Optimal Load Shedding with Aggregates
and Mining Queries

Barzan Mozafari, Carlo Zaniolo
Computer Science Department, University of California atlAngeles
California, USA
{bar zan, zani ol o}@s. ucl a. edu

Abstract— To cope with bursty arrivals of high-volume data,
a DSMS has to shed load while minimizing the degradation
of Quality of Service (QoS). In this paper, we show that
this problem can be formalized as a classical optimizationask
from operations research, in ways that accommodate diffenat
requirements for multiple users, different query sensitiities to
load shedding, and different penalty functions. Standard on-
linear programming algorithms are adequate for non-critical
situations, but for severe overloads, we propose a more effént
algorithm that runs in linear time, without compromising op ti-
mality. Our approach is applicable to a large class of querie
including traditional SQL aggregates, statistical aggregtes (e.g.,
quantiles), and data mining functions, such as k-means, ne
Bayesian classifiers, decision trees, and frequent pattediscovery
(where we can even specify a different error bound for each
pattern). In fact, we show that these aggregate queries argescial
instances of a broader class of functions, that we call recipcal-
error aggregates, for which the proposed methods apply wittull
generality.

Finally, we propose a novel architecture for supporting loa
shedding in an extensible system, where users can write athary
User Defined Aggregates (UDA), and thus confirm our analytida
findings with several experiments executed on an actual DSMS

|. INTRODUCTION
Important applications, such as live traffic monitoringck-

ing of stock prices, credit card fraud detection, and net-

most current techniques differentiate between runningigsie

only based on their processing costs [5], [26], [7], [21R]2

only a few of them also try to discard the less important parts
of the load, with techniques that are application-specific [

or assume that load shedders can be placed at the very source
of the data streams rather than in the DSMS as needed by
many applications [9], [12]. Therefore, the need for more
general load shedding models and algorithms remains acute—
inasmuch as current approaches do not support well the
conditions that occur in many application scenarios, idiclg

the following:
1) Many users may share the same DSMS, demanding

different QoS guarantees. Also, the same user may
weigh her own queries differently. In fact, the QoS
specification itself can be in the form of an aggregate
metric of multiple queries. Thus, we must accept higher
level quality specifications, e.g. to minimize the total

relative error, summed up over a user's queries.
Each query may seek a different goal under load shed-

ding, and that can potentially lead to even different
treatment of the?ARTI TI ON BY (a.k.a.GROUP BY) keys

within the same query. ] )
3) The load shedding algorithm itself must incur no or

little overhead to the system. It also has to guarantee an

2)

work monitoring for intrusion detection, must process mass
volumes of data streams with real-time or quasi real-time 4)
response. To support these applications, a new generdtion o
data management systems, called Data Stream Management
Systems (DSMS) is being developed. The continuous query

optimal solution for a large class of aggregate queries.
Load shedding techniques should be added easily to

DSMSs, without compromising the openness and ex-
tensibility of the system. Thus, simple primitives are
needed to provide load shedding capabilities for arbitrary

languages of such DSMS are often similar to those of tradi-
tional SQL-compliant DBMSs [4], [2], [27]. But DSMS must
also provide QoS in the presence of high-arrival rates,tiur
arrivals and many other technical challenges not faced
traditional DBMS. In fact, data stream arrival rates canigé h represents a transaction of basket ittnBuppose that the
and unpredictable. If the arrival rates significantly extédee system is running two querie)4 and Qz, counting the
system’s capacity, queues build up and the processingchateR . rrence of patterng and B, respectively, on a window
increases without bound. Therefore, one of the fundamenta), o¢y17 — 94 (Thus, if A = {milk, butter}, Q4 is the
tasks of a DSMS is to (i) constantly monitor the currerf,nher of transactions containing both milk and butter.)If
load, and detect circumstances, where shedding some of the -\ing whether a pattern is contained in a tuple takes
Ioad_ becomes |ney|table. This of course, _W|II degrade t'}ﬁ'ocessing units, determining the exact frequency of @l th
quality of the queries’ answers. The question then becomesie ns over all the transactions takes 24 = 48¢. Now, if

(i) when, (i) where and (jii) how much load to shed. Gracefu}, , system's capacity only allowedc, we must skip counting

load shedding is desired in order to minimize the accuragyme transactions, some patterns, or both. If the user esese
loss. The state-of-the-art on load shedding is still lagkin ’ ’

a general model. Previous work on the problem delivered, ye jiterature, terms ‘pattern’ and ‘itemset are oftesed interchange-
effective solutions under simplified conditions. For im&te, ably.

aggregates.
The following examples illustrate how addressing the above
oints is not trivial.
yExample 1. Consider a data stream where each tuple



no preference, any arbitrary load shedding scheme leadinghiay prefer to minimize different types of error, which will
30c would be acceptable. But let us instead assume that oaguire different correction policies. Finally, due to thiack
user wants to minimizé& = 3, 1-p fp wherep ranges over box semantics of User-Defined Aggregates (UDA), the system
the patternsy, is the fraction of the transactions considered iis not able to shed data from its infuUUDAS have proven ef-
processingl,, and f, is the true frequency of pattept. Let fective in providing expressivenéssxtensibility and mining
us now assume thaty = 1, fg = 4 (in reality, these values functionalities in a DSMS [24], [23]. Thus, when overloaded
are not known and will have to be estimated as discussgltedding input from UDAs provides a significant source of
in Sections I1,1Il) and compare three different load sheddi efficiency for a DSMS. In this paper, we propose a novel
policies, as follows: architecture (implemented in our own DSMS) to enable a
1. Uniform: We spend the same amount of resources félexible load shedding framework that can be applied to both

each of the queries, namelyc each. We have, = rp = % built-in and user defined aggregates, and can suit different

and: correction policies.
— 1-15/24 1—15/24 -3 Problem Definition. In this paper, we tackle the problem of
15/24 15/24 optimal load shedding for aggregates over data streams) whe
2. Proportional: We allocate our resources in proportioriuéries have different processing costs, different ingrare
to the frequency of each pattern. Thus, si — 4, we andthe users have provided their own arbitrary error fonst
spendsc and24c units onQ 4 andQ 5, respectivefy. Therefore, Which may require different treatment of the keys even withi
ra =6/24, rg = 24/24, and thus: the same query. Therefore, customers provide their busines
needs in terms of QoS specifications (e.g., stating the maxi-
G = 1-6/24 > 1-24/24 x4=3 mum error tolerated), and our work translates such guagante
6/24 24/24 into concrete amounts of load to be shed from each query (or

3. Optimal: The optimal load shedding plan (one thaltS keys). We also propose and implement a novel architectur
minimizesG) could be achieved (discussed in Section V-C) fhat allows the system to apply our optimal load shedding ove
we allocatedlOc and 20¢ units to Q4 and @, respectively. & large class of arbitrary UDAs (e.g., complex mining tasks)
Thus, we have 4 = 10/24, rp = 20/24, and thus: which are treated as black boxes.

Contributions. In summary we make the following contri-
1-10/24 « 1-20/24 «4 =99 butions:1. We formulate the general load shedding problem as
10/24 20/24 an optimization problem of finding a proper shedding ratio fo

While all three policies meet the maximum load requireme@@ch query, such that in the end, a weighted error is miniize
of 30c¢ processing units, not all of them produce the san¥¥e allow the queries in question to have different imporéanc
value for our goal function. The current literature on loa@fror functions, processing costs, and maximum tolerated.e
shedding has so far only applied the first method, namely We recognize a sub-class of queries based on the relation
uniform [5], [26], [7], [21], [22]. However, as illustrated by between their error and the applied shedding ratio, called
this simplified example, depending on the users’ criterid afieciprocal-error queriesand show that most common aggre-
the specific application needs, a uniform load shedding mégte functions (and thus, mining tasks) fall into this class

G:

not be best. 3. For a collection ofN reciprocal-error queries, standard al-
Example 2.Consider the following data stream and the twgorithms from operations research can find an optimal smiuti
continuous queries running upon (written in ESL [6]): in time O(N - logN'). However, we propose a more efficient

STREAM OpenAuction (itemID int, price real, ts timestamp) algorithm for severe overload conditions, that runsi(),

ORDER BY ts SOURCE 'port4561’; without losing optimality. . .
SELECT itemID, sum(price) 4. We propose a novel architecture that can deliver our
OVER(ROWS 49 PRECEDING SLIDE 10 optimal policy, even in the presence of a large class of
PARTITION BY itemID) UDAs. We provide our users with an APl to export their

FROM OpenAuction;

SELECT itemID, max(price) k(_ays and their v_ve|ghts,. and use query rewntmgs that can sui
OVER(ROWS 49 PRECEDING SLIDE 10 different execution environments, i.e. sequential DSMB84 a
PARTITION BY itemID) parallel/distributed ones.
FROM OpenAuction; 5. We present an extensive case study for the applicability and

Since bothmax andsumare built-in aggregates, the SyS_eﬂ‘ectiveness of our approach, using frequent patternngini

tem can automatically correct the query answers once |o_aol|a?hmt_)nlt(|)rlng. Yv? d|scfusz set\_/erall oztm;]lz:gpn oppoties
shedding is applied. Fawum the answer needs to be scaled! tN€ Impiementation of adaptive load shedding.

up bl)t/ the |rl;velrsfe _of tfée SShedd(ljngd'rf?“Q Wherea/snfml_, thg 4Assuming a window-based aggregate, one may sill shed et ivia
result can be left intact Second, different users/app Icatlon@\IinDrop operators [22]. However, it will result in missingutput for

several windows instead of providing approximate resuithiw some error
2If the f, estimates are accurate, this minimizes the total variance. guarantees.
3There are more sophisticated methods for even correctiagntim re- 5A DSMS becomes Turing-complete for data streams if UDAs dre a
sults [17]. lowed [6].



6. We validate our theoretical results by implementing them We borrow the existing techniques from [7], [17] as
into a full-fledged DSMS (StreamMill [6]). We present empircomplementary modules of our load shedding architecture.
ical results demonstrating the significant improvementthen We describe the interaction between such components in
quality of mining queries, measured by well-known metricSection Ill. For boosting the quality of the apriori estiinat,
such as absolute MSE, relative error, and the number of falsew and Zaniolo [17] favor a Bayesian model while Loadstar
positives and negatives. favors a finite Markov model [7].

Outline. In §ll and §llIl we review the related work and There has also been recent work on the application of
provide a background on load shedding in a DSMS;l\hwe  control theory techniques in detecting the right time arsbal
study the effect of load shedding on answer quality. Ada&ptithe ‘total amount’ of load shedding. In general, in an opaop|
load shedding and our proposed algorithm are introducedntrol (i.e., traditional load shedders), system outpustate
in §V. We present our proposed architecture §dl. Our information is not used in the controller. On the other hand,
extensive case study on counting queries and frequentipatteosed-loop control provides better quality, less delagy kss
mining in §VII is followed by addressing efficiency concernsvershooting [26]. As briefly described in Section Ill, our
in §VIII. Finally, empirical results are presented §hX, and method of optimal load shedding can be easily integratel wit
we conclude irgX. such control-loops. Whenever the controller determines th
need for shedding load, and decides on the total amount df loa
that needs to be shed (based on monitoring the arrival rates,

The prior work has addressed the processing of join querigseue lengths, CPU usage, etc), our component optimally
under load shedding [10], [11], [16], which usually invadve distributes the current resources between the runningesgier
adhoc heuristics. For aggregate queries, which is the fotusto satisfy the controller, while minimizing the total error
this paper, we instead use random load shedding. There is also a close connection between load shedding and

In their pioneering paper, Babcock et al. [5] proposedndom samplers. In [15], streaming operators (analogmus t
random drop operators carefully inserted along a query plaar UDAs) can be used for random sampling of the tuples,
such that the aggregate results degrade gracefully. Tetbulwhich can then be fed into other aggregates. Yi et al. [28]
al.[22] showed that an arbitrary tuple-based load sheddémg proposed probabilistic algorithms for detecting malicido-
cause inconsistency when windowed aggregation is used. Thensistencies in answers from continuous queries, run over
proposed a new operator callgdnDrop that drops windows random synopses of data.
completely or keeps them in whole. Inspired by their work, I1l. BACKGROUND
in Section V-D, we discuss how our framework can deliver
both subset [22] and approximate results [5], [17], [7],][12
[9]. Also in Section VI, we address a similar concern, whe

Il. RELATED WORK

As shown in Figure 1(a), in the typical architecture of a
SMS, load shedders are inserted between certain nodes of

missing output tuples is not an acceptable option for tﬁ € tqulery grzph, in (lnrdzr todrr;ndomly ?jiscartt:] abp?frtiﬂn of
application, and the system has to be assisted by prograsnm € tples under overioad, and hence, reduce the bufletneng
Although in this paper we focus on dropping tuples, o nd !atengy [5], [17]. The problem (?f dec_ldlng the optimal
techniques can be easily combined with the WinDrop operat cat;)ons mdt:e qu3r)t/) network folz ';ie”'Ff?g Ioa(ii shzdd(_erts
as follows. Once our algorithm decides on the shedding ra[glS een addressed by prior work [21]. Figure 1(b) depicts

for each query, a separate WinDrop operator can be appl

to each group of the queries sharing the same ratio. . : .
. . : . The right time (or frequency of) load shedding, and tibial
Perhaps the most aligned with our fine of work is thatmount of load to be shed have been addressed by prior work

in Loadstar [7], arguing that for many data minin task@" X .
a more intell[ig]ent Igoadgshedding scheyme for datagstrear%sémg techniques from control theory [26]. Their method can

is required. Even though this pioneering work differersiat be integrated_with ours, referred toMenitor andController
between different input streams, they still treat all geeri components in Figure 1(b).' . .
equally. Moreover, their adhoc method only focuses on Elass The current I_oad shedding I|t<_-:«rature, g(_anerally speékmg
fication tasks and their quality of decision, whereas we psep aff_ects al quenes: equally: For instance, '_f the _total load
a general framework for a larger class of queries and suppo ice the system's capacity, all the queries will fabe%

more customizable setting. Recently, load shedding inaen oad_ shedding. Thu_s, in this paper we extend thg current
%T?hltecture by adding a novel component, cal@gdtimal
t

major components in our framework. In the following we
Iscuss each component.

and mobile networks has been stated as an optimizati 0 o
. esource Distributer (ORD). As shown in Figure 1(b), once
problem in [12], [9], where they rely on the very sources g e total amount of needed load shedding is decided by the

the data stream (i.e., nodes) to perform filtering and smegddi . ) .
However, we do not make any assumptions about the Soqué\troller, the ORD f:alculates the optimal shedding ratio f.
very load shedder in the query network. As shown later, in

he | hedding i f li . : ;
nodes, and the load shedding is performed by our centram%Per to find the optimal solution, the ORD also needs an

DSMS, as required by many streaming applications. Thus, il T - :
DSMS does not need to trust, rely upon or communicate Wi%tlmate of the data distribution/statistics. Prior watk][has

any qf_ the stream generator nOdes' in order to deliver moreg,.qni12], [9] which are source-based load shedding, afdl that is
flexibility, reliability and ease of maintenance. adhoc to a certain classification task, $tle
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Fig. 1. (a) A query network. (b) The general framework of cead shedding proposal.

also provided means for such estimations from the past datamber of tupleg; wherep C ¢;. For scalarCOUNT queries,

which is theQuality Enhancement Module In fact, those the frequency will simply be the number of those tuples where

estimations can also improve the accuracy of the final resuft= ¢;.

significantly. In the presence of a load shedder with sampling rgte
IV. LOAD SHEDDING AND ERROR every tuple of the window will get included in the sample

with probability r,. Let f, be the true frequency g over

e ot ey s window. Based on i rancom sample. v can e an
q P g larg proximate answelf, to be the frequency op in the

support incremental computations has proven very valualigye S a¢ get included, scaled byr,. Thus, using Bernouli

in DSMS [8], [6]. Windows and slides can be either count ; o .
; . . . sampling theory, one can prove thfatis in fact an (unbiased)
based or time based. Continuous queries can be issued over
estimator, as follows.

a.tumbling wind_ow or a sli_ding window. There is also a An unbiased estimator. For each given query (with a

thlrd.type of contlnuo_ug queries called decaying that daxds Neere clause looking for patterp), we can definb; = 1

require a wmdov_v definition [6]. . henp C t; andb; = 0 otherwise. Clearly, we have¢, =
Throughout this paper we assume that the arrival rate of t b

input tuples and the processing load of the system is mautor—~i=1 "* . . .

periodically, based on which load shedding decisions a'mmadissclgfdeegav(\:/ir:htupprlgéaiiﬁtgz)cfsfedwvgltza?] %ﬁ?ﬁ:lg%aiggm

for the nextWW tuples. Letty,--- ,ty denote the current set a4

. . R h . .y
of input tuples. The load shedding ratio applied to query \)/?niab(;e)i%such Lha:})ﬁl *ﬂv'q W'thl atprobabfllltg ofrg a(r;d
is referred to as,, where0 < r, < 1. Thus, for processing ~* — with a probability ofl —r,. In terms of these random

¢ we only look atR, — r, - W randomly selected tuplesvariables,ourestimator@fs frequency (which is based on the
q — 'q

. . g w .
(0 < Ry < W), and then try to estimate the answer from thi a”dofn'y selectedt, _transacqus) W'." be:fy = 3.izy XZ"
random sample. We useto denote the total resource limit in he bias and the variance of this estimator can be derived as

this period. TheR, values should be selected in such a wa llows. w w
that the constraint below is satisfied: E[f,) = E[Z X, = Z bi = f, 2)
> R, <L (1) i=1 i=1
. q€s ) _ Thus, we have an unbiased estimator, and:
whereS is the set of running queries. In the above formulation, . . <y - )
we are assuming separate execution of the queries. Latéf'l/s] = Elfp] = Elfi]” = Elfy] = fp
in Section VI, we will incorporate the amortized cost of il
processing similar queries together = D BIXI+ > BIX)-BIX)-f
L i=1 1<i#j<W
A query network may contain arbitrary operators (e.g., W w w
SUM AVG, mining queries). Next, we explore the relationship — Z bi + (Z b)) — (> b2) — f?
between the shedding ratio and the error for different tygfes = = i=1
aggregate queries. W W
= Lones o LoTe Sy, (sincen: € {0, 1))
A. Counting and Frequent Pattern Mining Te [
Let us consider an aggregation queyythat counts the _ 1 —rqf 3)
occurrence (a.k.a., frequency) of a patterithis query can be rq 7

a mining task (to verify whether is frequent enough), or just
a simpleCOUNT query. In the context of pattern mining, each Note that Eq. (3) relates the variance (relative error) ef th
t; is a transactiohand the frequency af is defined to be the estimator to the applied sampling (shedding) rgteThe larger

“For simplicity, in this paper we assume fix length transatithat can fit 8A more precise notation would bl , since each pattern has its own
in a tuple. estimator variables.



the r, the better, e.g. if, = 1 (i.e. R, = W) the estimator the context of estimators include variaficeelative error and
will be perfect, confirmed by (3) as a zero variance. accuracy error.

Computing the variance. Note that the ultimate goal is to  According to Eq. (3)COUNT (and therefore frequent pattern
estimate thef, values as accurately as possible, but equatiéining) are reciprocal-error with respect to variance, wehe
(3) is itself written in terms of this unknown variable. Thustq = f; andb, = f;. Also, dividing this variance by the true
in practice, instead of,, values, we use their approximationgrequency gives the relative error gs — 1. Thus,COUNT and
(denoted byf;) in Eq. (3) which can be derived from pasfrequent pattern queries are also reciprocal-error witipeet
data (see the distribution estimates in Figure 1(b)). Herevto relative error.
note that these approximations are solely used in the psmfes \We can use results from [17] f@UMand AVG queries, for
estimating the variances which will then be used in Sectipn Which two unbiased estimators are introduced. Denoting the
to find the optimal-, values. Once this optimal load sheddingrue value ofSUMas s,, and its estimator as,, we have:
policy has been a.pplied, we compute [ﬁeest?matprs which A 202 +p2) o242 1
are now more reliable than our first approximations, namely Var[s,| = — N2 + N2 X —
f7. This is due to the fact that fof,, we at least have an H H "a
analysis of the variance and expectation values. Moreovatso denoting theAVG and its estimators byn, and m,
our experimental studies in Section IX have validated thegspectively, the variance can be derived as:
even using the simplest approximation fjy values, we still B R N
achieve significantly more accurate estimators in the end. Var[mg] = — + X — (6)

. . . . N N Tq

Our proposed techniques in later sections are independent
from the specific approximation techniques, except thatemothere in both equations and p represent the standard
accurate approximations yield better final results. Theeef deviation and the mean of the original data respectively. Eq
while in our experiments (Section 1X) we simply use tfig (5) and (6) prove thasuMand AVG are also reciprocal-error
counts from the previous window as thf§ values for the With respect to variance.
next window, any other approximation method could be used!n addition to frequent pattern mining and monitoring [18],
here too. In fact, more sophisticated methods can be eadny other mining tasks can be expressed using the above
adopted in our framework, such as a weighted (decayingciprocal-error queries. For instancRyG clustering algo-
sum of the counts from several past windows or the accurdéfims such as<-means ands<-nearest neighbors are imple-
boosting framework introduced by Law and Zaniolo [17Mented usinghvGandCOUNT, respectively. The main building

where a Bayesian model is exploited in correcting the errdp¥cks of many classification algorithms are also recipkoca
and detecting concept shifts. error aggregates. For instance, a Naive Bayesian Classifie

consists of severa@OUNT queries. Other examples of mining
. _ tasks expressible in terms of reciprocal-error querietide
B. Reciprocal-Error Queries frequent pattern mining and k-means. More such algorithms

In this section we formally define a class of operator§an be found in [17]. _ _
namedreciprocal-error queries, which include a large range Another important class of queries that are reciprocadferr
of conventional aggregate operators and which are also Riijh respect to variance are quantiles. According to [31}}#
components of many important mining tasks. As shown latéf sample quantile is asymptotically normal with men’ (p)
the proposed algorithms in Section V work with any collegtio@nd variance:
of operators from this class. , p(l—p) W

- . . Var[p-th quantile of the sample= ————~—.—

Definition 1 (Reciprocal-Error Query)A query ¢ is arlp-th P (f(F=Y(p)))? rq
riug;c_)cal-e_rtrr? r with I_espec'i to error funct;_endlf undertl)c_)ad dwhereW is the population (window) sizd; is the cumulative
sheading with sampling raté,, on€ can find an unblasedyisyipy tion function andf = F is the density function. Note

estimator for its answer from the random sample, such tr}ﬁ;ﬂ Median, MAX, MIN are special cases of quantiles
its errore, grows reciprocally withr,. In other words, there ’ ' '

should bea, and b, (both independent of, ande,) such V. ADAPTIVE LOAD SHEDDING
that for any0 < r, < 1:

®)

As simplified in Example 1, the general idea behind adap-
by tive load shedding is to treat different keys of each query
eq=— —ay 4) . : ; o s .
Tq differently, in order to achieve optimality. Using differe
Note that in this definition we do not restrict the type ofhedding ratios for different queries always pays off when
error. Thus, a query can be reciprocal-error with respect titee aggregates occur in different paths of the query graph,
a certain type of error while not so with respect to othes shown in Figure 1. However, different shedding ratios for
error types. Therefore, once an error functiois chosen, our .
i i inimai In this paper, we use variance and absolute error intereaduhg since
?I’OpﬁS(‘;d algor_lthm; are guargnteedl to Optlma”y rnlnlnalzefor unbiased estimators, their variance decides the magmibf uncertainty.
orallt e.querles_ that are reciprocal-error wit reSpe(_:‘t't Thus, variance divided by the true value will be our relagveor. For accuracy
However, in practice more commonly-used error functions #iror see Section VL.



different PARTI TI ON BY keys of the same aggregate, cawhile according to (1) and®, = W - ry:

also be beneficial. This may not hold for aggregates with . I
simple PARTI TI ON BY clauses. For instance, let us compare 7 C=) o < % (8)
the following two queries: kes

Q1: SELECT itemID, sum(price)
OVER(ROWS 49 PRECEDING SLIDE 10
PARTITION BY itemID)
FROM OpenAuction;

Q2: SELECT patID, count(transaction) AS freq

If all the queries inS are reciprocal-error with respect to the
given error functionF, one can use Eq. (4) to simplify the
above optimization goal as follows:

Minimize: G=—-ar-w+) b vk _ > ar - vrt+Gy

Tk

OVER(ROWS 49 PRECEDING SLIDE 10 keS kesS keS
PARTITION BY itemID) .

FROM PatternTable, TransStream where: Gy = Z by - vy @)

WHERE contained(patID, transaction) ol

HAVING freq > 1000; )
Note that to minimizeG, it suffices to minimizeG; while

Due to the unbounded nature of data streams, most DSMsgisfying (8). Also, notice that, andbj, values differ from
use a hash-based implementation for BARTI TI ON BY Keys  one query type and key to another, and also from one error
of aggregates in order to make the execution non-blockifighction to another. In each case, the proper formula should
(whereas in a DBMS, a sort-merge implementation could g applied, as described in Section IV-B.
applied, as a blocking operator). Thus, when executing @, t  For the keys extracted from flat-cost queries, the costs for
processing of each tuple requires constant-time (i.epRd- 5| the keys from the same query are equal to the processing
dent of the total number afemID’s) to look up the value of its ¢ost of that query for one tuple, divided by the number of keys
it_emID in the ha;h table. Therefore, having different ratios fqqqowever, we also add extra equality constraints to enfdrae t
different keys will not save much computation. In other vérdthe solution to the above optimization problem sets the same
as long as a tuple is going to be considered for a particulgfeqding ratio for all the keys in the same flat-cost query.
key, considering it for all other keys will not incur additial  op the other hand, for variable-cost queries, thevalues
overhead._ We refer to such qut_aries as ‘flat-cost’ queries. F@present the average processing factor of their queras, p
example, if the above Q1 query involves three keyst#miID,  yple-per-key. Also, the shedding ratios of their keys can b
say i, j, k, to which we need to appl$0%,30% and 10% itferent here.
shedding ratios respectively, one can use the sadie of  Next, we discuss three different solutions for the above
the tuples to update the sum of all three items without extfRentioned optimization problem. First, we explain the anif
overhead. . . approach, which is the state of the art method in centralized

However, for more involved queries such as Q2, the coglag shedding methods [17], [5], [26], [21], [2]. We also
of processing each tuple of the input stream depends on K}@sent an alternative method, called proportional, thkég
number of patterns stored iRatternTable We refer to this ihe weights into consideration when deciding thevalues.
class of queries as ‘variable-cost’ ones. These two classesgoth of these methods will be later used as baselines to com-
queries can be easily detected syntactically. In our SYSt€Hare with our proposed solution. We argue that our formortati

joins, and function-based selections mark a query as \erialhf 5 centralized load shedding is flexible, can be efficiently

cost [19]- _implemented (see Section V-C), and can be easily extended to
In its most general form, we formulate the load sheddingrpitrary UDAs (see Section VI).

problem as that of minimizing a weighted error of our esti-
mations, once a certain amount of load has to be shedSLef\- Uniform Resource Allocation
be the set of all keys of all the running quetfgsand assume  In current centralized load shedders [17], [5], [26], [21],
|S| = N. We denote the errors by vectar = lex,, - ,ekn], [2], a single shedding rate is selected to discard some of the
whereey, is the error in our approximate answer for kky transactions. The remaining transactions will then be used
for all keys in S. Similarly, we denote the keys' importanceprocess all the queries. In particular, when the queriesesha
by vV = [Vkys - ,Uky], @and their resource cost b@ = the same query plan (e.g. all perform counting), they exhibi
[¢ky, -+ scky]. Thus, for each key:, we have a tripleex, v, the same processing cost too, and thus, the same shedding rat
and ¢;,. Now, the problem of adaptive load shedding can beill be applied to all of them. In other words, all queries are
formally stated as choosing, values such that they minimizetreated equally, as they are processed against the saméénum
the weighted error (the scalar producth- V) as the goal of) transactions. Since the same shedding ratio is unifprml
function (7), subject to the resource constraint (8). applied to all the queries regardless of their error fumdio
and importance (and sometime even their costs), we refer to

Minimize: G =E-V =Y e vy (7) this method asiniform Thus, givenL, W and C the global
kes load shedding ratie can be derived as:
0In Section VI we discuss how these keys are extracted fromptiss r L (10)

results. W > kes Ck



Therefore, in uniform load shedding, for dlle S, we have This lemma, in conjunction with the following results, lsad
rr = r. When all the the running queries are homogeneouss to an efficient algorithm as long as the system is in a atitic
one can assume, = 1 for all &k € S. setting (i.e., the resources are below a certain threshold)

Theorem 2:In any optimal solution for a critical setting, if
bi - & < by 3};‘— we have:

c

B. Proportional Resource Allocation

Another heuristic to cope with different importance is to
distribute the available resources between different igaer =i/ br vk few v (13)
proportional to their importance,. More formally, the share i b - Vg Ck b

for each query keyk from the total resource is determined Lemma 3:Under a critical setting, if, values fork € S
using the formula beloW. are an optimal solution with respect to a givén> 0, then

an optimal solution for the same set of vecteisE and V
= Uk L (11) with respect to any othekt’ > 0, consists ofr}, = Lf -1y, for
Desth W all k e S.
Depending on the application requirements, query typesAccording to Lemma 3, we do not even need to examine
involved, and the error function, one may find one of the abo@ values for the maximum ratio before applying Theorem 2.
methods (i.e., uniform and proportional) more favorable.(e The pseudo code for finding an optimal solution in linear time

Tk

see Section VII). is presented next.
Algorithm 1.

C. Optimal Resource Allocation 1) Letm be one of the keys with maximufx==. Assign
As mentioned previously, a solution consists of a set of  an arbitrary value to-,,. For all other kefélc % m, if
positive r;, values (for all keysk € S) that satisfy constraint frx = fm then letry := r,,; otherwise choose; based

(8). An optimal solution with respect to a given error fuocti on Theorem 2.

is one that minimizes the goal functi@i,—see Eq. (9). Our  2) Letu = sum, .7y - . Returnry, = % - for all
adaptive load shedding problem becomes a special case of k € .S as an optimal solution satisfying constraint (8).
a subclass of non-linear programming, named separable and I
convex resource aIIocatior?, and thus, can be optinfallyesblv%]' Flexibility of the framework
using classic operations research algorithms [25]. Howeve In general, load shedders follow one of the following two
these algorithms involve sorting [25], and therefore, tiheist Paradigms: (i) they drop a fraction of the input, and try thei
time-complexity is, in generat)(|S| - log(|S))). best to provide approximate answers in the output [5], [17],
However, under severe loads, even a linear-logarithnli@l, [12], [9]. (ii) they drop/keep windows entirely sucheath
time complexity can be too expensive. In the rest of thi§e output of the aggregates for the kept windows remains un-
section, we first formulate certain overloaded settingsenTh affected while no output is produced for the missing windows
we propose a linear-time algorithm for finding the optimaThiS latter method is called ‘subset results’, as the ouiput
solution under such settings. Later, in Section VIII, wecdiss always guaranteed to be a subset of the actual answer [22], an
further optimization techniques. comes at the expense of missing output tuples. Our framework
Definition 2: For a given resource limif., window size can naturally combine the two paradigms, to provide a broad
W and vector, E and V, we call the situation acritical —Spectrum of applications with more flexibility, as descdbe

setting if the following condition holds for allk € S: next.
The user can provide a maximum-tolerable error for each
L. Vbi - Uk <1 (12) of his queries (or even for certain keys within his queries),
Wever 3 es Vok vk -cr above which he would not be willing to see our approximate

results. Thus, once we solve our optimization problem, we

Roughly speaking, a critical setting refers to a situation isimply revisit? all the queries that will not meet the required
which the available resources make us apply load sheddingdes specs. By ignoring such queries and distributing their
most keys if we seek an optimal solution. Before presentifgsources among other queries we are able to further boost
an efficient algorithm for critical settings, we need to shohe quality of their answers. Thus, a user who always prefers
that any optimal solution must satisfy the monotonicityero subset results over inaccurate ones, can simply set ale thos
erty. All the omitted proofs can be found in our technicahaximum tolerable errors to zero. In such a case, the opti-
report [19]. . mization problem determines an optimal solution in whicsle

Lemma 1:1f by - <% = by - ﬁ in any optimal solution affordable/important queries will be ignored in the inttref

rq = ¢ . AlSO, in such solutions, whety, - z—q < by - % we providing subset results for other queries.
> -

have: v Implications on designing future systemsHaving access

1) ry <1y if rq < 1. to an optimal load shedding algorithm can also be beneficial
2) rg=rg if rg =1. 12In fact, we do not need to solve the equation iteratively. Wiy meed
to add appropriate inequality constraints on the shedditigs. More details
1when the righthand side is larger than ong,is set tol. can be found in our technical report [19].



from a design point of view. For a given QoS requirement, ? ﬂ/—l
and an upper bound on overload, one can pose the follow- G‘D an
ing question: What amount of resources would we need to y% 60%
guarantee the QoS requirements under a worst-case overload
scenario? The optimal solution will then effectively detére st G& 2; 52%%
the minimum amount of resources which would need to be 3 @
allocated at the time of designing the system. _l
V1. ARCHITECTURE |_uniow |

In this section, we present our extensible architecturé tha
can deliver optimal load shedding for aggregates including (a) Fork-Merge. (b) Cascade.
arbitrary UDAs. The main difficulty in shedding input for Fig. 2. Two different alternatives for rewriting UDA quesie
arbitrary UDA lies in its black box nature which causes the
following issue: B. Query Rewriting

1) Their internal semantics is not known to the system, Once the load shedder (ORD) decides on the shedding ratios

and therefore dropping random input tuples can lead for individ_ual keys involved in a query, the system will erde
unexpected, and unacceptable results. these ratios as follows: _

2) The system cannot automatically make the appropriﬁ@t_'COSt quer_|es:For _each incoming tuple, the scheduler can
corrections to the results returned by the UDA—agasily determine the involved key, and apply the appropriat
opposed to built-in aggregates such MsN and SUM she(_jding ratio. The implementa_tion in this case is quite
where the results require no correction or are Simpﬁgrmghtforward, as each tuple will only be used for one of
to scale up. the keys.

3) The keys involved in a UDA (to be used irPaRTI TI ON Variable-cost queries:For this type of query, enforcing differ-
BY clause) may be unknown to the system, and therefofit shedding ratios for different keys is not trivial. Theis®
the load shedder cannot decide on different sheddiféthis complexity is either complicated selection clavsgy(,
ratios for each key. see Q2 in Section V), or implicit keys (i.e., keys not menéidn

While the first issue above, has been addressed in [22],'[h'(re]irthe query expression). Thus, a simple separation of the

solution seeks to maximize subset results and assumes {H% ming tuples based on their key value will not be feasible

several windows can be ignored, entirely. Our method imSteé’m N SOoMe cases can even Ieaq to logical mconsstenqles. I

. . particular, for UDAs, we cannot simply drop some seemingly

deals with general UDAs (whether they are running over:a O . . .
window or are decaying). We take a middle-road approac'ﬁrelevam tuples from their inputs, as it can interferehathieir

i internal semantics, e.g. the UDA may be building a histogram

where we provide the users with an API to export their key, emember that we treat UDAs as black boxes). Detailed

from the UDAs in a certain format, but the rest of the loa . S .
shedding and query re-writing are taken care of by the syste?ﬁ(amples can be found in [19]. Hence, to address this it

The user can also specify another built-in or user defindd rewrite the variable-cost queries that contain a UDAg int

i . . grovably equivalent forms, as described next.
aggregate to perform the result correction, which will b€y ron \Merqe Operation:we create multiple instances of

invoked by the system upon application of load shedding. Wge "UDA. In Figure 2(a) these instances are shown as blue
first discuss the API through which each UDA can export it&haded) semi-ellipses, filled wit}'s. As a running example,

internal keys. Then in Section VI-B, we present our executi@ssume that we group all the keys based on their optimal

it i shedding ratio. Say that we have three groufiswith a ratio
model based on the rewriting of aggregate queries. of 80%, 52 with 60%, and S3 with 50%. As depicted. we
A. Key Extraction initialize the first UDA instance with all three sets of theyke

; he second one with the keys Bil and S2 and the last one
Each UDA can C?" our API to export a number of tr.'ple‘{’/vith only S1. For each tuple, the load sheddet, draws a
(K, ax,by), wherek is a key value andi; and by, are its rangom number (0 < r < 1), and the tuple gets routed to the
corresponding coefficients from Eq. (4), assuming that thgpropriate UDA instance, based enThus, if0 < r < 0.5,
UDA seeks a reciprocal-error function in a load sheddinigwill get routed to the rightmost instance,(f5 < » < 0.6 it
situation. These triples exported from UDAs are the onhill reach the middle UDA, and 6.6 < r < 0.8 it will be sent
information that need to be fed into our adaptive load shed %the leftmost UDA. One can easily verify that due to thealelt

X o X . edding ratios, at the end, all the keys will experiencé the
module (i.e., ORD) for finding an optimal policy. Note thagwn shedding ratio. Thus, the original query will be reveritt

in most practical cases these coefficients do not impose agy follows, whereRANDOM ) returns a random scaler value,
burden on the UDA, inasmuch as these coefficients are eitlaerd will be evaluated only once per each tuple, BWERATI O

identical to the results from the previous window, or art$ set t00.8 by the load shedder.

easily computable from those results. For instance, inueat|

pattern mining, according to Eq. (3), we hawg = f;, and CREATE STREAM PatternStreamForkMerge AS
br, = fr, Where f; is the UDAs output for pattern (keyy.  SELECT FIS(tid)

Thus, we can simply use the results from the previous WindongRETRIT('l:é?\lV\nglgg%oTog ;iﬁgg?/:NG SLIDE 1000)
to estimate these coefficients. ( 0)



FROM InputStream WHERE RANDOM() < MAXRATIO; computation, as all the tuples have been already processed b

. . the UDA. To overcome this problem, we allow our users to
However, due to common keys among different instances

we cannot simply take &N ON of the outputs, Instead,SpeCIfy a correction function/aggregate for their own UDA,

we ask the user to specify the appropriate merge operatif r'%hey want a system provided load shedding. At run-time,

L o A e current load shedding ratio applied, can be accessed by
for eliminating/combining the duplicate keys, as shown Thvoking a built-in function calledshedratio(). For simple
Figure 2(a). For instance, we us®Xx for MAX, M N for M N, 9 ' ' P

SUMfor COUNT, weighted sum foSUM or a customized UDA corrections, it can be directly called in the query gxp@ssi
for a UDA with obscure semantics. e.g., to scale up the frequency counts the user will Wite
This operation is well-suited to multi-processor servers, SELECT FIS(tid) * 1/shedratio()
distributed DSMSs. However, when the key space is too larg XCE)EA (IROWSS 9999 PRECEDING SLIDE 100)
the rewritten query increases the total number of keys in the nputstream;
running UDAs, and can suffer from many large hash-tables,For more involved answer corrections, the user can imple-
causing memory issues. The more important limitation &fent yet another UDA. This correction function (specified
the Fork-Merge is its dependence on the user to specify Bnthe ON SHEDDI NG clause) must have a signature that is
appropriate merge operation. Thus, in our system, we hak@mpatible with theSELECT clause of the query. Namely, it
designed an alternative operation, presented next. has to both take as input and return as output, tuples from the
2) Cascade OperationSimilar to Fork-Merge, we again SELECT clause. The following provides a simple example.
create multiple instances of the running UDA, shown as bIGELECT patID, MyCount(transaction) AS freq
semi-ellipses in Figure 2(b). Using the same running exampl OVER(ROWS 9999 PRECEDING SLIDE 100
this time we initialize each UDA instance with only one key __ PARTITION BY patID)
group, as shown in Figure 2(b). Here, we cascade a series WH%I\QEPattern_Table, TransStream
. . contained(patID, transaction)
load shedder_operaﬂ&rguch that each UDA instance is fed ON SHEDDING Corrector(patID, freq):
according to its shedding ratio. For example, a tuple with a
random labelr = 0.55 will be forwarded to all the UDAs VII. CASE STUDY: FREQUENTPATTERN MINING
except the one with a ratio @f5. While our results hold for any error function under which
Note that in this operation, we are duplicating the tupletleries become reciprocal-error, in this section, we pi@vi
instead of the keys. Therefore, the total size of requiresthha @ few concrete examples from the field of frequent pattern
tables will be comparable to that of the original one. Thus, nining. We show how one can seek different objectives by
is preferable over Fork-Merge operation when the key spa@@00sing appropriate error functions with differéptcoeffi-
is too large (i.e., many distinct keys). Sharing of the tapleients. In general, different applications that consurequent
prevents parallel execution of the query graph, and dujiga Patterns may prefer minimum absolute error or minimum rel-
the tuples (as implemented in our system) can cause ex3#€ error. Moreover, some applications only need to tedi
load to the system. Thus, we only fall back on the Casca#élich patterns are frequent/infrequent, without knowihgitt
operation, when the user refuses to specify a merge operdt$fct frequencies. In other words, if a solution providesrpo
with his UDA. Note that for Cascade we do not need an adhggtimates it might still be acceptable as long as the frecjuen
merge operation; due to the separate keys in each output, &€r does not cross the minimum support threshold, i.e. the

can use a simpleNI ON operator, that is the same for all UDAserror does not make a frequent pattern infrequent or viceaver
(see Figure 2(b)). In the following, we briefly discuss how each of these popular

goals can be achieved within our framework.

C. Result Correction L
o ) A. Minimizing the absolute error.
For built-in aggregates, the system can automaticallyecbrr By choosing the coefficients, = f, and b, = f,,

the output answers once load shedding is applied. For imlarhccording to Eq. (3), minimizing Eq. (7) will effectively

for M N andmax, the answer does not nééd correction, but \ninimize the total (or average) Mean Squared Error (MSE)
for SUM the answer has to be scaled up by the inverse of the \arjiance. Next, we use the general results obtained in

shedding ratio. Section V, for analyzing the special case of frequent patter
The correction phase, however, becomes another challepging and for different resource allocation policies.
in providing load shedding for arbitrary UDAs, as the system

is unaware of their internal semantics. The simplest smutiB. Minimizing the relative error.
could be dropping tuples after the UDAs (i.e., from their The relative error of the estimator is its variance nornealiz
outputs). But this late shedding of tuples will not save mudby its frequency. Thus, dividing Eq. (3) b gives the relative

error as—1+-=. Similarly, by choosing the coefficients, = 1
B3In the actual implementation, we only use one operator atidpe but andb, = 1 r;finimizin E (7) will effectively minimize the
annotate the tuples with their random number, to allow a Emfiltering p— = 9 . 4. y
along the query graph. total (or average) relative error. Due to the symmetry of the

14Here, correction refers to making the estimator unbiasemverer, the
accuracy of the results can always be enhanced using otblenigeies to 15Note that this is different from a built-in count query, whedhe system
reduce the estimator’s variance, see [17]. can automatically correct the results.



patterns in terms of these coefficients, the optimal salutidhe estimate for pattern respectively, we have:

uses the same shedding ratio for all patterns. Thus, we have fp—a
H 2 . 11—y
the following lemma. o . G = Z / 21522 o~ dtsin (18)
Lemma 4:If the error function is relative error, and all " NZE

queries are counting queries, both uniform and optimal ap-
proaches lead to the same solution.
Uniform Policy. Since all the queries are counting, we cal

By minimizing the negated goal, namelyG,, we will
fpaximize the confidence of our classification. Even though

assume that;, — 1 for all k € S. We can use Eq. (3) and alsoPUr counting queries are not reciprocal-error with respect

assume that, = 1 for all k ¢ S. This simplifies the total Ed- (18), we can use an approximation of this integration
weighted error of this special case as follows. for which counting becomes reciprocal-error. For instarfce

0.1 < r, < 0.9, a simple approximation can be the following:s

el N [ DY ) D ST Gom Y - U0l

keS keS keS s T

Proportional Policy. Similar to the uniform case, we can Our experiments in Section IX show that even this simpli-
further simplify the total weighted error for frequent @att fieq goal function leads to significant improvements in terms

mining. When for allk € S, we haver, < 1, ¢, = 1, and o .
e = 1, one can derive the following: of false positive and false negative percentages.

VIII. OPTIMIZATION OPPORTUNITIES
G =" (%’“fesn —1) - fi = M*Z fr  As analyzed in Section V-C and validated by our exper-
kes Sk ke iments in Section 1X, the overhead of finding an optimal
( solution itself is negligible. However, there are circuamstes
Thus, in the context of frequent pattern mining, pattewhere having the same load shedding ratio allows for exe-
verification [18], and any other application that consists @ution optimizations. One important such circumstancenis i
only counting queries, we make the following observatiofitequent pattern mining. In frequent pattern mining, ak th
from (14) and (15) we notice that both the uniform ang@atterns that share the same shedding ratio can be batched
proportionat® load shedding policies produce the same totébgether in a singlepattern treewhich is a compact data
variance ™ = GP"°P), However, the uniform approach isstructure allowing fast mining and counting of transacion
still more favorable since it does not require knowing thdata [13], [18]. Thus, while the uniform approach does not
fr values, while the proportional method does. Based @igliver an optimal solution, it can be implemented more
the quality of the approximation used, the analysis for trefficiently. In the rest of the section, we address this issue
proportional approach will vary, and the result in (15) may \syification and fast counting

not necessarily be achievable. . Mozafari et al. have recently shown that the well known
Both uniform and proportional approaches can be implg; yree data structure is not only efficient for mining but is
mented in time linear in the number of queries, but none @fen more so for conditional counting (calledrificationin
the two produce the optimal solution f6f; (as demonstrated [18]). For a given set of patterns and a set of transactidres, t
by Example 1). _ _ ~ verification task is to accurately count the occurrence o¢h
Optimal Policy. Similar to uniform and proportional poli- hatterns against the transactions if their frequency iselso
cies, we can calculate the total error (here, variance)Her tgiven threshold. In other words, patterns that are guaeante

special case of frequent pattern mining: to be infrequent need not be counted and can be skipped
Lemma 5:For frequent pattern mining, under a criticafor efficiency. The authors have proposed a fastifier (i.e.,
setting, the minimum variance is the following: an algorithm for verification) that outperforms the traufital
opt W 9 counting methods such as hash trees, even with a threshold of
G=— %f’“Jrf(% \/f_’“) (16) zero. Thus, we use these verifiers to perform our optimal load
shedding solution to address the aforementioned efficiency
C. Maximizing the classification confidence concerns that arise in a pattern mining/monitoring scenari

For a given minimum support, if the objective is to de- as described next.
termine whetherf, > « or f, < « as confidently as possible,

one can seek to maximize the following goal function: B. k-means for coarsening different ratios

An optimal load shedding solution can potentially lead to

G, = Z ’pr[fp > a|fp] — Pr(f, < a|fp] (17) a diff(_—:trent sh_edding ratio fgr each pa_ttern (or query). Si_nc
» applying a different shedding (sampling) rate for counting

Using the central limit theorem, we can prove that for a givefficl Pattern's frequency is not practical, we group theepat

set of patterns withf, and f, being the true frequency ar]daccording to the proximity of their sampling rate. Then,keac
b b group will be stored in a separate pattern tree that will ugale

16The requirement of, < 1 for proportional method, will be formalized (1€ S@Me shedding ratio in the counting process. By choosing
in Definition 2. the ratio of each group to be the mean of its members’ ratios,



Algorithm k-optimal( k) Quality of mining results. The first goal of our experiments

Input: % is the allowed number of shedding groups. is to compare the proposed load shedding algorithm with

Output: Frequency estimates of the given patterns. its state-of-the-art counterpart, namely the uniform apph.

0: For each window: We will study the effect of different load shedding policies

1 7 < Optimal Solution from [25] under different quality metrics and under different ovadimg

2: (91,71), -, (gk, %) < k-meansf) settings §IX-A, §1X-B,§IX-C). We used both synthetic (IBM

3 For each group) > i > k: QUEST [3]) and real-world datasets (Kosarak [1]), but due to

4: Insert patterns of group; into pattern treePT;  the similarity of the results and lack of space, we only répor

5: For each transactiohin the current window: the experiments achieved on the Kosarak dataset. Unldss sta

6: draw a random number otherwise, in most of the following experiments we used a

7 Considert in counting of all pattern tree®T;,  window size of10,000 tuples, a minimum support of%,

wherep <7; and almost00 patterns.

Return count estimates for the given patterns. Efficiency. The second sets of our experiments, study the

Fig. 3. The pseudo code for k-optimal algorithm. efficiency of our proposed framework, #X-D, §IX-E,§IX-F.

the total il not i Note that thgetar "~ /\"S0Ute eror
e total resource usage will not increase. Note that trgefar We measured the absolute MSE (i.e., variance) of different

the groups, the fewer the different ratios, which would ioyar shedding policies for a wide range of overloading ratios.

efficiency at the expense of optimality. In an extreme ca . . : .
when we group all the pattems into one group, the fi:\(fye separately investigated slightly overloaded and highly

solution turns into a uniform one. At the other extreme, wh Buerloaded situations, respectively in Figures 4(a) and). 4(

each aroun onlv consists of one pattern. the solution resnain e horizontal axis demonstrates the amount of available
- group only P ! ) .~ ~processing resources normalized by the ideal amount needed
optimal. A high-level pseudo code for this algorithm is give

o ) to process the entire window. The vertical axis (shown ir lo
in Figure 3, named-optimal P ( g

. : . scale) is the variance summed up over all the patterns. [Eor th
The k-optimal algorithm employs the k-means clusterin ) P b

%osarak dataset, according to Definition 2, the criticatisgt

algorithm [14] to group the patterns, and therefore a praper, . any setting in which the available resource was less than

should be provided as input to the algorithm. The best tradfs% of the current load
off between efficiency (smallek) and optimality (largerk) As shown in Figure 4(a), both optimal and proportional

can be determme_d_ according Fo the application requiresnept thods significantly outperform the uniform approach when
and through empirical comparisons to measure the overhe:ﬁ@ resource to load ratio is comparable (e.g., ab@y&)

of adding each extra pattern tree. In our experiments Wil

Section IX-F, we show that in practice even a few patterrstresetter than the proportional method, their distance besome

. ith ici Si Yhore dramatic for highly overloaded settings as shown in Fig
compromising €ithér accuracy or efficiency. since we afg, 4(b). Also, the more overloaded the closer the uniforth an

dealing with one dimensional data (i.e., the ideal Shedd'rﬂﬁoportional methods are. In particular, they produce yac

ratio of each pattern) we can perform k-means in tithev - : " ; :

. . _the same total variance for all critical settings (confirntsd
log(N)) where N is the total number of patterns. We f|rstEq (14) and Eq. (15)), namely ratios belmg% (
sort the patterns according to their shedding ratio which is"™ ' ' '

determined by the optimal solution. We use a disjoint sea dd¢- Relative error o _ .
structure to represent the groups. Initially, each pattera When _the_ goal_ is to minimize t_he relatlvg error, the un_|form
group by itself. All the groups are inserted into a min-hea’b‘em‘)d is identical to our optimal solution (as confirmed
data structure according to their closest distance fronr th8Y Lemma 4). As shown in Figure 4(c), proportional load
neighbors. Since group ratios are numbers and they are kepedding on average causes times more relative error than
sorted, each group will always have (at most) two neighbof@.‘? optimal (or uniform) solution. Note that the verticalisax
By performing delete-min on the heap, and merging the tof-in log-scale.
element of the heap with its closest neighbor, we will hav@. Classification Confidence
one fewer group. This operation will be repeated until there As discussed in Section VII, minimizing-G, would
are onlyk groups left in the heap. Due to space limitationsnaximize the confidence of our estimators in classifying
we omit a pseudo code for performing k-means on 1-D dataequent patterns from infrequent ones. However, evengusin
a simple approximation of Eq. (18) our optimal algorithm
was able to significantly outperform the uniform approach.
This section presents empirical evidence, demonstraijng A false negative occurs when a pattern’s frequency is falsel
improvements on the results’ quality, and (ii) the efficigncunderestimated to be below the threshold, and a false p®siti
aspects of our proposed techniques. All experiments wagders to the false overestimation of an infrequent patiéth
conducted on a P4 machine running Linux, with 1GB of RAMa frequency that is above the threshold.
All the algorithms are implemented in C, and integrated into Figure 5(a) compares the average number of false negatives
StreamMill [6] which is an existing DSMS. for the optimal and the uniform approach. In particular, whe

IX. EXPERIMENTS
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Fig. 4. (a) Variance in different load shedding policies endon-critical settings. (b) Variance in different loacedting policies. All ratios belowt.4%
are critical settings for kosarak dataset. (c) Relativereander load shedding.

the resource was at leas1% of the ideal amount, the optimal F. Efficiency and Loss of optimality

method introduced no false negatives, while the uniform 14 5qgress the efficiency concerns discussed in Section VI

approach still produced a significant number of false negati \ye nroposed thé-Optimal Algorithm that groups the patterns
Consistently, Figure 5(b) demonstrates the superiorithef .y 1 groups according to the proximity of their shedding

optimal approach in terms of false positives. While the tWyiios. We rark-Optimal with different values fok to find an
curves become closer for highly overloaded settings, they &q5nropriate tradeoff. Figure 6(a) shows that while theroati
more distant for other settings (e.g., ratios ab8vtb). algorithm incurs some efficiency overhead compared to the
uniform method, we can improve our algorithm'’s efficiency

D. Algorithmic Improvements .
As discussed in Section V-C, finding an optimal solutioPny choosing smalle: values. In the extreme case bf= 1,
L ' 9 b .~ k-optimal exactly matches the uniform method. However, the
takesN -log(NN) time in the worst case scenario, wheéveis

the total number of keys. However, our proposed algorithm fgfflmency overhead becomes negligible for a wide rangé of

: . " : . values, here froni to 50.
solving the equation under critical settings, runs in tiongv).

As shown in Figure 5(c), the actual outperformance deliere With fewer groups, _there are more pattems in e_ach group,
. : . and hence ratios within a group tend to be more distant from
by our algorithm for10000 keys, is at leash times. In fact,

due to the sorting operation that is required by the stand tp& optimal value. This is shown in Figure 6(b) where thererro

. aH.e., variance) increases with fewer groups. Again, foridew
algorithm [25], our outperformance becomes more dramati¢ . . ’ . . L
range of group sizes the difference in variance is neghgibl

for larger number of keys. The run time of both algorithms i‘?hus by choosing & value from50 to 5 (i.e., an average

independent of the window size and the number of queries " . .
. roup size betwee® and 80) one can achieve a variance
and only depends on the total number of keys involved. Note

that our method is only applicable to critical settings, VmGreaso.nakl)I.y CIOS? to that of the aptimal one, without incri
o X T . . any significant time overhead.
finding an optimal solution in linear time is guaranteed. In

fact, in critical settings the system’s resources beconan ev X. CONCLUSION

more valuable. In this paper, we have proposed a very general framework
that achieves optimal load shedding policies, while accom-

E. Load Shedding Overhead on the System modating different requirements for different users, adigint

For this experiments, we use the California’s Realtim@Uery sensitivities to load shedding, and different pgnalt
Freeway Speed ddfa stored as an offline stream with gfunctions. The experm_wental results confirmed the supigyior
window size of200K tuples, and a collection of randomly©f the proposed algorithm over the state-of-the-art meshod
generated continuous queries, each containing one simfleSécond advantage of this algorithm is its applicability
algebraic aggregate, involving)00 distinct key values. The 10 & wide spectrum of aggregate functions which we have
average processing time of each query Was'13 secs per formally charactenze_d using a newly mtro_duced notlor_hlech
window. Due to space limitations and similarity of the résul reciprocal-error queries. Besides the typical algebrggre-
we report a few different settings in Table I. The cost djates, this class a!so mcludes sophisticated mining .tzw_gs
finding the optimal solution (shown under LS Time columnfOPOSe an extensible architecture that allows UDASs to fitene
is negligible compared to the time spent on processing tH8M the system-provided load shedding functions. In fact,
actual queries (this ratio is shown in the Overhead column). TABLE |
Thus, our system allows for supporting hundreds of aggeegat L OAD SHEDDING OVERHEAD ON THE SYSTEM
queries with hundreds of thousands of different keys, witho
spending more than a few percents of the resources. In mariflueries | Resource/Load | #keys | LS Time Overhead

real applications, the key space is much smaller. Rows rdarket 90% 100K | 0.030 sec | 0.17%
with an asterisk represent critical settings 100 9% L 0.361 sec L99%
P gs. 500 1.8% 5M | 0.379 sec * | 2.13%

1000 0.9% 10M | 0.758 sec * | 4.27%
nttp: // ww. dot . ca. gov/ traffic/d7/ update. txt 2000 0.45% 20M | 1.515 sec * | 8.55%
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Fig. 5. (a) Effect of optimal load shedding on number of fategatives. (b) Effect of optimal load shedding on numberatgef positives. (c) Comparing
the standard algorithm and our critical-setting method fifuding the optimal solution.
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Fig. 6. Efficiency/Accuracy trade-off between differenedting policies (numbers in parentheses are average gizelp Run time and Variance.
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