Efficient Processing of Declarative Rule-Based
Languages for Databases

Carlo Zaniolo
MCC
Austin, Texas, USA

Abstract

In recent years, Deductive Databases have progressed from a subject of theoretical interest
to an emerging technology area of significant commercial potential. The two main catalysts
for progress have been a demand for advanced database applications and a rapid maturation
of enabling technology. Thus, the area of Deductive Databases has now progressed beyond its
initial Prolog-oriented beginnings and produced logic-based languages, architectures and systems
that support a declarative expression on knowledge through rules and their efficient processing
on large databases. In this paper, we review the key concepts behind deductive databases,
including language constructs, semantics issues, implementation techniques, architectures and
prototypes. Then, we discuss key application areas driving the development of this technology,
and current research directions on systems and theory.

1 Introduction

Deductive Databases support queries, reasoning, and application development on databases
through a declarative rule-based languages. The practical motivations for this novel tech-
nology is the emergence of a new wave of database applications that are not supported
well current technology. Examples include:

1. Computer aided design and manufacturing systems.

2. Scientific database applications: Examples include studies of chemical structures,
genomic data, and analysis of satellite data.

3. Knowledge Mining and Data Dredging: This require support for browsing and
complex ad-hoc queries on large databases [Ts2]. For example, researchers need
to search through medical histories to validate hypotheses about possible causes
of diseases, and an airlines want to maximize yields resulting from schedules and

fare structure.

In addition to the traditional requirements of databases (such as integrity, sharing
and recovery), these new applications demand complex structures, recursively defined
objects, high-level languages and rules. For example, a VLSI CAD system typically
allows the definitions of “cells,” which are designs having other cells as subparts. Op-
erations on such a design often begin by expanding out the design, say, to create a
checkplot. The expansion must be carried on to arbitrary depth, so a recursive logic
program is appropriately used to define the operation of cell expansion. \

These new applications cannot be supported effectively by commercial datalbase
systems, including relational systems exemplified by SQL. Furthermore, even current
applications suffer from the limited power of current DBMS, where languages suéh as
SQL can only access and modify data in limited ways; thus database application$ are
now written in a conventional language with intermixed query language calls. | But
since the nonprocedural, set-oriented computational model of SQL is so different from
that of procedural languages, and because of incompatible data types, an “impec%ance
mismatch” occurs that hinders application development and causes expensive run-time
conversions. This problem is particularly atute in applications such as the Bill Of
Materials dealing with arbitrary structures of unlimited depth. Thus, it has become
generally accepted that for applications at the frontier we need a single, computationally
complete language that answers the needs previously discussed and serves bothT&s a
query language and as a general-purpose host language.

Object-oriented systems, where the database is closely integrated with languages
such as Smalltalk or C++, address some of the previous requirements, and support
useful concepts, such as object-identity and a rich type structure with inheritance of
properties from types to their subtypes. However, ob ject-oriented systems lose an im-
portant advantage that relational languages have: relational languages are declarative
and logic-based. Declarative languages provide the ability to express what one wants,
and leave for invention by the system substantial portions of the algorithm required to
meet the request. This ability is essential for ease of use, data independence and code

reusability. |

Thus, deductive databases take the declarative approach in addressing those require-
ments: they provide a declarative, logic-based language for expressing queries, reasoning,
and complex applications on databases.

Interest in the area began in the early seventies with the establishment of the theoret-
ical foundations for the field [GMN], and experimental activity limited to few gro}‘md-
breaking experiments [Kelll. A new generation of powerful rule-based languages for
expert systems applications commanded great attention in the 80’s. Among these, Pro-
log is of particular interest, because it is based on extensions of Horn-clause logic; Horn
clauses are a close relative of relational calculus, which provides the semantic undetpin-
ning for relational query languages such as SQL. This similarity has led to considerable
work at building a deductive database system, either, by extending Prolog with data})ase
capabilities or by coupling it with relational DBMSs [CGT]. While these experiments
have been successful in producing powerful systems, they have also revealed several

|
|
|
)

problems that stand in the way of complete integration. Some of these problems follow
from the general difficulty of marrying DBMSs with programming languages, others are
specific to Prolog.

Some of Prolog’s limitations, such as the lack of schemas and of secondary-storage
based persistence, can be corrected through suitable extensions; others are so deeply
engrained in Prolog’s semantics and enabling technology that they are very difficult to
overcome. For instance, the cornerstone of Prolog is SLD-resolution according to a left-
to-right, depth-first execution order. This powerful mechanism provides an efficient im-
plementation for Horn-clause logic and an operational semantics to the many non-logic
based constructs—such as updates, cuts and meta-level primitives—that were added
to the language for expressive power. But the dependence of Prolog, and its enabling
technology, on SLD-resolution present serious drawbacks from a database viewpoint:

e Prolog’srigid execution model corresponds to a navigational query execution strat-
egy; thus, it compromises data independence and query optimization that build
upon the non-navigational nature of relational query languages.

e This rigid semantics is incompatible with several relational database concepts—in
particular with the notions of database updates and transactions. For instance, in
the style of many Al systems, Prolog’s update constructs (i.e., assert and retract)
are powerful but unruly, inasmuch as it can modify both the data and the program.
Furthermore, none of the nine different semantics for updates in Prolog counted
so far [Moss|, are compatible with that of the relational data model. Indeed, the
snapshot-based semantics of relational databases is incompatible with Prolog’s
execution model, which is instead oriented toward pipelined execution [KNZ].
Supporting the notion of transactions, which is totally alien to Prolog, compounds
these problems.

o The efficiency of Prolog’s execution model is predicated upon the use of main
memory. Indeed, all current Prolog implementations [WAM] rely on pointers,
stacks and full unification algorithms, which are not well-suited to a secondary
store-based implementation.

Thus, several research projects were undertaken aiming to achieve a complete and
harmonious integration of logic and databases; for the reasons just mentioned, these
projects have rejected Prolog’s SLD-based semantics and implementation technology,
but retained Horn clauses with their rule-oriented syntax. This line of research has
produced new languages and systems that combine the database functionality and non-
procedurality of relational systems, with Prolog’s reasoning and symbolic manipula-
tion capability. A new implementation technology was developed for these languages
(using extensions of relational DBMSs technology) to ensure their efficient support
on, both, main memory and secondary store. Among the several prototypes pro-
posed [Meta,KiMS] we will base our discussion on the LDL system [Ceta], due to the
level of maturity that it has reached and the author’s familiarity with the system. Fully
integrated deductive database systems have the following distinguished traits:

o Support for all database essentials. There is a clear notion of a (time-varying)

database separated from the (time-invariant) rule-based program. The database
is described by a schema with unique key constraints declarations, and explicit
indexing information. Schemas are thus the vehicle for integrity constraint dec-
laration, for accessing both internal relations and external relations from SQL
databases. The notions of recovery and database transactions are thus deeply
engrained in languages such as £LDL [KNZ).

A semantics that is database-oriented, declarative, and rigorous, as illustrated by
the following points:

1. Database Orientation: For instance, a snapshot-based semantics is used for
updates in LDL, combined with full support for the concept of database
transactions. Other concepts that are directly derived and extended from re--
lational databases include all-answer solutions; duplicate control; sets, nested
relations; and the ability to enforce key constraints and functional dependen-
cies in derived relations (via the choice construct).

2. Declarative Language: As discussed in the next section, these systems come
closer to implementing the full declarative semantics of Horn clauses, by sup-
porting both forward chaining and backward chaining execution strategies,
under automatic system control [UlZa]. Thus, several applications, e.g., those
involving non-linear rules or cyclic graphs, are much simpler to write in £DL
than in Prolog [UlZa]. The notion of a query optimizer is also part of these
systems, for compatibility with relational systems, better data independence,
and enhanced program reusability. Finally, the declarative semantics is ex-
tended beyond the Horn Clauses to include stratified negation, grouping and
non-deterministic pruning (thus eliminating Prolog’s cut) [NaTs].

3. Rigorous Semantics: LDL’s well-documented semantics [NaTs], is the result
of a systematic effort to ferret out any ambiguity from both the declarative
and the imperative aspects of the language. For instance, in dealing with
logical constructs, such as negation and set-grouping, non-stratified programs
are disallowed due to the lack a model-theoretic semantics for some of these
programs. For imperative constructs, several restrictions are enforced upon
programs with updates, such as disallowing updates in disjunctive goals and
prohibiting unfailing goals after updates. The objective of these restrictions
is to simplify and structure these programs along with their compilation.
As a result, LDL programs with updates must be structured in a precise
way—a discipline that requires some learning, but also enhances the value of
resulting code as a vehicle for rigorous and complete specifications.

¢ An implementation technology that is database-oriented, and, in fact, represents

an extension to the compiler/optimizer technology of relational systems. Thus
SLD-resolution and unification are respectively replaced with fixpoint computa-
tion and matching, which because of their simpler nature can be supported well
in secondary as well as in primary storage {Ullm,Ceta|. Furthermore, declarative

set-oriented semantics, makes it implementable using an assortment of alternative
execution models and strategies— including translation to relational algebra—
thus expanding on the opportunities for query optimization of relational systems.

We will next review the most salient features of these systems in terms of languages,
applications and architectures.

2 Languages

Logic-based languages for databases include three kinds of constructs:

1. Horn-clause based constructs

2. Non-monotonic logic-based constructs (such as negation, sets and choice opera-
tors)

3. imperative constructs (such as updates and I/0)

A language such as £LDL shares with Prolog Horn-clause based constructs above,
but not the remaining two. There are significant differences even with respect to Horn
Clauses, as illustrated by the fact that in deductive databases programs are less depen-
dent on a particular execution model, such as forward-chaining or backward-chaining.
A Prolog programmer can only write rules that work with backward chaining; an OPS5
programmer can only write rules that work in a forward chaining mode. By contrast,
systems such as £LDL [NaTs] and NAIL! [Meta], select the proper inference mode auto-
matically, enabling the user to focus on the logical correctness of the rules rather than
on the underlying execution strategy. This point is better illustrated by an example.
A methane molecule consists of a carbon atom linked with four hydrogen atoms. An
ethane molecule can be constructed by replacing any H of a methane with a carbon
with three Hs, Therefore, the respective structures of methane and ethane molecules

are as follows:

methane ethane

More complex alkanes can then be obtained inductively, in the same way: i.e., by
replacing an H of a simpler alkane by a carbon with three Hs.

We can now define alkanes using Horn clauses. A methane molecule will be rep-
resented by a complex term, carb(h, h, k), and an ethane molecule by carb(h, h,

carb(h, h, h)){thus we implicitly assume the presence of an additional k, the root of
our tree). In general, alkane molecules can be inductively defined as follows:

all mol(h, O, Max).

all mol(carb(Mi, M2, M3), N, Max) +«
all mol(M1i, Ni, Max),
all mol(M2, N2, Max),
all mol(M3, N3, Max),
N= Ni+N2+N3+1, N <= Max.

In addition to defining alkanes of increasing complexity, these non-linear recursive
rules count the carbons in the molecules, ensuring finiteness in their size and number
by checking that the tally of carbons never exceeds Max.

This alkane definition can be used in different ways. For example, to generate all
molecules with no more than four carbons, one can write:

? allmol(Mol,Cs, 4).
To generate all molecules with exactly four carbons one will write:
7?7 allmol(Mol, 4, 4).

Furthermore, if the relation alk(Name, Str) associates the names of alkanes with
their structure, then the following rule will compute the number of carbons for an alkane
given its name (assume that 10000 is a large enough number for all molecules to have
a lower carbon complexity).

find(Name, Cs) « alk(Name, Str), all mol(Str, Cs , 10000).

The first two examples can be supported only through a forward chaining com-
putation, which, in turn, translates naturally into the least-fixpoint computation that
defines the model-theoretic based semantics of recursive Horn clause programs [NaTs).
The least fixpoint computation amounts to an iterative procedure, where partial results
are added to a relation until a steady state is reached.

Therefore, deductive databases support well the first two examples via forward chain-
ing, while Prolog and other backward chaining systems would flounder. In the last
example, however, the first argument, Str, of all.mol is bound to the values gener-
ated by the predicate atk. Thus a computation such as Prolog’s backward chaining,
which recursively propagates these bindings, is significantly more efficient than forward
chaining. Now, deductive databases solve this problem equally well, by using techniques
such as the Magic Set Method, or the Counting Method that simulate backward chaining
through a pair of coupled fixpoint computations [Ullrmn).

Since fixpoint computations check newly generated values against the set of previous
values, cycles are handled automatically. Thisis a most useful feature since cyclic graphs
are often stored in the database; furthermore, derived relations can also be cyclic. In
our alkane example, for instance, there are many equivalent representations for the
same alkane. To generate them, equivalence-preserving operations, such as rotation and
permutation on the molecules, are used~—but repeated applications of these operations
bring back the initial structure. In deductive databases, there is no need to carry around
a bag containing all previous solutions, since cycles are detected and handled efficiently
by the system.

3 Non-Monotonic Constructs

The declarative semantics and programming paradigm of deductive databases extend
beyond Horn clause programming, to include non-monotonic logic-based constructs,
such as negation, sets and choice operators [NaTs). In fact, this line of research has
much contributed to the advancement of semantics and implementation techniques for
non-monotonic logic constructs. For instance, deductive databases support efficiently
stratified negation [NaTs], and has a rigorous semantics based on the concept of per-
fect models [Prz]. While stratified negation is more powerful than negation-by-failure
provided by Prolog, many applications require unstratified negation (and set aggre-
gation). Research in this area has produced elegant concepts, such as well-founded
models [VGRS] and stable models, which provide very general declarative semantics for
logic programs with negation [GeLi]. But efficient implementations for such semantics
remains, in general, an open problem.

Significant progress was accomplished on non-deterministic pruning constructs, for
which declarative logic-based semantics and efficient implementation techniques were
developed [SaZa,GPSZ|. A construct called choice was introduced [KrNa|, where a
semantics based on functional dependency constraints was proposed. This semantics
was then revised and extended using the notion of stable models [SaZa).

To illustrate these concepts, consider for instance the following example where takes
denotes students taking courses.

a_st(5t,Crs) « takes(S5t,Crs), choice((Crs),(St)).
takes(andy,engl).

takes(ann, math).

takes(mark,engl).

takes(mark,math).

The choice goal in the first rule specifies that the a_st predicate symbol must associate
exactly one student to each course. Thus the functional dependency Crs — S5t holds in
the model defining the meaning of this program. A program with equivalent meaning
can be defined using negation as follows:

a_st(St,Crs) «— takes(5t,Crs), chosen(Crs,St).
chosen(Crs,5t) «— takes(St,Crs),~ diffChoice(Crs,St).
diffChoice(Crs,St) — chosen(Crs, St),5t + St.
takes(andy,engl).

takes(ann, math).

takes(mark,engl).

takes(mark,math).

This program with negation has stable model semantics, where the non-determinism
is captured by the presence of alternative stable models. The stable-model semantics
for the particular case of choice programs is also amenable to efficient implementa-

tion [GPSZ).

4 Architectures

The key implementation problems for Deductive Databases pertain to finding efficient
executions for the given set of rules and query. For this purpose, Deductive Database
systems perform a global analysis of rules—in contrast to Prolog compilers, which are
normally based on local rule analysis. A global analysis is performed at compile time,
using suitable representations such as the Rule/Goal graph [Ullm] or the predicate
connection graph [Ceta]. Its cornerstone is the notion of bound arguments and free
arguments of predicates. For a general idea of this global analysis is performed, consider
the following example:

usanc(X, Y) <- anc(X,Y), born(Y, usa).

anc{X,2) <- parent(X,Z).
anc(X,Z) <- parent(X,Y), anc(Y,Z).

Thus, the last two rules supply the recursive definition of ancestors (parents of an
ancestors are themselves ancestors) and the the first rule choses the ancestors of a given
X that were born in the USA (lower case is used for constants, and upper case for
variables). Then a query such as

? usanc{mark, Y).

defines the following pattern:

usan be

The superscript bf is an adornment denoting the fact that the first argument is
bound and the second is not.

The global analysis is next applied to determine how the adornments of the query
goal can be propagated down to the rest of the rule set. By unifying the query goal
with the head of the usanc rule, we obtain the adorned rule:

usanc®™ < —-ancbf,bornbb.

This adornment assumes that the first argument of born is bound by the second
argument of anc according to a sideway information passing principle (SIP) [Ullm)].
The next question to arise is whether the recursive goal anc® is supportable. The
analysis of the arc rules yields the following adorned rules (assuming a left-to-right
SIP):

anch® < —pa.rent"’.
anc®® < —parent®, anc??,

The analysis is now complete, since the adornment of the anc goal in the tail is the
same as that in the head. Assuming that born and parent are database predicates,
the given adornments can easily be implemented through a search taking advantage of
the bound first argument in parent and both bound arguments in born. The recursive
predicate anc can also be solved efficiently: in fact, a further analysis indicates that
the recursive rule is left-linear [Ullm| and that the given adornment can, after some
rewriting of the rules, be supported by a single-fixpoint computation [Ullm]. When the
recursive predicate cannot be supported through a single fixpoint, other methods are
used, including the counting method, and the very general magic set method [Ullm].

Figure 1 describes the architecture of the LDL system. The first operation to be
performed once a query form is given (a query form is a query template with an indi-
cation of bound/free arguments) is to propagate constants into recursive rules and to
extract the subset of rules relevant to this particular query. By examining alternative
goal orderings, execution modes, and methods for supporting recursion the optimizer
finds a safe strategy, which minimizes a cost estimate. For rules where all goals refer to
database relations, the optimizer behaves like a relational system. The Enhancer’s task,
is to apply the proper recursive method by rewriting the original rules. A rule rewrit-
ing approach is also used to support the idempotence and commutativity properties
of set terms. Since recursion is implemented by fixpoint iterations, and only match-
ing is needed at execution time, the abstract target machine and code can be greatly
simplified, with respect to that of Prolog [WAM]; thus, it can also be based on simple
‘extensions to relational algebra. : :

Query Form +

Relevant PCG
Extractor

Relevant PCG |

Optimizer

Controlled PCG
rre-Enhancer

Enhancer

Enhanced PCG

Set Rewriter

Final PCG

Code
Generator

C Program

C Compller &
Linker

Compiled
Query Forms

Figure 1. Architecture of the £LDL System

For instance, the first (limited) £DL prototype generated code for an intermedi-
ate relational-algebra language for a parallel database machine. The current prototype
is based on single-tuple get-next interface designed for both main-memory and sec-
ondary store. The single-tuple interface supplies various opportunities for intelligent
backtracking and existential variables optimization, exploited by the compiler to obtain
good performance from the object code [Meta]. The intermediate object code is actually
C, to support portability and a open architecture.

Other experimental systems differ in several ways from the architecture of Figure
1. For instance, NAIL! uses a relational algebra-based intermediate code, and employs
capture rules, rather than cost-prediction based optimization, to drive the selection of
a proper execution strategy [Cetal.

5 Applications

The unique advantages offered by Deductive Databases in several applications areas
are well-documented and demonstrated by various pilot applications. These areas
range from traditional ones, such as computer-aided manufacturing applications, which
presently suffer because of the inability of SQL to support recursive queries and rules, to

new scientific applications, such as those connected with the burgeoning areas of molec-
ular biology [Ts1]. Because of space limitations, we will discuss only data dredging and
enterprise modeling.

Data Dredging: This term denotes an emerging computational paradigm which sup-
ports “knowledge extraction” from, and the “discovery process” on the ever-growing
repository of stored data [Ts2]. This usage of databases—in the past primarily asso-
ciated with the intelligence community— is now becoming pervasive in medicine and
science. Data Dredging is also an increasingly common practice of such such business
applications as selective marketing and yield-management [Hopp].

The source of the data is typically a large volume of low-level records, collected
from measurements and monitoring of empirical processes, intelligence operations and
businesses. The problem is how to use this data to verify certain conjectures and to
help refine or formulate hypotheses.” Typically, the level of abstraction at hypotheses
are formulated is much higher than that at which the data was collected. Thus, an
iterative approach is needed, as follows:

1. Formulate hypothesis or concept.
2. Translate the concept into an executable definition (e.g., a rule-set and query).
3. Execute the query against the given data and observe the results.

4. If the results fully confirm the hypothesis, then exit; otherwise, modify the initial
hypothesis and repeat these steps.

Obviously, the decision to exit the process is subjective and upon the analyst or re-
searcher who is carrying out the study. At this stage he or she may have decided either
that the concept is now adequately finalized and substantiated, or that the data does
not support the initial conjecture and should be abandoned or tried out with different
data. While in principle, this procedure could be carried out using any programming
language, the key to the experiment’s practicality and timeliness hinges upon the ability
to complete it within limited time and effort. Thanks to their ability of quickly for-
mulating very sophisticated queries and ruled-based decisions on large volumes of data,
deductive databases are an ideal tool for data dredging. Our experience in developing
such applications with LDL also suggests that its open architecture is important in
this process, inasmuch as, for example, a number of low-level, computation intensive
tasks (such as filtering and preprocessing) mus. be used in the high-level, rule-driven
discovery process.

Enterprise Modeling: The ability to model the data and the procedures of a busi-
ness enterprise is key to the successful development of information systems. Some of
the advantages of a deductive database environment in this respect were outlined in

the introduction; these advantages were confirmed during the one-year field study de-
scribed in [Aeta]. This study reports on the experience of using the LDL prototype
in conjunction with a structured-design methodology called POS (Process, Object and
State) [].

A key idea of the POS methodology is that of using the E/R framework for modeling
both dynamic and static aspects of the enterprise. By using the notions of aggregation
and abstraction within the E/R framework, to capture what has traditionally been
thought of as derived data, the E/R model can specify most of the processing associ-
ated with a specific problem domain. This allows the capture of both data modeling
and process modeling within one framework, thus eliminating the need for additional
formalisms (such as workflow diagrams) in the final specifications. Furthermore, when a
deductive computing environment is used, both the traditional generalization structures
and the less-often-used aggregation structures can be directly encoded in a rule-based
description, yielding executable specifications that are well-structured, easy to read and
have a formal semantics.

This basic approach was tested in a case study, where a a simplified information
system was represented for the automobile registration authority (i.e., Department of
Motor Vehicles). This information system involves the modeling of a set of entities
(such as manufactures, owners, garages, and motor vehicles of various types) and a set
of events or transactions, (such as the registration of various entities and the purchase
and destruction of a motor vehicle). Several constraints must be enforced, including
uniqueness, existence and cardinality of entities, and restrictions of parties qualified by
law to partake in different transaction types. Specific applications to be supported by
such an information system include:

* Knowing who is, or was, the registered owner of a vehicle at any time from its
construction to its destruction

¢ Monitoring compliance with certain laws, such as those pertaining to fuel con-
sumption and transfer of ownership

In an informal study, also including a comparison with alternative prototyping frame-
works, LDL proved very effective and desirable, in terms of naturalness of coding, terse-
ness, and readability of the resulting programs. A larger study is now in progress to
determine the scalability of these benefits to applications in the large, and to further
evaluate the following points:

* Use of LDL to validate large specifications

o Feasibility of an order of magnitude code compression over 3rd generation lan-
guages
e Shift in efforts from coders to requirements specifiers

* An increased scope of data management and decreased scope of application de-

velopment organizations

6 Future Directions

By enabling the development of several pilot applications, the first generation of deduc-
tive database systems has proved the viability this very new technology and demon-
strated its practical potential. Yet, these experiences have also revealed the need for
several improvements and extensions. For this reason, and to take advantage of more
recent technical advances, work is now in progress toward the next generation of in-
tegrated systems. These are expected to advance the state of the art in three major
ways:

o Correcting the limitations of current systems. For, instance, the effectiveness of
the current LDL system is hampered by the absence of good debugging facilities.
Furthermore, while compiled LDL programs execute fast (outperforming com-
mercial Prolog systems on data-intensive applications [Ceta)), the compilation of

- these programs is too slow. The new prototype under implementation, (called
the LDL++ System) will solve these problems by compiling into intermediate
abstract machine code.

o Reinforcing the strengths of current systems. Several uses were found for £LDL’s
flexible interface to external databases—as well as for its open architecture which
allows the incorporation of external routines and data. These facilities will be
greatly expanded in the LDL++ prototype. On the other hand, the NAIL!/GLUE
project is now pursuing a better amalgam with the procedural world through a
closely coupled procedural shell.

o Incorporating recent advances in theory of logic-based languages. For instance, our
understanding of non-monotonic logic has progressed to the point where a limited
use of constructs such as negation and choice can now be allowed in recursion—
thus entailing the writing of simpler and more expressive programs. Recently,
there has also been significant progress on modeling and supporting objects in
logic-based systems. These advances will be included in the next generation of
deductive database systems.

References

[Aeta] Ackley, D., et al. “System Analysis for Deductive Database Environments:
an Enhanced role for Aggregate Entities,” Procs. 9th Int. Conference on
Entity-Relationship Approach, Lausanne, CH, Oct. 8-10, 1990.

[Cetal Chimenti, D. et al., “The LDL System Prototype,” IEEE Journal on Data
and Knowledge Engineering, March 1990.

{Hopp] Hopper, D.E., “Rattling SABRE—New Ways to Compete on Information,”
Harvard Business Review, May-June 1990, pp. 118-125.

[CGT]

[DM89]
[Gane]
[GeLi]

[GPSZ]
[GMN]
[Kell]

[KiMS]

[KNZ]

[KuYo]

[KrNa]

[Meta]

[Moss]

[NaTs]

[Prz]

Ceri, S., G. Gottlob and L. Tanca, “Logic Programming and Deductive
Databases,” Springer-Verlag, 1989,

“The Rapid Prototypiﬁg Conundrum”, DATAMATION, June 1989.
Gane, C. “Rapid System Development,” Prentice Hall, 1989.

Gelfond, M., and Lifschitz, V., “The stable model semantics for logic pro-
gramming”, Proc. 5th Int. Conf. and Symp. on Logic Programming, MIT
Press, pp. 1070-1080, 1988.

Giannotti, F., D. Pedreschi, Sacca, D., and Zaniolo, C., “Non-Determinism
in Deductive Databases,” MCC Technical Report, STP-LD-003-91.

Gallaire, H.,J. Minker and J.M. Nicolas,”Logic and Databases: a Deductive
Approach,” Computer Surveys, Vol. 16, No. 2, 1984.

Kellogg, C., “A Practical Amalgam of Knowledge and Data Base Technol-
ogy” Proc. of AAAI Conference, Pittsburg, Pa., 1982,

Kiernan, G., C, de Maindreville, and E. Simon “Making Deductive
Database a Practical Technology: a step forward,” Proc. 1990 ACM-
SIGMOD Conference on Management of Data, pp. 237-246.

Krishnamurthy, S. Naqvi and Zaniolo, "Database Transactions in LDL?,
Proc. Logic Programming North American Conference, pp. 795-830, MIT
Press, 1989.

Kunifji S., H. Yokota, “Prolog and Relational Databases for 5th Generation
Computer Systems,” in Advances in Logic and Databases, Vol. 2, (Gallaire,
Minker and Nicolas eds.), Plenum, New York, 1984,

Krishnamurthy, R., and Nagvi, S.A., “Non Deterministic Choice in Dat-
alog”, Proc. 3rd Int. Conf. on Data and Knowledge Bases, Morgan Kauf-
mann Pub., Los Altos, pp. 416-424, 1988.

Morris, K. et al. "YAWN! (Yet Another Window on NAIL!), Data Engi-
neering, Vol.10, No. 4, pp. 28-44, Dec. 1987.

Moss, C., “Cut and Paste—defining the Impure Primitives of Prolog”, Proc.
Third Int. Conference on Logic Programming, London, July 1986, pp. 686-
694,

S. A. Naqvi, S. Tsur “A Logical Language for Data and Knowledge Bases”,
W. H. Freeman, 1989,

Przymusinski, T.C., “On the Declarative and Procedural Semanties of
Deductive Databases and Logic Programs”, in Foundations of Deductive
Databases and Logic Programming, (Minker, J. ed.), Morgan Kaufman,
Los Altos, 1987, pp. 193-216,

[SaZa)

[Ts1]

[Ts2]

[Ullm]

[UlZa]

[VGRS]

[WAM]

[Zani]

Sacca, D., and Zaniolo, C., “Stable models and non determinism in logic
programs with negation”, Proc. 9th, ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pp. 205-218, 1990.

Tsur S., ‘Applications of Deductive Database Systems,” Proc. IEEE COM-
CON Spring ‘90 Conf., San Francisco, Feb 26-March 2.

Tsur S., “Data Dredging,” Data Engineering, Vol. 13, No. 4, IEEE Com-
puter Society, Dec. 90.

Ullman, J.D., “Database and Knowledge-Based Systems, Vols. I and II,
Computer Science Press, Rockville, Md., 1989,

Ullman, J. and C. Zaniolo, “Deductive Databases, Achievements and Fu-
ture Directions,” STGMOD Record, pp. 77-83, Vol. 19, No. 4, ACM Press,
Dec. 1990.

Van Gelder, A., Ross, K., Schlipf, J.S., “Unfounded Sets and Well-Founded
Semantics for General Logic Programs”, ACM SIGMOD-SIGACT Symp.
on Principles of Database Systems, March 1988, pp. 221-230.

Warren, D.H.D., “An Abstract Prolog Instruction Set,” Tech. Note 309,
Al Center, Computer Science and Technology Div., SRI, 1983.

Zaniolo, C. “Object Identity and Inheritance in Deductive Databases:
an Evolutionary Approach,” Proc. 1st Int. Conf. on Deductive and 0-0
Databases, Dec. 4-6, 1989, Kyoto, Japan.

