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Abstract
It has long been recognized that multi-stream operators,

such as union and join, often have to wait idly in a tem-
porarily blocked state, as a result of skews between the
timestamps of their input streams. Recently, it has been
shown that the injection of heartbeat information through
punctuation tuples can alleviate this problem. In this paper,
we propose and investigate more effective solutions that use
timestamps generated on-demand to reactivate idle-waiting
operators. We thus introduce a simple execution model that
efficiently supports on-demand punctuations. Experiments
show that response time and memory usage are reduced
substantially by this approach.

1 Introduction
Data stream management systems (DSMSs) normally

rely on the property that data streams are ordered accord-
ing to their timestamps. Therefore, DSMS query opera-
tors are designed to continuously consume input streams
ordered by their timestamps and produce output streams
also ordered by their timestamps. For instance, union is
in fact a sort-merge operation that combines its input data
streams into a single output stream where tuples are ordered
by their timestamp values. Thus, when tuples are present
at each input the union operator moves a tuple with the
least timestamp to the output. However, when any of its
inputs are empty the union operator cannot proceed, since
future tuples on the empty inputs could have timestamps
smaller than those of the current input tuples because of
skews between different streams. Therefore, the traditional
approach is to have the union operator enter an idle-waiting
mode until tuples become available in all its input buffers.
(In this paper, we use the term ‘idle-waiting’ instead of
‘blocking’ to prevent confusion with non-monotonic block-
ing operators1 that pose quite different challenges for data
streams [2, 11].)

The idle-waiting problem was recently studied in [9],
where a punctuation-based approach was proposed to prop-
agate heartbeats that can reactivate idle-waiting operators.
Thus, in [9], heartbeats are generated at regular time inter-
vals and injected into the data streams as punctuation tuples,
which are delivered to union and join operators down the
path, independent of whether these are idle-waiting or not.
The rate at which punctuation tuples must be injected into

1This distinction is desirable, since operators, such as union and
join, behave quite differently from blocking aggregates, and other non-
monotonic operators such as difference.

the data streams represents a difficult optimization decision
that largely depends on the load conditions of the various
streams. For instance, say, that we want to compute the
union of two data streams A and B, where B is experienc-
ing heavier traffic than A. Then, the B tuples might have
to wait a while for the A tuples—unless frequent punctua-
tion tuples are injected into A. Too few punctuation tuples
in A will result in many tuples of B experiencing signifi-
cant idle-waiting; however, too many punctuation tuples in
A will result in extra overhead to service punctuation tu-
ples, which are unlikely to unblock any tuple in B. The
best results can be expected when the frequency of tuples
in A matches those in B—a goal that is very hard to achieve
when the traffic is not stationary and if A or B are bursty.

Thus in this paper we propose an approach whereby
timestamps are only generated and sent to the idle-waiting
operators on-demand, rather than periodically. On-demand
generation of punctuation tuples was considered but dis-
carded in [9] because of the complexity it created for code
generation and execution. Therefore, our first research
challenge is that of devising a simple and efficient exe-
cution model that supports the generation and propaga-
tion of on-demand timestamps for idle-waiting operators.
Thus, we propose a solution whose robustness and prac-
ticality have been tested through its incorporation in the
Stream Mill DSMS [1, 3]. Several experiments discussed
in this paper confirm that the on-demand approach sub-
stantially improves the response time and memory usage.
Throughout the paper, we will use the term Enabling Time-
Stamps (ETSs ) to describe timestamps that are generated
on-demand and sent to idle-waiting operators to enable
them to resume their activity; the term ETS avoids the con-
notation of periodicity that is associated with “Heartbeats”.

The rest of this paper is organized as follows: the next
section discusses the the idle-waiting problem for union and
join operators. Section 3 introduces an execution model that
supports the generation of critical timestamps on demand.
Section 4 presents mechanisms for the propagation of ETS
through the operator network. Then in Section 5 we discuss
the different kinds of timestamps supported in Stream Mill
and on-demand generation of ETS. In Section 6 we present
the results of our experiments that study the effectiveness of
different approaches under different load conditions.



Union. When tuples are present at all inputs, select one
with minimal timestamp and
• (production) add this tuple to the output, and
• (consumption) remove it from the input.

Window Join of Stream A and Stream B. When tuples
are present at both inputs, and the timestamp of A is ≤

than that of B then perform the following operations (sym-
metric operations are performed if timestamp of B is ≤

than that of A):

• (production) compute the join of the tuple in A with
the tuples in W(B) and add the resulting tuples to out-
put buffer (these tuples take their timestamps from
the tuple in A)

• (consumption) the current tuple in A is removed from
the input and added to the window buffer W(A) (from
which the expired tuples are also removed)

Figure 1. Basic Execution of Query Operators

2 Basic Operators
As discussed in [9] the operators of union and join are

Idle-Waiting Prone (IWP ) operators. The basic execution
steps for these IWP operators are summarized in Figure 12.

We will use the widely accepted semantics proposed in
[10] for symmetric window-join as shown Figure 1. Ob-
serve that when input tuples in A and B share the same
timestamp (simultaneous tuples) we can nondeterministi-
cally process one before the other and similar consideration
holds for the union operator (we will return to simultane-
ous tuples in Section 4.1). For simplicity of discussion we
omit here the discussion of multi-way joins and asymmetric
joins, whose treatment is however similar to that of binary
joins.

The execution of non-IWP operators is straightforward:
we compute the result(s) of the operator and add it to the
output (production)—with timestamp equal to that of the in-
put tuple—and remove the tuple from the input (consump-
tion).

3 Query Graphs and the Execution Model
A simple technique for avoiding the idle-waiting prob-

lems of IWP operators is to propagate heartbeat information
by punctuation tuples generated at regular intervals [9]. A
better approach consists in generating critical timestamp in-
formation as needed, on-demand. Although such a policy
was considered too complex in [9], in this paper, we intro-
duce an execution model that makes it simple and efficient.
Our model is based on query operator graphs, that have been
widely used in DSMSs to describe the scheduling of contin-
uous queries. Figure 2 shows an example where the graph
is a simple path. In general, the nodes of the graph de-
note query operators and the arcs denote the buffers con-
necting them. Therefore, our directed arc from Qi to Qj

2There are also other IWP operators, which we omit in this paper due
to space limitations.
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Figure 2. Simple Path Query

represents a buffer, whereby Qi adds tuples to the tail of the
buffer (production) and Qj takes tuples from the front of the
buffer (consumption). In addition to the actual query opera-
tors, the graph also contains source nodes and sink nodes as
shown in Figure 2. The arcs leaving the source nodes repre-
sent input buffers. In Stream Mill (and many other DSMSs)
these are being filled by external wrappers. Thus, the source
nodes monitor such buffers, and upon finding them empty
we might (i) wait until some tuple arrives in the buffer, (ii)
return control to the DSMS scheduler (that will then attend
to other tasks), or (iii) generate punctuation tuples or other
form of ETSs and send them to idle-waiting operators in the
query graph. Likewise, the arcs leading to the sink nodes
denote the output buffers from which output wrappers take
the tuples to be sent to users or to other processes3.

In general, query graphs can have several connected
components, where each component is a DAG. Each such
DAG represents a scheduling unit that is assigned a share
of the system resources by the DSMS scheduler/optimizer
(not discussed in this paper).

The execution of each component takes place using the
two-step cycle shown in Figure 3. We first execute the cur-
rent operator and then select the next operator according to
the execution strategy being implemented. The choice made
by the execution strategy is based on the boolean values of
two state variables: yield, and more. The variable yield
is set to true if the output buffer of the current operator con-
tains some tuples (typically, just produced by the operator);
more is true if there are still tuples in the input buffer of
the current operator.

1. [Execution Step] Execute the current operator, and

2. [Continuation Step] Select the next operator for
execution according to the conditions yield and
more that, respectively, denote the presence of out-
put and input tuples for the current operator.

Figure 3. The Basic Execution cycle forever
iterates over these two steps.

3.1 Execution Strategy
In this paper, we consider the depth-first strategy (DFS),

which is basically equivalent to a first-in-first-out strategy:
to expedite tuple progress toward output, i.e. the tuples are
sent to the next operator down the path as soon as they are
produced. Thus, DFS strategy is implemented with follow-
ing three Next Operator Selection Operators (NOS): For-
ward, Encore, and Backtrack.
Next Operator Selection (NOS): Depth-First Rules.
Forward: if yield then next := succ

Encore: else if more then next := self
3sink nodes should also eliminate punctuation tuples since they are only

needed internally.
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Backtrack: else next := pred and repeat this NOS step
on pred.

Thus, after executing the query operator Q1 in Figure 2,
the algorithm checks if Q1’s output buffer is empty. If that
is not the case4, yield is true, then we execute the Q2 oper-
ator. The Q2 operator is the last operator in the path before
the sink node: thus the tuples produced by Q2 will actually
be consumed by an output wrapper—a separate process in
Stream Mill. Therefore, the algorithm continues with the
consumption of all the input tuples of Q2—i.e., the For-
ward condition is ignored when the current operator is the
last before Sink, and instead we directly execute the Encore
condition.

Once all the input tuples of Q2 are processed, the more
variable becomes false and the algorithm backtracks to its
predecessor, i.e., the Q1 operator, and executes the NOS
rules on this operator. When operator Q1’s more condition
becomes false, the algorithm backtracks to its predecessor:
however in this case, the predecessor is the Source node,
denoting that an external wrapper is responsible for filling
the input buffer of Q1 with new tuples. Until these new
tuples arrive, there is nothing left to do on this path. In this
situation, control could be returned to the query-scheduler
to allow the DSMS to attend to other tasks.

So far, we have studied simple path queries, we now ex-
tend our approach to query graphs containing operators with
multiple inputs, such as the union in Figure 4.

3.2 Unions and Joins
For multiple input operators, such as unions and joins,

the more condition evaluates to true when tuples are
present in all their inputs. Thus, when some of their input
buffers are empty, more evaluates to false, and DFS back-
tracks to a predecessor operator. Naturally, we backtrack to
a predecessor feeding into a buffer that is currently empty.
Therefore, if more is false because, say, the jth input for the
current operator is empty and predj is the operator feeding
into that buffer, then the backtrack rule will be modified as
follows:

Backtrack: next := predj and repeat this NOS
rule on predj .

Except for these changes, the basic execution of operator
graphs containing joins and unions is the same as that of
graphs consisting of only single-input operators.

Source1 
1

Source2 2

Sink U

Figure 4. Simple Union
However, the the basic execution strategy just discussed

can lead to idle-waiting. Idle-waiting is highly undesirable
because it increases both the delay with which tuples are

4Tuples could have been produced by the last execution of Q1, or by
previous executions. In the first case, we can omit checking yield and go
go to succ directly.

delivered to the output and the memory usage. Thus, in
the rest of the paper, we study techniques for solving these
problems.

4 Activating IWP Operators
Using the query-graph based execution model intro-

duced in the previous section, DFS can be extended to sup-
port on-demand generation of ETS information. Indeed,
once the backtracking process takes us all the way back to
the source node, we can generate a new ETS value and send
it down along the path on which backtracking just occurred,
to reactivate idle-waiting IWP operators. The generation of
these ETSs depends on the type of timestamp involved and
will be discussed in the Section 5. The ETSs are propagated
through punctuation tuples. But before that, we must ad-
dress the issue of simultaneous tuples, which have not been
discussed in previous papers, in spite of their obvious im-
portance in the idle-waiting problem.

4.1 Simultaneous Tuples
Simultaneous tuples are tuples that have the same

timestamp. These are common in applications where coarse
timestamp values are used. To illustrate the issues arising
from simultaneous tuples, let us consider a union operator
with inputs A and B. If both A and B contain simultaneous
tuples, these can all be processed and added to the output.
But the current rules in Figure 1 fail to do that since they
only move one tuple at a time: thus, either A or B will
be emptied first and the other will be left holding one or
more simultaneous tuples. One possible fix is to change
the rules in Figure 1, whereby ALL the tuples having mini-
mal timestamp are now added to the union operator at once.
However, this does not completely solve the problem, since
the simultaneous tuples that arrive in buffers A or B, after
all their previously-arrived simultaneous tuples have been
processed, will incur idle-waiting. To deal with simultane-
ous tuples, we instead to make the following improvements
to IWP operators:

• A Time-Stamp Memory (T SM ) register is introduced
for each input of the IWP operator. The value of
the T SM register is automatically updated with the
timestamp value of the current input tuple and it re-
mains in the register until the next tuple updates it.

Then the execution rules for the IWP operators are replaced
with those in Figure 6. The more condition must also be
modified as follows:

more holds true for the query operator Q if there is at
least one input tuple with timestamp value τ , where τ is
the minimal value in the input T SM registers of Q.

Figure 5. A relaxed more condition

The T SM registers and the the relaxed more condition
alleviate the simultaneous tuples problem and reduce idle-
waiting in IWP operators as discussed next.
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4.2 Propagation of Punctuation Tuples
We use punctuation tuples to deliver ETS information to

activate IWP operators, which can either be generated pe-
riodically, as discussed in [9], or on-demand as discussed
in Section 5. Independent of the way ETS are generated,
both the IWP operators and the non-IWP operators must be
revised to assure their propagation.

Figure 6 shows the execution rules for IWP operators ex-
tended for both simultaneous tuples and punctuation tuples.
These rules take advantage of T SM registers, and the re-
laxed more condition of Figure 5. These rules consider the
minimal value τ in the T SM registers of the operator.

Union. If more is true select an input tuple with timestamp τ

and deliver it to the output (production); then remove it from the
input (consumption).

Window Join of Stream A with Stream B. If more is
true, then:

• If input A contains a data tuple with timestamp value τ

then perform the following operations (and the symmetric
operations are performed if and B contain an actual data
tuple with timestamp value τ ):

– (production) join of the tuple in A with the tuples in
W(B) and send the result of the join to the output

– (consumption) current input tuple in A is removed
from the input and added to W(A).

• (production) If neither A nor B contain an input data tuple
with timestamp τ , add to the output a punctuation tuple
with timestamp τ .

Figure 6. Execution using T SM Registers.

Comparing Figure 6 with Figure 1, we see that the only
change for the union operator is that, rather than checking
that all inputs are present, we now use the relaxed more
condition of Figure 5. We also start the computation of win-
dow joins by checking this condition and if the tuple is in
fact a data tuple no other modification is needed. However
if this is instead a punctuation tuple, then we must remove it
from the input and add it to the output. Furthermore, when
we cannot generate a data tuple, we simply produce a punc-
tuation tuple for the benefit of the IWP operators down the
path.

Non-IWP operators must also be modified to deal with
punctuation tuples, so that they let the punctuation tuples
go through unchanged except for possible reformatting re-
quired by the specific operator.

5 Timestamp Generation
Observe that when input tuples in A and B share the

same timestamp (simultaneous tuples) we can nondetermin-
istically process one before the other and similar consider-
ation holds for the union operator. For simplicity of dis-
cussion we omit here the discussion of multi-way joins and
asymmetric joins, whose treatment is however similar to
that of binary joins.

Flexible and robust mechanisms for timestamps and
heartbeats are needed to achieve power and versatility in

DSMSs [2, 12, 9]. Thus, the Stream Mill system supports
three kinds of timestamps: external, internal, and latent:

1. Tuples are timestamped by the application that gener-
ated them (External Timestamps)

2. Tuples are timestamped when entering the DSMS us-
ing system time (Internal Timestamps)

3. Tuples without internal or external timestamps are
timestamped on-the-fly by individual query operators
that require timestamps (latent timestamps).

There is no idle-waiting when tuples with latent timestamps
go through IWP operators: for instance for union, tuples
can be added to the output as soon as they arrive, with-
out any check on their timestamps. Therefore, in our ex-
periments, we will measure the effectiveness of ETS-based
strategies by comparing them against data streams having
latent timestamps. Thus, ETS will not be used on data
streams with latent timestamps, but they are critical for data
streams with internal or external timestamps. The genera-
tion of on-demand ETS is discussed next.
On-Demand Generation of ETS at Source Nodes:
When execution backtracks to a source node, whose input
buffer is empty, then the node generates an ETS as follows:

(i) for internally timestamped tuples the ETS value gener-
ated is that of the current system clock.

(ii) For externally timestamped tuples the ETS value pro-
duced is application-dependent. Several interesting
techniques have been discussed in the literature [12, 9].
For instance, if the maximum skew between two ar-
rivals is δ and time τ has passed since the last tuple
arrived, which had timestamp t, then we might want to
produce an ETS of t+ τ - δ.

These tuples are then processed by the successor operators.

6 Experiments and Results
To test the effectiveness of different techniques for solv-

ing the idle-waiting problem, we compare following four
scenarios:

A Internally timestamped data streams (no ETS )
B Internally timestamped data streams (periodic ETS )
C Internally timestamped streams (on-demand ETS )
D Data streams with latent timestamps.

Experiment Setup For our experiments, the Stream Mill
DSMS server was hosted on a Linux machine with P4
2.8GHz processor and 1 GB of main memory. The input
data tuples were randomly generated under a Poisson ar-
rival process with the desired average arrival rates.

We measure latency and memory consumption using the
simple query graph of Figure 4, where each of the input
data streams is filtered by a selection operator with low se-
lectivity (95% tuples pass through), before the streams are
unioned together. The data rates average at 50 tuples per
second on the first stream and and 0.05 tuples per second
for the second stream; this rate diversity can cause signifi-
cant idle-waiting for tuples on the faster stream.
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Figure 7. Average Output Latency

Latency Reduction. Minimization of response time is a
key query-optimization objective for most DSMSs. The re-
sults of our experiments are shown in Figure 7 (log-scale).
The average output latency drops regularly (line B) as the
frequency is increased for the ETS punctuation tuples peri-
odically injected in the sparser of the two data stream.

Independent of their frequency, periodic ETS cannot
match the performance of ETS on-demand (line C), which
reduces the latency by several orders of magnitude with
respect to A (no ETS used). More remarkably, C comes
very close the optimal performance of streams with latent
timestamps (line D). Line C is so close to D that the two are
indistinguishable in the scale of 7 (a), and we have to use
Figure 7 (b) to show their actual difference, which is about
0.1 milliseconds—four orders of magnitude smaller than A.

To verify that the latency is caused by idle-waiting, we
measured the percentage of time the union operator spends
in an idle-waiting state. Indeed, 99% of the total time in
case A was spent in idle-waiting. At punctuation speeds ≥
100 tuples per second, in case B the waiting time was re-
duced to 15% of the total time. However, it could not match
the on-demand ETS (case C), which reduced the waiting pe-
riod to less than 0.1% of the total time.
Memory Usage. As discussed in [9], ETS can deliver sig-
nificant benefits in terms of reducing memory usage. In
Figure 8 we measure peak total buffer size, in terms of to-
tal number of tuples in the buffers, under the 50/0.05 per
second tuple rate on the two input streams. Without ETS
line A in Figure in 8 has a peak queue size of thousands tu-
ples, although the average input rate is only 50/0.05 tuples
per second. Line C shows that on-demand ETS propaga-
tion reduces the memory usage by more than two orders of
magnitude. For periodic ETS (line B) peak memory usage
reduces initially with higher punctuation rates (as expected
since idle-waiting is reduced). However, high punctuation
rates eventually cause an increase in peak memory require-
ments. This is because punctuation tuples produced at high
rates tend to occupy memory, when bursts of data tuples are
being processed.

7 Conclusions
The optimization of continuous queries and their query

graphs has provided a major topic of DSMS research, which
has primarily focused on operator scheduling [6, 7] and/or
restructuring the query graph [5] to minimize memory or

Figure 8. Peak Total Queue Size

latency. These approaches did not explore benefits of inte-
grating query operator execution with timestamp manage-
ment that were first studied by [9] using periodic punctua-
tion tuples. In this paper, we show that these benefits can
be maximized by managing on-demand ETS as part of the
backtrack mechanisms of execution models. The concept
of punctuation, which was originally proposed to deal with
blocking operators [8], has proven useful in many different
roles, including data stream joins [4], out-of order tuples
[12], and heartbeat propagation to idle-waiting unions and
joins [9].

In this paper, we have proposed integrated techniques
for timestamp management and query execution that can
greatly reduce the memory usage and the latency in queries
with union and join operators. Our experiments show the
improvements so obtained significantly surpass the periodic
timestamp approach proposed in [9].
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