+ 1). Thus
¢(a,b+1)=(BS(a,v),(v,b+1))=(BS(a,v),Incr(¢(v,b)))=Incr(¢(a, b)). O

Lemma 3.5. For any t with a positive number of active elements, we are able to maintain one of the following:

1. ¢((t), N(t)), or
2. BS(y¢, 2¢), ¢ (z¢, N(t)), where yr < I(t) < zt, zt — y¢ < N(t) + 1 — z;: and all random samples are independent. Furthermore, the
memory and time required are O (log(n(t))).

Proof. We prove the lemma by induction on t. First we assume that t = 0. If no element arrives at time 0, the stream is

empty and we do nothing. Otherwise, we put ¢ (0, 0) = BS(0, 1), and for any i, 0 <i < N(0) we generate ¢ (0, i) by executing

Incr(¢(0,i — 1)). At the end of this step, we have ¢(0, N(0)) = ¢(I(0), N(0)); thus, the first condition of the lemma is valid.
We assume that the lemma is correct for ¢t and prove it for t + 1.

1. If for ¢t the window is empty, then the procedure is the same as for t = 0.
2. If for t the first condition of the lemma is true then we have three sub-cases.
(a) If py) is not expired at the moment t 4 1, then I(t 4+ 1) =I(t). Similar to the basic case, we apply the Incr procedure
for every new element with index i, N(t) <i < N(t+1). Due to the properties of Incr, we have at the end ¢((t + 1),
N(t + 1)). Therefore the first condition of the lemma is true for t + 1.
(b) If pn( is expired, then our current bucket structures represent only expired elements. We delete them and apply
the procedure for the basic case.
(c) The last sub-case is the one when py() is not expired and pj¢) is expired. Let (BS1, ..., BSy), (BS; = BS(vi, viy+1)) be
all buckets of £(I(t), N(t)). Since pn(, is not expired, there exists exactly one bucket structure, BS;, such that p, is
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expired and p,y
We put

i1 1s not expired. We can find it by checking all the bucket structures, since we store timestamps.
Y1 = Vi, Zt41 = Vig1.

We have by definition
¢ (2t41, N®©)) = ¢ (Vig1, N(©)) = (BSit1, ..., BSk).

Applying the Incr procedure to all new elements, we construct ¢(zt+1, N(t + 1)). Finally, we have:
_ 1 1
Zes1 — Yer1 = Vigr — vi = 208 NOFT=vI =1 i(N(f) +1—v)= i(N(f) +1—= Y1)

Therefore, and by Definition 3.1, we have z;11 — yr41 < N() +1— 241 < Nt + 1) + 1 — z44. Thus, the second
condition of the lemma is valid for t + 1. We discard all non-used bucket structures BSq, ..., BS;_1.
3. Finally, assume that for ¢ we maintain case of the second condition of the lemma. Similarly, we have three sub-cases.
(a) If p,, is not expired at the moment t + 1, we put yer1 = Y, Ze4+1 = 2¢. We have

Zey1 = Yer1 =2 — Ve SNO+1 -z <N(E+1) + 1 —2z41.

Again, we add the new elements using the Incr procedure and we construct ¢(z¢+1, N(t + 1)). Therefore the second
condition of the lemma is true for t + 1.

(b) If pn( is expired, we apply exactly the same procedure as for 2(b).

(c) If pg, is expired and pp() is not expired, we apply exactly the same procedure as for 2(c).

Note also that y; <I(t) and that n(t) < N(t) — I(t). Thus, memory and time bounds follow from Fact 3.2. Therefore, the
lemma is correct. O

3.3. Generating implicit events

We use the following notations for this section. Let By = B(a,b) and By = B(b, N(t) + 1) be two buckets such that pq
is expired, pp is active and |Bq| < |B2|. Let BS; and BS; be corresponding bucket structures, with independent random
samples R1, Q1 and Ry, Q2. We put « =b —a and 8 = N(t) + 1 — b. Let y be the (unknown) number of non-expired
elements inside B1, so n = + y. We stress that o,  are known and y is unknown.

Lemma 3.6. It is possible to generate a random sample Y = Y (Q1) of By, with the following distribution:

P(Y_pb,,)_(ﬂ DATi=1)’ O<i<a,
B
P(Y =pg) = 7,3 T

Y is independent of Ry, R2, Q2 and can be generated within constant memory and time, using Q1.

Proof. Let {H j}‘;‘:_ll be a set of zero-one independent random variables such that
_ ap
B+HB+ji-1)

Let D =B1 x {0,1}*"1 and Z be the random vector with values from D, Z = (Qq, H1, ..., Hy_1). Let {Ai}, be a set of
subsets of D:

P(Hj=1)

Ai={(@p-i,a1,....0i1,1,ai11,....00—1) |aj €{0, 1}, j#i}.

Finally we define Y as follows

Y — qp—i, ifZeA;, 1<i<a,
qa, otherwise.

Since Q1 is independent of Rq, Ry, Q3, Y is independent of them as well. We have
P(Y =pp_i) =P(Z € A)) = P(Q1 =qp—i. Hi=1, Hj €{0,1} for j #1)
=P(Q1 =qp—i)P(H;=1)P(Hj € {0, 1} for j #1i)

—P(Q1=qp_1)P(Hi=1)= — p _ p
B aB+B+i-1) B+DB+i—1)
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Also,

a—1

a—1
o)1 =1 B
P(Y =pa)=1 ;P(Y—pbﬂ)—l Zj(ﬁ+i)(ﬁ+i_1)

1 1 1 o B
_1_'82(,84-1—1 ,3+l> ﬂ(E ﬁ—i—a—l)_ﬁ—i-a—l'

By definition of A;, the value of Y is uniquely defined by Q; and exactly one H. Therefore, the generation of the whole
vector Z is not necessary. Instead, we can calculate Y by the following simple procedure. Once we know the index of Q1's
value, we generate the corresponding H; and calculate the value of Y. We can omit the generation of other Hs, and therefore
we need constant time and memory. O

Lemma 3.7. It is possible to generate a zero-one random variable X such that P (X X is independent of R, Rz, Q2 and

can be generated using constant time and memory.

==z

Proof. Since y is unknown, it cannot be generated by flipping a coin; a slightly more complicated procedure is required.
Let Y(Q1) be the random variable from Lemma 3.6. We have

y 14
. . - P
P(Y is not d)=> P(Y =gy BEIETI—D
(Y is not expired) 2 (Y =qp-0) E(ﬁ DB +i—1)

Y 1 1 1 1 y
:ﬂ§<ﬂ+i—l )~

Therefore P(Y is expired) = ﬁ+V
Let S be a zero-one variable, independent of Ry, Ry, Q2, Y such that

o
P(S=1)=—.
B
We put
1, ifYisexpired AND S =1,
X = .
0, otherwise.
We have
P(X =1)=P(Y isexpired, S=1) = P(Y is expired)P(S=1) = p a_ @
By B B+y

Since Y and S are independent of Ry, Ry, Q3, X is independent of them as well. Since we can determine if Y is expired
within constant time, we need a constant amount of time and memory. 0O

Lemma 3.8. It is possible to construct a random sample V of all non-expired elements using only the data of BS1, BS, and constant
time and memory.

Proof. Our goal is to generate a random variable V that chooses a non-expired element w.p. ﬁ Let X be the random
variable generated in Lemma 3.7. We define V as follows.

R1, Ry isnotexpired AND X =1,

V= .
R>, otherwise.

Let p be a non-expired element. If p € By, then since X is independent of R, we have

1 «o 1 1

mv:m:Pm1:gxznsz1=mNX=D=&ﬂ+y—g;;—n'

If p € By, then

mv=pp41—mmmnMammmmx=UWm2=m=< Zﬂiy);—g%?=%. O
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3.4. Main results

Theorem 3.9. We can maintain a random sample over all non-expired elements using @ (logn) memory.

Proof. By using Lemma 3.5, we are able to maintain one of two cases. If case 1 occurs, we can combine random variables of
all bucket structures with appropriate probabilities and get a random sample of all non-expired elements. If case 2 occurs,
we use notations of Section 3.3, interpret the first bucket as By and combine buckets of the covering decomposition to
generate samples from B,. Properties of the second case imply |Bi| < |B2| and therefore, by using Lemma 3.8, we are
able to produce a random sample as well. All procedures described in the lemmas require ® (logn) memory. Therefore, the
theorem is correct. O

Lemma 3.10. The memory usage of maintaining a random sample within a timestamp-based window has a lower bound £2 (log(n)).

Proof. Let D be a stream with the following property. For timestamp i, 0 <i < 2to, we have 220~ elements and for i > 2tq,
we have exactly one element per timestamp.
For timestamp 0 < i < tg, the probability of choosing p with T(p) =i at the moment tg+i—1 is

22t07i 22[’071' 2[‘071 2t071 1

- = = = > —.
i+to—1 5¢,— i to—i+1 N~ o~ 1 opg—j—1 to—14+; 2t — 1 2
Zj:i 22to—j  2to ijo 2to—J ijo 2]

Therefore, the expected number of distinct timestamps that will be picked between moments tyg — 1 and 2tg — 1 is at least
leiot;ll % = % So, with a positive probability we need to keep in memory at least %0 distinct elements at the moment ¢g.
The number of active elements n at this moment is at least 2. Therefore the memory usage at this moment is £2(logn),
with positive probability. O

4. Black-box reduction

In this section, we present black-box reduction from sampling without replacement to sampling with replacement. As
a result, we obtain an optimal algorithm for sampling without replacement for timestamp-based windows. Informally, the
idea is as follows. We maintain k independent random samples Ry, ..., Ry_q of active elements, using the algorithm from
Section 3. The difference between these samples and the k-sample with replacement is that R; samples all active elements
except the last i. This can be done using O (k + klogn) memory. Finally, a k-sample without replacement can be generated
using Ry, ..., Rg_1 only.

Let us describe the algorithm in detail. First, we construct R;. To do this, we maintain an auxiliary array with the last
i elements. We repeat all procedures in Section 3, but we “delay” the last i elements. An element is added to covering
decomposition only when more than i elements arrive after it. We prove the following variant of Lemma 3.5.

Lemma 4.1. Let 0 < i < k. For any t with more than i active elements, we are able to maintain one of the following:

1. ¢((t), N(t) — i), or
2. BS(yt, z¢), £(z¢, N(t) — i), where y; < I(t) <z and z; — y: < N(t) + 1 — i — z; and all random samples of the bucket structures
are independent. Furthermore, the memory and time required are O (log(n(t))).

Proof. The proof is the same as in Lemma 3.5, except for cases 1, 2(b), 3(b). For these cases, when the current window is
empty, we keep it empty unless more than i elements are active. We can do this using our auxiliary array. Also, when new
elements arrive, some of them may already be expired (if we kept them in the array). We therefore cannot apply the Incr
procedure for any “new” element. Instead, we should first skip all expired elements and then apply Incr. The rest of the
proof remains the same. 0O

The rest of the procedure remains the same. Note that we can use the same array for every i, and therefore we can
construct Ry, ..., Rk_1 using & (k 4+ klogn) memory.

In the reminder of this section, we show how Ry, ..., Rk_1 can be used to generate a k-sample without replacement.
We denote by S{ an i-random sample without replacement from [1, j].
b cb+1
a 51

Lemma 4.2. Sgﬂ can be generated using independent S samples only.

Proof. The algorithm is as follows.

o1 _ Sbutb+1), ifsPtlesh,

a+l sbu Sﬁ’“, otherwise.
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Let X = {x1,...,Xq+1} be a set of points from [1,b + 1], such that x; <x3 <--- <Xq < Xg41-
If X,4+1 <b+ 1, then we have

a+1
p(so = X) =P(U<sa’+l =x,-As3=X\{x,-}>)

j=1
a+1 1 1 1
b+1 b
=) P(S77 =xj)P(Sq = X\{x;}) =@+ ”mﬁ = m
j=1 a a+1
Otherwise,
1 a+1 1
b+1 _ v\ _ b _ b-+1 _ —
P(Sqi1=X)=P(Sq=X\{b+1},5]" e X) = Bb+1- @) O
a a+1
Lemma 4.3. S}/ can be generated using only independent samples S, S’;_l, A S'l"k“.

Proof. By using Lemma 4.2, we can generate S'z’_k+2 using Sq_k“ and S’ll_k“. We can repeat this procedure and generate

51}7“]. 2 < j <k, using S"¥H71

i1 (that we already constructed by induction) and S'f*k“' . For j =k we have Sj. O

By using Lemma 4.3, we can generate a k-sample without replacement using only Ry, ..., Rx_1. Thus, we have proved
Theorem 4.4. It is possible to maintain k samples without replacement for timestamp-based windows using O (k logn) memory words.

5. Applications

Consider an algorithm A that is sampling-based, i.e., it operates on a uniformly chosen subset of D instead of the
whole stream. Such an algorithm can be immediately transformed to sliding windows by replacing the underlying sampling
method with our algorithms. We obtain the following general result and illustrate it with the examples below.

Theorem 5.1. For a sampling-based algorithm A that solves problem P, there exists an algorithm A’ that solves P on sliding windows.
The memory guarantees are preserved for sequence-based windows and have a multiplicative overhead of logn for timestamp-based
windows.

Frequency moment estimation is a fundamental problem in data stream processing. Given a stream of elements, such
that p; e [m], the frequency x; of each i € [m] is defined as |{j | p; =i}| and the k-th frequency moment is defined as
Fe=3Y1, xi‘. The first algorithm for frequency moments for k > 2 was proposed in the seminal paper of Alon, Matias and

Szegedy [4]. They present an algorithm that uses O(ml’l]?) memory. Numerous improvements to lower and upper bounds
have been reported, including the works of Bar-Yossef, Jayram, Kumar and Sivakumar [14], Chakrabarti, Khot and Sun [22],
Coppersmith and Kumar [28], and Ganguly [37]. Finally, Indyk and Woodruff [49] and later Bhuvanagiri, Ganguly, Kesh and

Saha [17] presented algorithms that use O(ml’%) memory and are optimal. The algorithm of Alon, Matias and Szegedy [4]
is sampling-based, thus we can adapt it to sliding windows using our methods.

Corollary 5.2.3 For any k > 2 and for any €, § > 0 there exists an algorithm that maintains a (1 + €, §)-approximation of the k-th
frequency moment over sliding windows using O (m'~ k ) bits.4

Recently, numerous graph problems were addressed in the streaming environment. Stream elements represent edges
of the graph, given in arbitrary order (we refer the readers to [19] for a detailed explanation of the model). One of the
fundamental graph problems is estimating a number of small cliques in a graph, in particular the number of triangles.
Effective solutions were proposed by Jowhari and Ghodsi [51], Bar-Yossef, Kumar and Sivakumar [15] and Buriol, Frahling,
Leonardi, Marchetti-Spaccamela and Sohler [19]. The last paper presented an (€, §)-approximation algorithm that uses O (1+
% 6% w log %) memory [19, Theorem 2] that is the best result so far. Here, |T;| represents the number of node-
triplets having i edges in the induced sub-graph. The algorithm is applied on a random sample collected using the reservoir
method. By replacing the reservoir sampling with our algorithms, we obtain the following result.

3 For sufficiently large (yet polylogarithmic) values of k we improve the result of Braverman and Ostrovsky [18] that uses ()(k"ml’%) space. However,
for constant k our result is not optimal and [18] gives an optimal memory bound. Thus these two results are incomparable.

4 An algorithm maintains (1 €, §)-approximation of function f if at any moment the algorithm outputs f’ s.t. (1 —€)f(D) < f'(D) < (1+¢€)f(D) w.p.
at least 1— 8. We denote 0 (f(m)) = g5 (logm)®® (logm)®D f (m).
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Corollary 5.3. There exists an algorithm that maintains an (e, §)-approximation of the number of triangles over sliding windows. For

sequence-based windows it uses O (1+ lo‘gE‘f/"l"‘ ;—2 Ty ‘+2IE{+3‘T3‘ log %) memory, where Ey is the set of active edges. Timestamp-based

windows adds a multiplicative factor of logn.

Following [19], our method is also applicable for incidence streams, where all edges of the same vertex come together.

The entropy of a stream is defined as H=—)"[" "N’ log % where x; is a frequency and N is a length of the stream. The
entropy norm is defined as Fy = > 1", x; logx;. Effective solutions for entropy and entropy norm estimations were recently
reported by Guha, McGregor and Venkatasubramanian [45]; Chakrabarti, Do Ba and Muthukrishnan [21]; Harvey, Nelson
and Onak [48]; Chakrabarti, Cormode and McGregor [20]; and Zhao, Lall, Ogihara, Spatscheck, Wang and Xu [62].

The paper of Chakrabarti, Cormode and McGregor presents an algorithm that is based on a variation of reservoir sam-
pling. The algorithm maintains entropy using O (e ~2logd~!log(N)) memory bits that is nearly optimal. The authors also
considered the sliding window model and used a variant of priority sampling [10] to obtain the approximation. Thus, the
worst-case memory guarantees are not preserved for sliding windows. By replacing priority sampling with our methods, we
obtain

Corollary 5.4. There exists an algorithm that maintains an (€, 8)-approximation of entropy on sliding windows using
0 (e 2logs~lognlog(N)) memory bits for timestamp-based windows and O (e ~21og s~ log(N)) memory bits for sequence-based
windows.

Moreover, our methods can be used with the algorithm from [21] to obtain O (1) memory for large values of the entropy
norm. This algorithm is based on reservoir sampling and thus can be straightforwardly implemented in sliding windows. As
a result, we build the first solutions with provable memory guarantees on sliding windows.

Our algorithms can be naturally extended to some biased functions. Biased sampling [2] is non-uniform, giving larger
probabilities for more recent elements. The distribution is defined by a biased function. We can apply our methods to
implement step biased functions, maintaining samples over each window with different lengths and combining the samples
with corresponding probabilities. Our algorithm can extend the ideas of Feigenbaum, Kannan, Strauss and Viswanathan [35]
for testing and spot-checking to sliding windows. Finally, we can apply our tools to the algorithm of Procopiuc and Procopiuc
for density estimation [57], since it is based on the reservoir algorithm as well.
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