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Abstract—We address the problem of publishing a Naı̈ve Bayesian
Classifier (NBC) or equivalently publishing the necessary views for build-
ing an NBC, while protecting privacy of the individuals who provided
the training data. Our approach completely preserves the accuracy of
the original classifier, and thus significantly improves on current ap-
proaches, such as randomization or anonymization, which generally
degrade accuracy to preserve privacy. Current query-view security
checkers address the question of ‘Is the view safe to publish?’ and
are computationally expensive (oftenΠp

2-complete). Here instead, we
tackle the question of ‘How to make a view safe to publish?’ and pro-
pose a linear-time algorithm to publish safe NBC-enabling views.

We first show that a simple measure that restricts the ratios be-
tween the published NBC statistics is sufficient to prevent any breach
of privacy. Then, we propose a linear-time algorithm to enforce this
measure by producing perturbed statistics that assure both(i) individ-
uals’ privacy and (ii) a classifier that behaves in the same way as the
NBC trained on the original data. By carefully expressing the per-
formed statistics using rational numbers, they can be further used to
derive synthetic (sanitized) datasets. Thus, for any givendataset, we
produce another dataset that is secure to publish (w.r.t. a uniform
prior) and achieves the same classification accuracy. Finally, we extend
our results by providing sufficient conditions to cope with arbitrary
(non-uniform prior) distributions, and we validate their e ffectiveness
in practice through experiments on real-world data.

1. INTRODUCTION
Recent advances in digitized information has led to escalation of

global concerns on individuals’ privacy [3, 2, 1]. Privacy-Preserving
Data Mining (PPDM) has been proposed to address these concerns.
However, the goals are conflicting: On one hand, to protect the
privacy of the individuals whose sensitive information is present
in our database, we should not disseminate such databases. On
the other hand, many other legitimate users/applications can ben-
efit from such data. For example, studying and mining medical
records, consumers’ behavior or insurance history by analysts can
often lead to invaluable statistical knowledge which benefits the so-
ciety at large. PPDM methods seek to achieve these benefits with-
out compromising privacy.

Scenarios.Privacy-preserving methods can be applied during (i)
the data collection phase, (ii) the data publishing phase, or (iii) the
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data mining phase:

(i) Individuals may not trust any parties except themselvesand
therefore they perturb their sensitive data before submitting
it to the server that does the publishing or the mining.

(ii) In a database-publishing scenario, a trusted party holds the
individual records, and it either performs some perturbation
over the raw data before publishing it, or it only publishes
parts (views) of it.

(iii) The trusted party that holds individuals’ data computes the
mining models locally; then, instead of publishing the orig-
inal data or even an anonymized/perturbed version of it, the
trusted party only publishes the mining results—while mak-
ing sure that the publication of these results does not com-
promise privacy.

While our work uses several techniques adapted from scenario (ii),
its objectives are aligned with (iii), as illustrated by thefollowing
example.

Privacy breaches when publishing NBCs.Consider a database
schemaT = 〈Adr,Age, Sal〉, where the address field can be ei-
ther Westwood Blvd. (W ) or Palms St. (P ), and age is either30 or
40. The sensitive attribute is annual salary, which is either$50K
or $70K. Assume that we want to publish (or train) an NBC over
this database, such that given〈Adr,Age〉 the model can predict the
person’s salary; this means views〈Adr,Sal〉 and〈Age,Sal〉must
be released1—or alternatively, the counts of all such pairs from
which these views can be built. The views in question are shown
in Figure 1(a). The intended users will invoke the NBC formula
(see eq.(2) in Section 3) to build a Bayesian classifier. However,
malicious user Bob, who is trying to breach the privacy of Alice
(she was part of the training data), will instead generate all pos-
sible instances that are consistent with his additional information
that Alice lives on Westwood and that she is in her40s2. Thus,
Bob will obtain instancesd1 to d10, shown in Figure 1(a).Then,
for eachdi, Bob counts the ratio of the tuples〈W, 40, 70K〉 over
those that have〈W, 40〉 in their first two columns (all possible tu-
ples that match his info about Alice). Thus, Bob gets4/5 for d1,
3/4 for d2, d3, d4, d5, and1 for all the others (i.e.d6 to d10). Fi-
nally, by averaging these10 different ratios, Bob infers that with a
probability of 1

10
(4/5 + 4 × 3/4 + 5 × 1) = 88% Alice earns a

70K salary. Bob could have a prior knowledge, e.g. he knew the
overall distribution of salaries, but not the dependence ofsalary on
other attributes This assumption is solely for the sake of this exam-
ple. In general, we do not restrict Bob’s prior knowledge. Thus, if
1We call such views NBC-enabling views—Section 3.
2In general, Bob does not need to know all the attributes of Alice
to breach her privacy.



Published Views All consistent instances withT1

πAdr,Sal(T1) , πAge,Salary(T1) d1 d2 d3 d4 d5

W, 70K 40, 70K
W, 70K 40, 70K
W, 70K 40, 70K
W, 70K 40, 70K
P, 70K 30, 70K
W, 50K 40, 50K
P, 50K 30, 50K

W, 40, 70K
W, 40, 70K
W, 40, 70K
W, 40, 70K
P, 30, 70K
W, 40, 50K
P, 30, 50K

W, 40, 70K
W, 40, 70K
W, 40, 70K
W, 30, 70K
P, 40, 70K
W, 40, 50K
P, 30, 50K

W, 40, 70K
W, 40, 70K
W, 30, 70K
W, 40, 70K
P, 40, 70K
W, 40, 50K
P, 30, 50K

W, 40, 70K
W, 30, 70K
W, 40, 70K
W, 40, 70K
P, 40, 70K
W, 40, 50K
P, 30, 50K

W, 30, 70K
W, 40, 70K
W, 40, 70K
W, 40, 70K
P, 40, 70K
W, 40, 50K
P, 30, 50K

d6 d7 d8 d9 d10

W, 40, 70K
W, 40, 70K
W, 40, 70K
W, 40, 70K
P, 30, 70K
W, 30, 50K
P, 40, 50K

W, 40, 70K
W, 40, 70K
W, 40, 70K
W, 30, 70K
P, 40, 70K
W, 30, 50K
P, 40, 50K

W, 40, 70K
W, 40, 70K
W, 30, 70K
W, 40, 70K
P, 40, 70K
W, 30, 50K
P, 40, 50K

W, 40, 70K
W, 30, 70K
W, 40, 70K
W, 40, 70K
P, 40, 70K
W, 30, 50K
P, 40, 50K

W, 30, 70K
W, 40, 70K
W, 40, 70K
W, 40, 70K
P, 40, 70K
W, 30, 50K
P, 40, 50K

(a) View setV1 and all its possible worlds

Published Views All consistent instances withT2

πAdr,Sal(T2) , πAge,Sal(T2) d′
1 d′

2 d′
3 d′

4 d′
5 d′

6

W, 70K 40, 70K
W, 70K 40, 70K
P, 70K 30, 70K
W, 50K 40, 50K
P, 50K 30, 50K

W, 40, 70K
W, 40, 70K
P, 30, 70K
W, 40, 50K
P, 30, 50K

W, 40, 70K
W, 30, 70K
P, 40, 70K
W, 40, 50K
P, 30, 50K

W, 30, 70K
W, 40, 70K
P, 40, 70K
W, 40, 50K
P, 30, 50K

W, 40, 70K
W, 40, 70K
P, 30, 70K
W, 30, 50K
P, 40, 50K

W, 40, 70K
W, 30, 70K
P, 40, 70K
W, 30, 50K
P, 40, 50K

W, 30, 70K
W, 40, 70K
P, 40, 70K
W, 30, 50K
P, 40, 50K

(b) View setV2 and all its possible worlds

Figure 1: NBC-enabling views for two tiny databases and their corresponding worlds

his prior belief on Alice earning70K was 5
7

= 71%, after seeing
those views, there would be a significant breach of Alice’s privacy
(from 71% to 88%).

Now instead, suppose that the views in question were the ones
shown in Figure 1(b), and Bob did the same exhaustive computa-
tion over all possible instances, shown asd′

1 to d′
6 in Figure 1(b).

In this case, the ratio of the tuples〈W, 40, 70K〉 over all the tuples
having〈W, 40〉 averaged overd′

1, · · · , d′
6 is 1

6
(2/3+1/2+1/2+

1 + 1 + 1) = 78%. Comparing these two sets of NBC-enabling
views, clearly the latter case was safer to publish as it onlymoved
Bob’s prior knowledge from71% to78% instead of88% in case of
the former set of views. As discussed later, privacy breach [14] is
a measure that limits the amount of additional knowledge that the
attacker can obtain from the published data.

The key observation to be made is that although these two setsof
viewsV1 andV2 (Figure 1) are so different in terms of privacy, the
two NBCs built from them, will still return the same results for any
tuple to be classified. For example if the test input is〈P, 30〉, the
NBC built onV1 predicts the class label as50K because5 1

5
1
5

<

2 1
2

1
2
. The prediction from the second classifier (built onV2) is

again50K because3 1
3

1
3

< 2 1
2

1
2

(A review of NBC formula is
given in Section 3, see eq. (2) ). The reader can also check the
consistency of these two classifiers for all other possible inputs3.

Despite its simple formulation, NBC has proved to be one of the
most effective classifiers in practice and in theory [12]. However, as
suggested by the above example, given an unsafe NBC, it is possi-
ble to find an equivalent one that is safer to publish. In short, the ob-
jective of this paper is determining whether a set of NBC-enabling
views are safe to publish (against the aforementioned computation
by Bob), and if not, how to find a secure database that producesthe
same NBC model.

Problem statement. In this paper, we assume a single trusted
party who has a dataset containing sensitive personal information
on some individuals. The goal is to publish an NBC model (which
consists of NBC-enabling views or counts, described in Section 3),
such that the privacy of the individuals who provided our training
data is protected. The privacy guarantees that we provide here are

3A brute-force decision procedure for checking the equivalence of
two classifiers is exponential, but later we proposed a linear-time
algorithm that guarantees their equivalence.

the well-known notions of no privacy breach [14] andt-closeness [24],
which we reformulate for the case of view publishing.

Attack model. The computational power of the attacker consists
of considering all possible worlds that are consistent withthe set of
published views, and then counting the number of tuples thathe/she
is interested in, to compute the probability of the desired predicate.

Previous work has focused on the privacy breach risk that is in-
herent in publishing a black-box predictor, i.e., providing the pub-
lic with the functionality of making predictions, while completely
concealing the mechanisms and statistics by which they are de-
rived (see discussion in [17], and Section 2). Here, we assume
the risk of publishing a black-box predictor was deemed accept-
able, but then the black box proved impractical (e.g., computation-
ally intractable[16]). Therefore, this paper tackles the question of
whether, rather than the mythical black box, we can instead divulge
the simplest of classifiers, i.e., an NBC, and still offer thesame pri-
vacy guarantees.

Contributions. By reformulating the notion of privacy breach
in the context of view publishing, we derive sufficient conditions
that are independent from (i) the predicate that the attacker is af-
ter, and (ii) the amount of his prior knowledge about the individ-
ual’s attributes. Said conditions also guarantee that the attacker can
never gain knowledge on an individual’s sensitive-attribute (class
label) in excess of the specified privacy limit. Thus, for NBC-
enabling views, we show that total privacy (i.e., elimination of
privacy breaches) can always be enforced when the background
knowledge is uniform, while retaining perfect utility in terms of the
NBC accuracy. We extend our results by providing sufficient con-
ditions to cope with arbitrary (non-uniform) distributions, and we
validate their effectiveness in practice through experiments on real-
world data. We propose a simple and efficient (i.e., linear-time)
algorithm for transforming a given set of NBC-enabling views into
another set of views that (i) guarantees the required privacy level,
(ii) imposes no accuracy loss in terms of building an NBC (unlike
general-purpose techniques, such as randomization andk-anonymity).

Overview of the paper. The rest of this is organized as fol-
lows. After reviewing related work in Section 2, we provide abrief
background on NBC in Section 3. In Section 4 we reformulate the
notion of row-level privacy breach [14] to suit view publishing,
followed by our results on safety conditions in Section 5. Our first
algorithm for uniform distributions is proposed in Section6, which



is extended for arbitrary distributions in Section 7. Finally in Sec-
tion 8, we validate the effectiveness of our algorithms on real-world
data. We conclude in Section 9.

2. RELATED WORK
We briefly discuss closely related lines of prior work to clarify

the context of our result—for a more general survey see [34] and
references within.

Perturbation Methods. Such methods come in two flavors.
1. General-purpose approachesinclude but are not limited to
randomization [4, 15, 25, 13],k-anonymity [33],l-diversity [26].
Here, the goal is to guarantee the requested privacy level bygen-
eralization, obfuscating, randomizing, permutation, suppression or
sanitization while minimizing the information loss. Several at-
tacks have been proposed against such approaches(e.g. [26]for
k-anonymity, [19, 18, 30] for randomization), and they face effi-
ciency issues as well (e.g. [27] fork-anonymity and [5] for ran-
domization). However, generic information-theoretic measures of
error in the raw data are sufficient but not necessary conditions for
high accuracy of particular mining models. Thus, while the former
is not possible in some cases [32], the latter might be still feasible.
As a usual trade-off, accuracy loss is a downside of aforementioned
general-purpose methods—see Section 8.2.
2. Ad-hoc methodsare designed for a particular mining algorithm.
They suppress or sanitize those parts of the model that violate pri-
vacy before publishing it. For example [7, 36] are for frequent
pattern mining.

Query-View safety checking.A pioneering work here is [28]
that addressed the query-view security problem, considering the
sensitive information as a set of secret views (or queries) whose
safety must be checked once other views or query results are pub-
lished. However, their measure of perfect security is very strict,
requiring that prior and posterior knowledge of the attacker must
remain exactly the same after publishing the views which disallows
many practically acceptable cases. Similar problems for database
publishing and integration systems have been studied in [11, 31].
In particular, the ‘Guarantee 3’ in [31] is more similar to our as-
sumption, as it ensures that an attacker who lacks other external
knowledge about the possible sources cannot learn anythingmore.
Violation ofk-anonymity in view publishing was studied in [39]. In
such approaches the complexity is usually prohibitive, e.g. decid-
ing this problem for conjunctive views isΠp

2-complete [28]. More-
over, their result is a ‘safe/unsafe’ answer, and does not provide a
method for making the view safe to publish without loosing infor-
mation. In this paper we consider simpler views (NBC-enabling
views) but provide an efficient algorithm to make them safe.

Privacy breach. We extend the existing notion of privacy breach
introduced by Evfimievski et al. [14], which relates the attacker’s
prior/posterior beliefs before/after seeing the perturbed data. Ev-
fimievski et al. assume that each individual publishes her own tu-
ple after applying some perturbation methods. However, in our
context, individuals have trusted a single data publisher,who is in
charge of perturbing the entire database before publishingit. Also,
our algorithms are deterministic, while they exploit probabilistic
methods (e.g, randomization). However, there is still a close con-
nection between the two. In particular, our Lemma 2 corresponds
to Statement 1 in [14], where theirγ corresponds to ourρ. Fur-
thermore, previous work on prior/posterior information proved that
no anonymization can achieve both privacy and utility when the
attacker’s prior knowledge is already too large [32].

Mining result privacy. Reference [17] addresses the question
of ‘when can a classifier be published (to be freely invoked) with-
out violating privacy?’. However, it assumes that the classifier can

be published as a black-box whose inside representation cannot be
seen. Similarly, [16] proposes a multi-party approach requiring
a separate rule for all possible tuples. Representing an NBCas a
rule-based classifier involves an exponential number of rules while
our method uses linear time and memory (in input size).

3. NOTATIONS
Let the original databaseT be an instance of a relation4 defined

asR = 〈A1, · · · , An, C〉 in which Ai’s are (the domains of ) the
attributes andC is (the domain of) the class label. Each tuple is
associated with an individual. For example, in Figure 1, class label
is the salary while address and age areAi’s. In order to build an
NBC, the only views that need to be published areπAi,C(T ) for all
1 ≤ i ≤ n, andπC(T ). We useπ for relational projection, andΠ
to denote product.Also, since throughout this paper we allow du-
plicate tuples, one can reconstruct these projection viewsby know-
ing how many times each pair of values have occurred together. In
other words,equivalentto publishing these views, one can instead
publish the following counts. For1 ≤ i ≤ n,∀t ∈ Ai, c ∈ C,
define:

N i
t,c = |σAi=t∧C=c(T )|

also∀c ∈ C define:
Pc = |σC=c(T )|

For example, in Figure 1(a),NAdr
W,70K = 4, P50K = 2 and so on.

In practice, NBCs are usually published using these counts (either
normalized as ratios or in their absolute value) due to theirbetter
memory efficiency over the view representation. Throughoutthis
paper we shall switch between these two equivalent representations
as needed to simply the discussion.

Using these counts, we can express the NBC’s probability esti-
mation as follows. For allτ = (t1, · · · , tn) ∈ A1 × · · · ×An and
for all c ∈ C, the NBC’s prediction is:

Pr[Class(τ ) = c] =

Pc

|T |

∏
i(

Ni
ti,c

Pc
)

|σA1=t1∧···∧An=tn(T )|/|T | (1)

Since the NBC goal is to comparePr[Class(τ ) = c] and
Pr[Class(τ ) = c′] whenc 6= c′, we can further simplify eq. (1)
by ignoring those terms which are independent of the class label,
and only compare

Xτ,c = Pc ·
∏

i

N i
ti,c

Pc
and Xτ,c′ = Pc′ ·

∏

i

N i
ti,c′

Pc′
(2)

For simplicity, in this paper we assume thatPc counts are always
non-zero, and therefore eq. (2) is always well-defined. AsPc and
N i

t,c counts are sufficient for building an NBC, we use the pair
(P, N) as the signature for each NBC . Thus, the problem (or input)
size isO(

∑n
i=1 |C| · |Ai|).

In real-world datasets, there can be multiple sensitive attributes.
Moreover, different individuals can have different privacy concerns,
e.g. some people may consider their age more sensitive than their
salary. For simplicity, in this paper we assume thatC is the only
sensitive information inT for the following reasons. It can be eas-
ily shown that all (non-class) attributes will benefit from the same
or greater level of privacy that our results provide for the class label
C. Intuitively, this is due to the fact that in NBC-enabling views,
we always release more information aboutC than about any other
Ai’s, asC appears inn views while eachAi appears in only one
view. Informally, this means that knowing the values for some of
4Throughout this paper we use the terms ‘database’, ‘table’ and
‘relation’ interchangeably.



theAi’s associated with Alice, after seeing the NBC, Bob can learn
more about her class label rather than her unknownAi’s. Further-
more, multiple (sensitive or non-sensitive) class labels can always
be combined together to form a single class label.

Notation Explanation
Ai (domain of)i-th attribute
C (domain of) the class label
N i

t,c # of tuples with labelc, and valuet for thei-th attribute
Pc # of tuples with labelc
(P, N) NBC-enabling viewset composed ofP andN counts
Xτ,c NBC score for tuple〈τ, c〉
I a given quasi-identifier
I0 (Alice’s) value forI
D all instances that have at least one tuple withI = I0

Table 1: Notation summary.

4. PRIVACY BREACH FOR VIEWS
In this section, we adapt the notion of privacy breach [14] to

our context, where views are published by a single publisher(See
Section 2). We define a quasi-identifierI as a non-empty subset
of Ai attributes, whose values for Alice are known to Bob. We
refer to the tuple made of these values asI0, or simply sayI = I0.
For instance, ifI = 〈A1, A3〉, any 〈t1, t3〉 ∈ A1 × A3 can be
a possibleI0. Also let D denote the family of all table instances
whose projection onI containsI0 as a tuple, that isD = {d | ∃t ∈
d, t.I = I0} wheret is a tuple andd is a table instance. Table 3,
summarizes our notation.

Privacy breach relates the adversary’s prior and posteriorknowl-
edge about some propertyQ : C → {True, False} of the class
label C in a tuplet, namelyQ(t.C). For example, one possible
Q(c) can bec = HIV ∨ c = Cancer, where the domain is the
disease types in a hospital. Here, we are overloadingC (the domain
of class labels) to also denote the class label of a tuplet. Thus,
Q(t.C) is defined asQ(c) when t.C = c for somec ∈ C. Let
P

Q,I0
1 andP

Q,I0
2 be respectively the adversary’s prior and poste-

rior knowledge on a given propertyQ, defined as:

P
Q,I0
1 =

∑

d∈D

P[Q(t.C)|t ∈ d, t.I = I0] ·P[d] (3)

P
Q,I0
2 =

∑

d∈D

P[Q(t.C)|t ∈ d, t.I = I0] ·P[d|V (d) = V0] (4)

Here,P[Q(t.C)|t ∈ d, t.I = I0] is the probability that, in the
table instanced, propertyQ is true for the class label of a tuple
t that is consistent with Bob’s quasi-identifier about Alice (t.I =
I0). Note that Bob knows that one such tuple must be associated
with Alice5. For example, if there are two tuples ind that satisfy
t.I = I0, but Q is only true for one of them, Bob knows that
given d, with a probability of50%, the propertyQ holds for the
class label of Alice. Moreover, sinced ∈ D, there exists at least
one such tuple (i.e., Alice) satisfyingt.I = I0 and therefore, this
conditional probability is always well-defined.

In eq. (3) and (4),P[d] is the probability that the original table
wasd, while P[d|V (d) = V0] is the conditional probability of the
same event, knowing that the answer of a viewV ond wasV0.

DEFINITION 1 (PRIVACY BREACH FORV IEWS). LetQ be any
property on the sensitive class labelC. For a given tableT and a
5In a row-level publishing scenario [14] the owner of each row
is known once its content is revealed. However, in our case (a
table-levelpublishing scenario) the attacker also has somequasi-
identifier of the victim(s) that helps him restrict all the possible
rows in the table to a few.

(set of) view(s)V , whose answer overT is V0, we say that publish-
ing V (T ) = V0 causes a privacy breach with respect to a pair of
given constants0 < L1 < L2 < 1, if either of the following holds:

1. UpwardL1-to-L2: P
Q,I0
1 < L1 < L2 < P

Q,I0
2 .

2. DownwardL2-to-L1: P
Q,I0
2 < L1 < L2 < P

Q,I0
1 .

Returning to our example in Section 1, the first set of views (Fig-
ure 1(a)) caused an upward0.51-to-0.8 privacy breach, as the prior
and posterior were50% and 88%, respectively. With respect to
the same privacy level (i.e.,L1 = 0.51 andL2 = 0.8), the sec-
ond set of views (Figure 1(b)) would be safe to publish, as their
prior/posterior were50% and78%, respectively. However, if we
had a more strict privacy policy, sayL1 = 0.5 andL2 = 0.6, none
of those viewsets would be safe to be published. Roughly speaking,
the notion of privacy breach reflects the degree to which a change
in the adversary’s prior knowledge is tolerated.

In Sections 4 through 6, we assume a uniform distribution of
the database instances, whereby alld ∈ D are equally likely in the
absence of any views. Also, after seeing the view(s), all instances in
S are equally likely, whereS = {d ∈ D|V (d) = V0} contains all
instances satisfying the given view(s). This assumption issimilar
to that in [35]. We will remove these uniformity assumptionsin
Section 7.

STATEMENT 1. Let I0 be the value of a given quasi-identifier
I , and letV0 be the value of a given viewV (T ). If there exist some
m1, m2 > 0 such that for allc ∈ C:

m1

|C| ≤
1

|S|
∑

d∈S

P
c
d ≤

m2

|C| (5)

wherePc
d = P[t.C = c|t ∈ d, t.I = I0], then for any propertyQ

and any pair ofL1, L2 > 0 publishingV = V0 will not cause any
upward or downward privacy breaches w.r.t.L1 andL2, provided
that the following amplification criterion holds:

m2

m1
≤ L2

L1
· 1− L1

1− L2
(6)

Intuitively6, Statement 1 implies that a viewV should not be too
specific toward a particular class label. Publishing a view,causes
many table instances to be ruled out, and therefore the mean of the
Pc

d values for theremainingones, must berelatively closeto the
mean ofPc

d values forall instances. This closeness, is determined
by constraints (5) and (6) which are functions of the given secu-
rity requirements (i.e.,L1,L2). Moreover, the same closeness must
hold for all class labelsc ∈ C.

Note that although Statement 1 provides a sufficient condition
for a view publishing to be safe, finding suchm1, m2 that satisfy
the constraints (5) and (6) requires computingPc

d values for all
d ∈ S, andc ∈ C. However, the following lemma introduces
yet another condition that is sufficient to satisfy those constraints,
but only requires computing the means ofPc

d values for different
c ∈ C. An efficient algorithm for enforcing this new condition will
be proposed in Section 6.

LEMMA 2. For a given quasi-identifierI = I0, a given view
V (T ) = V0 is safe to publish against anyL1-to-L2 privacy breaches,
if there existsρ > 1 such that the following conditions hold:

ρ + ρ2(|C| − 1)

ρ + |C| − 1
<

L2

L1
· 1− L1

1− L2
(7)

6All omitted proofs and running examples can be found in [29]:
http://wis.cs.ucla.edu/safeminer/index.htm



and for all c, c′ ∈ C: ∑
d∈S Pc

d∑
d∈S Pc′

d

< ρ (8)

PROOF. We prove by showing that the conditions above imply
Statement 1. To do that, we need to find numbersm1, m2 for which
conditions(5) and (6) hold. By means of (8) for allc, c′ ∈ C:

1

ρ
·
∑

d∈S

P
c′

d ≤
∑

d∈S

P
c
d ≤ ρ ·

∑

d∈S

P
c′

d

Using this observation and the fact that:
∑

c∈C

(
1

|S| ·
∑

d∈S

P
c
d) = 1

it can be proved by contradiction that for allc ∈ C:

1

1 + ρ(|C| − 1)
≤ 1

|S| ·
∑

d∈S

P
c
d ≤

ρ

ρ + |C| − 1

1

|C|
|C|

1 + ρ(|C| − 1)
≤ 1

|S| ·
∑

d∈S

P
c
d ≤

1

|C|
ρ · |C|

ρ + |C| − 1

Therefore, by choosingm1 = |C|
1+ρ(|C|−1)

and m2 = ρ·|C|
ρ+|C|−1

condition (5) is satisfied. Also condition (6) holds, because accord-
ing to (7):

m2

m1
=

ρ·|C|
ρ+|C|−1

|C|
1+ρ(|C|−1)

=
1 + ρ(|C| − 1)

1 + (1/ρ)(|C| − 1)
<

L2

L1
· 1− L1

1− L2

Condition (8) is similar to the notion of amplification in random-
ization methods for the row-level publishing scenario [14]. Thus,
we use their terminology, referring toρ as amplification. Notice
that for everyρ > 1:

m2

m1
=

ρ·|C|
ρ+|C|−1

|C|
1+ρ(|C|−1)

=
1 + ρ(|C| − 1)

1 + (1/ρ)(|C| − 1)
> 1

Also,

lim
ρ→1

+

1 + ρ(|C| − 1)

1 + (1/ρ)(|C| − 1)
= 1

These imply that for any giveng > 1, we can find aρ > 1 such
that m2

m1
< g. On the other hand, by definition0 < L1 < L2 < 1.

So we have:L2
L1
· 1−L1

1−L2
> 1. Therefore for any givenL1, L2, by

choosingg = L2
L1
· 1−L1

1−L2
> 1 we can select the largest possible

ρ for which m2
m1

< g and then only check whether condition (6)
holds, since condition (7) is automatically satisfied.

Hence, Lemma 2 allows us to recast our privacy goal as that of
checking/enforcing condition (8) for a givenρ, assuming that max-
imum allowed amplification is determined by formula (7), where
L1 andL2 are the privacy parameters specified by the user. Al-
though this check is a sufficient and not a necessary condition for
avoiding privacy breaches related to a givenρ, it is still a weak-
enough condition to allow us to publish any classifier without any
accuracy loss (after some transformation, Sections 5 and 6 ).

5. SAFETY CONDITION FOR NBC VIEWS
While checking for condition (8) on an arbitrary set of views

might not be an easy task, in Lemma 3 we provide a sufficient con-
dition for NBC-enabling views. In Section 6, we prove that this

condition can always be achieved by replacing the original views
with synthesized/sanitized ones that both satisfy condition (8) and
result in the same classification behavior. Below and in the rest of
this paper, we refer to NBC-enabling views simply as viewsets and
use their(P, N) representation.

LEMMA 3. With respect to a givenI0 as the value of a quasi-
identifier I , and a given amplification ratioρ, the viewset(P, N)
is safe to publish, if for allc, c′ ∈ C, 1 ≤ i ≤ n and t ∈ Ai the
following conditions hold:

0 <
Pc′

Pc
≤ |I|
√

ρ and 0 <
N i

t,c

N i
t,c′
≤ |I|
√

ρ (9)

PROOF. We show that (9) implies condition (8) which implies
the safety of publication w.r.t. the givenρ. We prove this by induc-
tion on the size ofI , namely|I | which is the number of columns in
the given quasi-identifier. The base case|I | = 1 follows immedi-
ately from (9) because:

∑
d∈S Pc

d∑
d∈S Pc′

d

=
N1

t1,c

N1
t1,c′

≤ |I|
√

ρ < ρ

whereI0 =< t1, · · · , t|I|〉. By assuming that for the firstk < |I |
attributes ofI the ratio

∑
d∈S Pc

d∑
d∈S Pc′

d

is at mostρk(1/|I|), one can show

that the ratio will not get amplified by more thanρ1/|I| times, after
adding the(k + 1)-th column. The detailed proof can be found in
our technical report [29].

Lemma 3 is a sufficient criterion that ensures the safety of a
viewset publication, only when aρ parameter and a quasi-identifier
are both given. However, in practice the same privacy guarantee
must be provided for all individuals and for all possible quasi-
identifiers (i.e., all non-emptyI ’s andI0’s). To resolve this issue
we make the following observation.

Since the condition (9) is a function of|I |, and not ofI or I0,
all quasi-identifiers that have the same cardinality (i.e.,number of
attributes) can be blocked at the same time, once we ensure this
condition for one particular pair ofI andI0. Moreover, note that
1 ≤ |I | ≤ n and

n
√

ρ < n−1
√

ρ < · · · < 1
√

ρ

Thus, all privacy breaches for all quasi-identifiers of any cardinality
can be blocked by simply blocking the one with largest cardinality,
namelyn. Therefore, we have the following corollary.

COROLLARY 4. With respect to a given amplification ratioρ,
the viewset(P, N) is safe to publish, if for allc, c′ ∈ C, 1 ≤ i ≤ n
andt ∈ Ai the following conditions hold:

0 <
Pc′

Pc
≤ n
√

ρ and 0 <
N i

t,c

N i
t,c′
≤ n
√

ρ (10)

Next, we show how this leads us to an efficient algorithm for
transforming viewsets.

6. FROM UNSAFE VIEWS TO SAFE ONES
The previous section provided the sufficient conditions foravoid-

ing any privacy breach with respect to a givenρ. Now the next
question is ‘what if condition (10) for NBC-enabling views of a
particular database does not hold?’. To address this question, we
provide a linear-time algorithm that enables us to transform the
original set of views into a safe set of views which satisfies the
safety condition of Corollary 4, and has the ‘same quality’ for the
purpose of building an NBC. We next clarify this notion of ‘same
quality’ more formally.



6.1 Equivalent views in building NBCs
In this section, we define the notion of equivalent sets of views

(or counts) in terms of building an NBC. As mentioned in Sec-
tion 3, the class prediction for a tupleτ is determined by theXτ,c

values in the following way. If there is a class labelc0 such that
for all c ∈ C\{c0}, Xτ,c0 > Xτ,c, obviously the classifier’s pre-
diction will be a0. However, to break the ties, there is also a pre-
assigned precedence order among class labels. Namely, ifXτ,c =
Xτ,c′ then the classifier prediction goes to the one that has a higher
precedence. In this paper, for the sake of presentation and with-
out loss of generality, we assume that the class labels are numbers
from 1 to |C|, and the larger the class label the higher the prece-
dence. For example, ifC = {1, 2, 3} andXτ,1 = Xτ,2 = Xτ,3,
the classifier’s prediction will be class label3. In case of a recom-
mendation system where we need an ordered prediction from the
classifier, the order would be3 first,2 next and1 last.

DEFINITION 2 (NBC-EQUIVALENCE). Let f andf ′ be two
functions that map each element ofΠ

i
Ai×C to a non-negative real

number. We callf andf ′ NBC-equivalent, if ∀τ ∈ Π
i
Ai,∀c, c′ ∈

C, c < c′:
f(τ, c) ≤ f(τ, c′)⇔ f ′(τ, c) ≤ f ′(τ, c′) (11)

f(τ, c) > f(τ, c′)⇔ f ′(τ, c) > f ′(τ, c′) (12)

It is easy to show that NBC-equivalence is in fact reflexive, sym-
metric, and transitive. The real value that an NBC assigns toeach
(τ, c) ∈ Π

i
Ai × C is its estimation ofPr[Class(τ ) = c] which is

computed using equations (1) or (2). Informally, Definition2 im-
plies that we are interested not in the actual values but in preserving
the totalorderamong them, namelyf(τ, c1), f(τ, c2), f(τ, c3), · · ·
for all possibleτ .

Notice that in many contexts, the classifier prediction is deter-
mined only by the label that has the highest associated probability,
which means that all those classifiers whose first prediction(i.e.,
ArgMax

c
{Xτ,c}) is the same, have the same effect. However, there

are some applications such as recommendation systems wherethe
entire ranking matters. Thus, our notion of equivalent classifiers
(Definition 2) preserves the entire ranking as well.

6.2 Transformation algorithms for unsafe views
So far, we established the safety of publishing a viewset when the

sufficient condition holds (see (9) in Lemma 3 and (10) in Corol-
lary 4). Now the next problem is what if the original viewset does
not satisfy this condition? In the following, we present an algorithm
that solves this problem by transforming an arbitrary viewset into
an NBC-equivalent one that is safe to publish. A high-level pseudo
code of this algorithm consists of four successive steps (Figure 2),
where each step is a linear-time computation. The main part of
this algorithm takes place inStep 2which makes the viewset safe
to publish, by lowering the ratio between the counts until they sat-
isfy eq. (10). The key idea of this step, is the following observation.
Raising all the counts to the same power does not change the classi-
fication; In other words a set of NBC-equivalent viewsets is closed
under exponentiation. For example, one could raise all theP and
N values in eq. (2) to a fixed power, say1

100
, without changing

the order betweenXτ,c andXτ,c′ for all τ, c andc′. Therefore,
by choosing a small-enough power, the ratio between the resulting
numbers goes down while the original classifier does not change.

However, the initial viewset might contain zero counts which
will result in undefined ratios (i.e.∞). Thus, before applyingStep
2, in Step 1we carefully replace all those zeros with small-enough
positive numbers in such a way that none of the existing inequalities

are affected. Moreover, after raising all the numbers to thesame
power the following condition will no longer hold:

Pc =
∑

t∈Ai

N i
t,c

This issue will be resolved inStep 3. Finally, inStep 4we normal-
ize the counts before publishing them.

Algorithm SafetyTransform( V , ρ)
Input:

V is the given view consisting ofN i
t,c’s andPc’s;

ρ amplification ratio (see Lemma 3)
Description:
Step1(V ): Replace all thoseN i

t,c ’s that are0 to non-zero

Step2(V ,ρ
1

2n+3 ): Scale down allN i
t,c’s to new rational

numbers that satisfy the given amplification ratio
Step3(V ): Adjust the numbers such that again

∑
t

N
i
t,c = Pc

Step4(V ): Normalize the numbers or turn them into integers
Return V

Figure 2: High-level steps to moving an unsafe view towards a
safe one.

In Figure 2, each step takes a viewset(P, N) as input and returns
a new viewset which will be denoted by(P, N); These viewsets are
provably NBC-equivalent. The output from each step is givenas
the input to the next step. Thus, due to the transitivity of NBC-
equivalence, at the end of these four steps (when the last viewset
is safe to be published w.r.t. a givenρ), the resulting NBC is still
equivalent to the original one. Next, we present each step indetail
and prove their correctness separately.

6.2.1 Step 1
The pseudo code forStep 1is given in Figure 3. In each iteration

of the main loop (Line 2), a zero is replaced with a positive number.
Therefore, at the end, there will be no zeros left (Remember thatP
values were positive, Section 3). Also, by a careful implementation,
Line 2.1 will only take constant time. Therefore, the total running
time for the main loop (Line 2) and the initialization (Line 1) is
linear, with respect to the problem input size. Thus, all that remains
to be proved is that the output ofStep 1is NBC-equivalent to its
input viewset, formally stated below.

STATEMENT 5 (STEP 1 IS NBC-PRESERVING). After
algorithmStep 1, (P, N) and(P,N) are NBC-equivalent.

PROOF. 7 Since non-zero counts have not changed, we only
need to consider thoseτ = 〈t1, · · · , tn, c〉 ∈ (Π

i
Ai)×C for which

∃i, N i
ti,c = 0. For all suchτ , Xτ,c = 0. Thus, we need to show

that for anyc′ for whichXτ,c′ > 0, we will have:Xτ,c < Xτ,c′ =
Xτ,c′ . Also, for any otherc′ > c whereXτ,c′ = 0, we must show:
Xτ,c ≤ Xτ,c′ . To show this, notice that at any point in timeMc and
mc′ represent the maximum and minimum possible values of non-
zero factors inXτ,c’s andXτ,c′ ’s, respectively. Therefore,Si

t,c is
the maximum value that can be assigned toN

i
t,c such that the NBC

inequality still holds. For the equality case, ifX(τ, c′) = 0 then
because of the descending order ofc’s in removing zeros (Line 2)
we are guaranteed thatf(τ, c′) > 0, for all c′ > c when processing
c. And in the case ofc′ < c, since in(P, N) their corresponding
7As we usedTHIS font to denote the output from each step, let
Xτ,c be similarly defined by formula (2) whereX is replaced with
X, N with N andP with P.



Algorithm Step1(P, N )
Input:

(P, N) is the given viewset;
Description:
1: For eachc ∈ C,

For eachAi,
M i

c ← Max{N i
t,c | t ∈ Ai}

mi
c ← Min{N i

t,c > 0, +∞ | t ∈ Ai}
Mc ←

∏
i

M i
c

mc ←
∏
i

mi
c

2: For eachc ∈ C in descending order,
For eachAi,

For eacht ∈ Ai,
If N i

t,c = 0,
Si

t,c = Min{mc′

Mc
·M i

c | c′ ∈ C\{c}}
N

i
t,c ← s, where0 < s < Si

t,c

2.1: UpdateM i
c ,mi

c, Mc andmc accordingly
ElseN

i
t,c ← N i

t,c

Return (P, N)

Figure 3: Step 1 - Removing zeros.

counts were both zero, andc has precedence overc′, any positive
number forNi

t,c in (P, N) will not change the classifier.

6.2.2 Step 2

Algorithm Step2((P, N), ρ)
Input:

(P, N) is the given viewset;
ρ > 1 is the requested amplification ratio (Corollary 4)

Description:

1: w← Max{Ni
t,c,Pi | 1≤i≤n,t∈Ai,c∈C}

Min{Ni
t,c,Pi | 1≤i≤n,t∈Ai,c∈C}

2: Choose ak such thatk ≥ n·log w
log ρ

3: For eachc ∈ C,
For eachAi,

Pc ← k
√

Pc

For eacht ∈ Ai,

N
i
t,c ← k

√
N i

t,c

4: Express thePc andN
i
t,c values using rational numbers,

with enough precision.
Return (N, P).

Figure 4: Step 2 - Enforcing the amplification condition.

The pseudo code forStep 2is given in Figure 4. Note that per-
forming kth root (Line 3) preserves the NBC-equivalence. More-
over, since this operation scales down the numbers, the amplifi-
cation requirement will be satisfied ifk is chosen carefully.k is
chosen (Line 2) such that the largest ratio between each pairof the
original counts will be less thanρ. Also,w in Line 1 is always de-
fined, as no zero count is left afterStep 1. Thus, one can show that:

LEMMA 6. At the end of Line 3 in Step 2,(P, N) and (P, N)
are NBC-equivalent and for allc, c′ ∈ C, 1 ≤ i ≤ n andt ∈ Ai,
we have:

0 <
Pc′

Pc
≤ n
√

ρ and 0 <
N

i
t,c

Ni
t,c′
≤ n
√

ρ (13)

However, the more important challenge here is how to approximate
the new numbers with rational numbers such that NBC-equivalence

is not violated (We need them to be rational if we want to turn
them into another synthesized database—see Section 6.2.4). In the
following, x̃ denotes a rational number approximation ofx. To see
why an arbitraryfixed precision may cause trouble, consider the
following example.

Preserving ties.Suppose that the number of attributes isn = 2
and that for somet, t′, originally we hadN1

t,1×N2
t′,1 = 4×4 = 16

andN1
t,2 ×N2

t′,2 = 2× 8 = 16. Assuming thatP1 = P2 = 100,
the original NBC would predict the class label asc = 2, because
of the tie and the precedence of classc = 2 over classc = 1.
Now, in case ofk = 2 (i.e., 2

√ ), if we used8 a precision of10−2

we would haveN1
t,1 × N

2
t′,1 = 2 × 2 = 4 andN

1
t,2 × N

2
t′,2 =

1.41 × 2.83 = 3.9903. Also P1 = P2 = 10. Thus, the new
NBC would predict the class label asc = 1 which is inconsistent
with the original NBC. Our solution to this issue is to use different
precisions for the counts associated with different classes, such that
the magnitude of the error goes in favor of the higher-precedence
classes. In other words, ifc > c′, over-approximateNi

t,c andN
i
t,c′

such that0 < Ñ
i
t,c′ − N

i
t,c′ < Ñ

i
t,c − N

i
t,c. By doing the opposite

to Pc values, we can ensure that wheneverXτ,c = Xτ,c′ , then
X̃τ,c ≥ X̃τ,c′ . However, this can cause another issue, described
next.

Preserving inequalities.Forc > c′, since the over-approximation
of the N

i
t,c values was larger than that ofN

i
t,c′ (and the opposite

direction forP), for someτ it can happen that we originally had
Xτ,c′ > Xτ,c but now X̃τ,c′ ≤ X̃τ,c. This results in a different
classification. To address both of these issues we use the following
result, which can be derived from the theory of Taylor series.

STATEMENT 7. A real k > 0, a naturaln > 1, and finite sets
Y1, · · · , Yr ⊂ IN1/k = {x|xk ∈ IN} are given. For anyǫ > 0,
there exists a series0 < λ′

r < λr < · · · < λ′
1 < λ1 for which

we can find a rational̃x for eachx ∈
r
∪

i=1
Yi, such that for any

1 ≤ i 6= j ≤ r, (x1, · · · , xn) ∈ Y n
i and(y1, · · · , yn) ∈ Y n

j :

If i < j :
n

Π
s=1

xs =
n

Π
s=1

ys ⇒
n

Π
s=1

x̃s ≤
n

Π
s=1

ỹs (14)

ǫ <
n

Π
s=1

xs −
n

Π
s=1

ys ⇒
n

Π
s=1

x̃s >
n

Π
s=1

ỹs (15)

Also for anyzi ∈ Yi, 1 ≤ i ≤ r :

zi + λ′
i < z̃i < zi + λi (16)

Notice that Statement 7 only preserves those original inequalities
whose differences were at leastǫ. In order to preserve all inequal-
ities, the following statement provides a lower bound on such anǫ
for our special case.

STATEMENT 8. Let M = Max{N i
t,c|c ∈ C, 1 ≤ i ≤ n, t ∈

Ai}. If there exist〈t1, · · · , tn〉 ∈ A1×· · ·An such that
n

Π
i=1

N1
ti,c 6=

n

Π
i=1

N1
ti,c′ , then for anyk > 1:

| k

√
n

Π
i=1

N1
ti,c − k

√
n

Π
i=1

N1
ti,c′ | ≥

1

k ·M n(k−1)
k

(17)

A symmetric approximation forPc values can be derived in the op-
posite direction, but is omitted here for lack of space. Also, using a
similar technique used inStep 1, we can ensure that the amplifica-
tion condition betweeñNi

t,c′ andP̃c values still holds.

8The same problem can happen even for much higher precisions,
as long as it is a fixed precision.



6.2.3 Step 3

Algorithm Step3(P, N )
Input:

(P, N) is the given viewset;
Description:
1: For eachc ∈ C,

For eachAi,
1.1: Sc

i ←
∑

t N i
t,c

1.2: Rc
0 ←

∏
i Sc

i

(Pc)n

For eachAi,

1.3: Rc
i ← Rc

0·Pc

Sc
i

2: For eachPc,
2.1: Pc ← Rc

0 · Pc

For eachN i
t,c,

2.2: N
i
t,c ← Rc

i ·N i
t,c

Return (P, N)

Figure 5: Step 3 - Adjust the numbers such that again∑
t N

i
t,c = Pc

The purpose ofStep 3(Figure 5) is to assert that eachPc is actu-
ally equal to the sum of its correspondingN

i
t,c values, a condition

that could have been violated inStep 1and 2. In the following
statement, we also show the degree to which the amplificationratio
can change as a result of this step, and that the NBC-equivalence is
still preserved.

STATEMENT 9. Given a viewset(P, N), the new view gener-
ated by algorithmStep 3, say(P,N), has the following three prop-
erties:

a. Realistic view:∀c ∈ C, 1 ≤ i ≤ n, Pc =
∑

t N
i
t,c.

b. Classification preserving:∀c ∈ C, τ ∈ ∏
i Ai, Xτ,c =

Xτ,c.

c. Amplification ratio: If∃ρ > 1 s.t. (i) ∀x, y ∈ {Pc|c ∈
C}, 0 < x

y
< ρ and (ii) ∀x, y ∈ {N i

t,c|c ∈ C, 1 ≤ i ≤
n, t ∈ Ai}, 0 < x

y
< ρ, then we have:

(iii) ∀x, y ∈ {Pc|c ∈ C}, 0 < x
y

< ρ2n+3 and (iv)∀x, y ∈
{Ni

t,c|c ∈ C, 1 ≤ i ≤ n, t ∈ Ai}, 0 < x
y

< ρ2n+3

6.2.4 Step 4
After Step 3, N i

t,c’s andPc’s are positive rational numbers that
are (i) NBC-equivalent to the original counts and (ii) safe to pub-
lish. Now these rational numbers can be turned into integersagain
in Step 4in a straightforward manner. Having these positive in-
tegers (Ni

t,c’s andPc’s), they can easily be used to make a new
synthesized database. Based on the users’ preference we caneither
publish the views (the tuples in each view will be permuted in-
dependently), or solely publish their corresponding integer counts,
namely(P, N). Another choice is to always normalize these counts
before publishing them, as such counts are enough for building an
NBC even without revealing the actual size of the original database.

6.3 Uncertainty and Indistinguishability
Two important aspects of any privacy technique are uncertainty

and indistinuishability [38, 37]. Indistinuishability isdefined as the
inability of telling the difference among individuals in a group. Un-
certainty requires that the attacker cannot tell the sensitive value of
an individual among a group of values. Non-probabilistic uncer-
tainty is often based on whether the sensitive value can be uniquely

inferred from the released data [22, 8, 20, 7] while probabilistic
uncertainty concerns whether the cardinality of the set of possible
sensitive values inferred for an individual is large enoughand is
often based on data distribution [39, 26, 14, 4, 28]. Our technique
provides a high degree of both uncertainty and indistinguishability.

Uncertainty. The output of our algorithm is practically indistin-
guishable from the original data. The generated viewset looks like
a real database, and in fact it is the original database if it was safe
in the first place, i.e.SafetyTransformbecomes an identity transfor-
mation. Thus, the adversary cannot tell whether he is dealing with
the origanl (safe) database or with a transformed one. Moreover,
the adversary cannot uniquely find the original viewset by revers-
ing our algorithm for the following reasons. Similar to [9],Safety-
Transformintroduces several layers of uncertainty throughout the
transformation:

1. In Step1, Line 2,s values can be arbitrary/randomely chosen
from the specifies interval.

2. In Step2, Line 2, anyk value that satisfies the inequation can
be arbitrary chosen.

3. In Step4, the final cardinality of the published database can
be arbitrary chosen.

Although theSafetyTransformalgorithm is known to the adversary,
the data publisher does not need to announce the specific values
chosen for the choices mentioned above. Next, we formally state
why SafetyTransformalso provides indistinguishability.

Indistinguishability. More strict notions (such as polynomial
indistinguishability) are often used in cryptography, butin the database
literature more practical metrics are usually applied, such as sym-
metric indistinguishability [38, 37], defined next.

DEFINITION 3 (SIND). Consider a tableT defined over a
schemaT = 〈PA,SA〉, wherePA andSA are the public and sen-
sitive attributes. A transformationM() is said to provide symmet-
rically indistinguishable (SIND) if for any table instanced, where
M(d) = M(T ), and for any two tuples〈p1, s1〉, 〈p2, s2〉 ∈ d there
exists another instanced′ such that:

1. M(d′) = M(T ),

2. 〈p1, s1〉, 〈p2, s2〉 /∈ d′, and

3. 〈p1, s2〉, 〈p2, s1〉 ∈ d′.

Note that we do not publishT but publish bothM() and its result
onT , namelyM(T ). Intuitively, SIND requires that one can swap
the sensitive attributes between any two tuples, and the resulting
table will still be a possible instance, i.e. it will be consistent with
the published information that isM(T ). In our case,M() con-
sists of the NBC-enabling views followed bySafetyTransform
algorithm.

One can easily show that SIND is an equivalence binary relation,
and thus, it will induce a partition on the set of tuples identifying
SIND equivalence classes. SIND requires all the tuples to bein the
same class, while a more practical notion can be similarly defined.

DEFINITION 4 (K-SIND). We say a transformationM() pro-
videsk-SIND, if each SIND equivalence class has a cardinality of
at leastk.

Notice thatk-anonymity is a special case ofk-SIND property.
Next result shows thatSafetyTransformalso provides such indis-
tinguishability guarantees.



LEMMA 10. TheSafetyTransformalgorithm providesk-SIND,
where

k = Minc∈CPc

PROOF. Note that any two tuples that have the same class la-
bel, can swap their sensitive attribute (i.e, their class label) without
changing any of the NBC-enabling views. Thus, since the input
viewsets are the same,SafetyTransformwill also create the same
output. Therefore, all tuples with the same class label forma SIND
equivalence class. The smallest cardinality of such classes is the
smallestPc value.

7. ARBITRARY PRIOR DISTRIBUTIONS
In Statement 1 and Lemmas 3 and 2, we assumed that the prior

knowledge of the adversary is a uniform distribution over all class
labels. In this section we extend our results to arbitrary (strictly-
positive) distributions.

For simplicity, we assume that the prior knowledge of the ad-
versary is in the form of a pmf (probability mass function)F that
assigns non-zero probabilities to each class label. In general, the
adversary’s knowledge can be more specific, e.g. the probability
of each class label given some quasi-identifiers, but here wedo not
discuss such cases.

According to [28], for any given set of views that contain an
aggregate function, there exists a prior knowledge distribution that
will change after publishing the views. Note that NBCs are also
aggregate functions. Therefore, we make the assumption that the
prior knowledge of the adversary (i.e.,F) is known to us, as the
data publisher. This is a common assumption in the field [24, 9],
which according to the above mentioned results (proven in [28])
cannot be easily avoided in the view publishing context. Thus, in
practice, in order to protect privacy under the worst-case scenario,
our publisher must assume that the adversary has access to the best
publicly available knowledge about the application domain. For
instance, in the case of medical data, a publisher must assume that
the adversary knows the most recent statistics of differentdiseases
and thus can accurately estimateF . Hence,F(HIV ) = 0.001,
F(Cancer) = 0.004 andF(Cold) = 0.995 might be a reason-
able choice if the statistics show that on average0.1% of patients
(say, in US) have HIV and so on. Thus, the posterior knowledge
that the adversary obtains after seeing the data published by a USA
hospital should be as close as possible to0.1%, for HIV cases at
that hospital. This policy minimizes the additional information that
our Bob will acquire about the hospital and patients such as Alice
(who was treated there).

We next introduce a strong privacy measure that captures this no-
tion of closeness between the prior and the posterior distributions,
while the related algorithm is given in Section 7.2.

7.1 r-Closeness
We now introduce the notionr-closeness as follows:

DEFINITION 5 (r-CLOSENESS). For r > 1, we say that pub-
lishingV (T ) = V0 satisfiesr-closeness w.r.t. a given prior knowl-
edge distributionF , if for all I = I0 and any propertyQ(c) of the
class labelc, we have:

1

r
≤ P

Q,I0
2

P
Q
1

≤ r (18)

wherePQ,I0
2 is the adversary’s posterior knowledge defined in eq.

(4) and,PQ
1 is his prior knowledge of propertyQ, now defined as:

P
Q
1 =

∑

Q(c)

F(c) (19)

Figure 6: Visual demonstration of EST.(a) is the prior distri-
bution of class labels, whose ratios are 1:2:3, proportionally.
(b) is the original view of the data that deviates from the prior.
Thus, (e) is the published view that must be more similar to(a)
while still NBC-equivalent to (b).

Note that the above definition is consistent with the intuition that
the smallerr is, the more similar the posterior distribution is to the
prior one. That is, whenr ≈ 1, the two distributions meet. The no-
tion ofr-closeness is semantically similar to that oft-closeness [24],
which instead requires that the distance (either variational distance
or KL distance) between the prior and posterior does not exceedt.
In our r-closeness, the distance is defined by the maximum ratio
of the two distributions on each possible class label. Thus,its syn-
tactic definition is similar to the concept of ‘Amplification’ [14],
which in turn corresponds to ourρ in Lemma 2. Analogous to
Lemma 2 for privacy breach, the following result provides a suffi-
cient condition to guaranteer-closeness. Notice that,r-closeness is
a stronger form of privacy breach. In other words, oncer-closeness
is guaranteed, no privacy breach can occur w.r.t. any pair ofL1, L2

whereL2
L1
≥ r.

STATEMENT 11. PublishingV (T ) = V0 satisfiesr-closeness
w.r.t. a prior distributionF , if for all I = I0 and all c, c′ ∈ C we
have:

1

r

F(c)

F(c′)
≤ P c,I0

2

P c′,I0
2

≤ r
F(c)

F(c′)
(20)

This sufficient condition enables us to use the algorithmSafety-
Transform(Section 6.2) as a subroutine for enforcingr-closeness
(if possible) w.r.t. an arbitrary strictly-positive priordistribution
that is available to the adversary. This is discussed next.

7.2 Enforcing r-closeness
We first explain the general idea of the algorithm using the tiny

example of Figure 6. For each one of the original class labelsin
6(b), we create several new sub-labels, shown in 6(c). The num-
ber of sub-labels assigned to each original label is proportional to
its prior probability,F . Here, the prior ratio between HIV, Cancer,
and Migraine was assumed to be1 : 2 : 3 resp., shown in 6(a).
Then, we substitute the label of each tuple in 6(b) with one of its
sub-labels, in 6(c). Each sub-label of a label gets the same share of
the tuples that initially had that label, e.g. the tuples with Cancer in
6(b) are equally split between new labelsC1 andC2. Now, pro-
vided that such a split is allowed (explained later), we can consider
all these sub-labels (i.e.,H1,C1,C2,M1,M2,M3 in 6(c)) as new
labels which now have a uniform prior distribution. Therefore, the
required assumption for applyingSafetyTransformholds. In the re-
sulting view of this algorithm, shown in 6(d), the probabilities of
different class labels are ‘somewhat’ close. Finally, by merging all
class labels that were sub-labels of the same original label(e.g.,
the counts ofC1 andC2 become somehow ‘combined’ as the new
counts forCancer in 6(e)), the new probabilities will be ‘some-
what’ similar to the prior. This is because the number of sub-labels
for each label was chosen according toF .



There are several technical difficulties that need to be resolved
before such an algorithm works. In general, splitting and merg-
ing class labels are not necessarily NBC-preserving. Again, con-
sider the tiny example in Figure 6. For a givenτ , in 6(b) we may
haveXτ,Cancer > Xτ,HIV , but Xτ,C1 < Xτ,H1 in 6(c), as the
counts for labelsC1 andC2 are now half the counts forCancer.
Likewise for merging:Xτ,M2 < Xτ,C1 in 6(d) may change to
Xτ,Migraine > Xτ,Cancer in 6(e). The algorithm which resolves
this problem, calledEST(Extended Safety Transform), is provided
in Figure 7. In the following, we explain each step of EST sepa-
rately and address the aforementioned issues.

Algorithm EST( (P,N), F , r)
Input:

(P, N) is the given viewset;
F is the given pmf over the class labels;
r is the requested value forr-closeness;

Description:
1:Resolving the ties:such that∀c, c′, τ : Xτ,c 6= Xτ,c′

2:Split((P,N),F): Scale upN i
t,c andPc values; then split each

class labelc according toF(c)
3:SafetyTransform((P, N),r): Run the algorithm on new (sub)-

labels as if their prior distribution was uniform
4:Merging((P, N)): See if the new class labels can be merged

back to the original labels, otherwiseReturn FAIL.
Return (P, N) as the output from the last step

Figure 7: Steps in EST

Resolving the ties.As we see later in Lemma 12, we need to
first resolve all possible ties in the original NBC, i.e. for all τ and
c 6= c′, Xc,τ 6= Xc′,τ . This can be easily done using the following
simple technique. Find a small enoughǫ > 0 such that adding it to
all the counts of any of the class labels does not change any ofthe
original inequalities. Finding such a number can be done in linear
time, by a technique similar to that used in Section 6.2.2. Now
consider an arbitrary series0 < ǫ1 < · · · < ǫ|C|−1 < ǫ|C| = ǫ,
and addǫi to all the counts of thei-th class label. Since thei-
th class label has priority over thej-th label, i < j, all ties will
be broken towards the higher precedence label while none of the
original inequalities are affected. Thus, NBC-equivalence is still
preserved.

Before presenting the rest of this algorithm, we formally define
the following operations on NBCs.

DEFINITION 6 (SPLIT, MERGING). LetV (withPc’s andN i
t,c’s)

andV (withPc’s andN
i
t,c’s) be two NBCs defined over the same set

of attributes but with two different classes, i.e.〈A1, · · · , An, C〉
and 〈A1, · · · , An, C〉 respectively. Also consider a mappingΨ :
C → C for whichΨ−1(c) 6= φ for all c ∈ C. We callV a split of
V if for all C ∈ C and all t, i:

N
i
t,C =

1

|Ψ−1(c)|N
i
t,c and PC =

1

|Ψ−1(c)|Pc

wherec = Ψ(C). Likewise, we callV a merging ofV if for all
c ∈ C and all t, i:

N i
t,c = |Ψ−1(c)|· Min

Ψ(C)=c
{Ni

t,C} and Pc = |Ψ−1(c)|· Min
Ψ(C)=c

{PC}

A split (or merging) is called NBC-preserving when for allτ and
all c, c′ ∈ C, the following holds:Xc,τ ≤ Xc′,τ if and only if there
existC, C

′ ∈ C such thatΨ(C) = c, Ψ(C
′) = c′ andXC,τ ≤ XC′,τ .

The following result provides a sufficient condition for a split (or
merging) to be NBC-preserving.

LEMMA 12. LetΨ be the maximum number of sub-labels mapped
to a single label, i.e.̂Ψ = Max

c∈C
{|Ψ−1(c)|}. Also assume that nei-

ther V nor V has a tie. A split defined overΨ is NBC-preserving
if Ψ̂ ≤ M1

M2
, whereM1 andM2 are the first and the second largest

N i
t,c in V . Similarly, a merging defined overΨ is NBC-preserving

if Ψ̂ ≤ M1
M2

, whereM1 andM2 are the first and the second largest

N
i
t,C in V.

When there are no ties, i.e.Xτ,c

Xτ,c′
6= 1:

Min
τ,c,c′
{ Xτ,c

Xτ,c′
> 1} ≥ M1

M2
and Max

τ,c,c′
{ Xτ,c

Xτ,c′
< 1} ≥ M2

M1

Referring toM1
M2

asSM , Lemma 12 implies that one can multiply
all the counts of a particular class label by any constants, as long as
it is in the interval 1

SM
≤ s ≤ SM . Another interesting observation

is that by exponentiating all the counts inV to the same powerθ,
we can enlarge this interval arbitrarily from either side (recall that
exponentiation is always NBC-preserving). That is,SM → ∞
whenθ → ∞, or equivalently 1

SM
→ 0+ whenθ → 0+. This is

the main idea behind theSplit step, described next.
Split. Let us assume thatF(c) values are either rational numbers

or are given in a precise-enough rational representation (like the
method used in Section 6.2.2). Thus, we can find their greatest
common divisor, sayF. That is, for allc ∈ C, F(c) = F · Fc

for some positive integerFc. Now for eachc ∈ C, we create
new sub-labelsc1, · · · , cFc that are all mapped to labelc. Let F̃ =
Max
c∈C
{Fc}. In order for the this split to be NBC-preserving, we first

raise the original counts to a big enough powerθ before applying
the split. More precisely, for anyθ >> logF̃

log(SM )
the conditions

of Lemma 12 will be satisfied, since after raising the counts to the
power ofθ, we will haveS′

M = SM
θ > F̃ whereS′

M denotes the
new value.

SafetyTransform subroutine and Merging.As previously men-
tioned, after performing a split, the new class (sub)labelscome
from a uniform distribution. This allows us to apply algorithm
SafetyTransform after which a merging operation is performed as
follows. For eachc ∈ C, all sub-labelsc1, · · · , cFc are mapped
back toc (new NBC counts are determined according to Defini-
tion 6). Assuming that such a mapping is possible (later, State-
ment 14 determines when it is possible), we have the following
analysis. After SafetyTransform (according to the resultsin Sec-
tion 6.2), for all quasi-identifiersI0, all c, c′ ∈ C and all ci ∈
Ψ−1(c), c′j ∈ Ψ−1(c′):

1
r
≤ P

ci,I0
2

P
c′
j

,I0

2

≤ r ⇒ 1
r

Fc

F
c′
≤ Fc·P

ci,I0
2

Fc′ ·P
c′
j

,I0

2

≤ r Fc

F
c′

⇒ 7 1
r

Fc

F
c′
≤ P

c,I0
2

P
c′,I0
2

≤ r Fc

F
c′

Therefore, the required conditions for Statement 11 hold, proving
thatr-closeness is satisfied once the merging step is possible. The
following lemma summarizes the properties of this algorithm.

LEMMA 13. EST runs in linear time, and when returning a
view V ′ for a given prior distributionF , a privacy levelr (for
r-closeness) and the original viewV , V ′ is safe to publish w.r.t.r,
yet is NBC-equivalent toV .

Lastly, we provide a closed form to determine the bestr-closeness
(i.e., smallestr) that our algorithm can enforce without losing any
accuracy.



Figure 8: Achievedr-closeness on Adult dataset.

STATEMENT 14. For a givenV and a prior distribution of class
labelsF , EST generates an NBC-equivalentV ′ that guaranteesr-
closeness w.r.t.F , if there exists a large enoughθ for which the
following condition holds:

F̃ < (
Sθ

M

F̃
)

log r

(2n2+3n)(θ·log M
m

+log F̃ ) (21)

wheren, m, M are the number of attributes inV , the minimum
count inV (after removing zeros), and the maximum count inV ,
respectively.

Taking the limit asθ →∞, the condition simplifies to

F̃ ≤ S

logr

(2n2+3n)·log M
m

M

It is worth mentioning that for uniform distributions̃F = 1, and
this was why SafetyTransform could achieve any level of privacy.
Moreover, note that Statement 14 is a sufficient but not a necessary
condition. However, in practice, tighter analysis ofSM is possible
which can lead to smaller values forr. Also, as shown in Sec-
tion 8.1, the SafetyTransform algorithm provides much stronger
amplification ratios than the requestedr, due to its conservative ap-
proach. This means that in practice EST can call SafetyTransform
with a much lowerr than what is guaranteed by Statement 14, and
still achieve the same or betterr-closeness than what was initially
requested. Thus, the applicability of EST depends on both the de-
viation of the actual data fromF and the requested privacy levelr
(for r-closeness). If the distribution of the underlying data deviates
too much from(F ), apparently no one can guarantee a very small
r without losing accuracy.

Moreover, another possibility is to trade-off accuracy loss against
privacy (i.e., smallerr’s) by performing the merging step (regard-
less of being NBC-preserving) withr′ that ranges inr ≤ r′ ≤ r′′,
wherer is the required privacy level andr′′ is the smallest value
for r-closeness that satisfies Statement 14. At the extremes, choos-
ing r′ = r completely ignores the accuracy loss, whiler′ = r′′

preserves the accuracy, ignoring the requested privacy. Wedo not
discuss such possible trade-offs here, as in this paper we focus only
on the accuracy preserving case (whenever it is consistent with the
requested privacy level, namelyr′′ ≤ r).

8. EXPERIMENTS
The goal of our experiments is to evaluate (i) the effectiveness

of our algorithms in practice (Section 8.1) and (ii) the accuracy
loss imposed by other general-purpose techniques on NBCs (Sec-
tion 8.2).

The experiments were conducted on a P4 machine running Linux,
with 1GB RAM. Our algorithms (SafetyTransform & EST) were
implemented in C++. We used the Adult dataset [6] which is a
classic benchmark for privacy-preserving techniques. This dataset
contains32, 561 tuples from US Census data. The attributes that
we used were Age, Years of education, Work hours per week, and
Salary. The class label is based on salary which can be either

> 50K or ≤ 50K. The running time of EST for processing this
dataset was2.920 seconds.

8.1 Amplification ratio and r-closeness
In the Adult dataset, the ratio of tuples with salary≤ 50 to those

with > 50K was24720 to 7841, i.e. F̃ ≈ 3. Moreover, in the
original dataset, the minimumρ (satisfying Corollary 4) was238.
By running SafetyTransform for1 < ρ ≤ 283, we measured the
actualr-closeness that is achieved by EST for this dataset, plotted
in Figure 8. The actualr-closeness was measured by using combi-
natorial counting of all possible instances (that after theSplit step,
were assumed equally likely). As shown in Figure 8, the actual r-
closeness is much better than the theoretical worst case (provided
by Statement 14). This is due to the conservative upper boundde-
rived from Lemma 3. This implies that, in practice, for a requested
level of r-closeness, we can call SafetyTransform with aρ that is
much higher thanr, and still preserve both NBC-equivalence and
privacy level. This is because SafetyTransform achieves a much
lower amplification guarantee thanρn. We have repeated this ex-
periment with a different number of attributes, and also forsyn-
thetic datasets (both uniform and non-uniform distributions) and
observed similar results.

8.2 NBC Accuracy
In this section, we have only focused on the effect of determin-

istic privacy methods on NBCs, but apparently the randomization
techniques will also impose accuracy loss depending on their vari-
ance. Thus, we usedk-anonymity as an example of a well-studied,
general-purpose privacy technique, since it preserves themost ac-
curacy compared to Entropyl-diversity, Recursivel-diversity, and
t-closeness (see the experiments in [26, 24]). But even fork-
anonymity, the accuracy loss was considerable for recall, as shown
in Figure 9(b).

For anonymizing the Adult dataset we used Incognito implemen-
tation [23] which is a full-domaink-anonymity algorithm. We
trained an NBC on the anonymized data (for different values of
k) and compared the results with an NBC trained on the output of
SafetyTransform, which is equivalent to training it on the original
data. For ETS, we usedr = 1.3 for a prior belief of75% on≤ 50K
label. But note that the accuracy for both ETS and SafetyTransform
are always equal to that obtained on the original data, regardless of
the chosen value forr, and therefore we represent them all with the
same (red) bar in Figure 9(a),(b). Each time, we used50% of the
tuples for training and the rest for testing. The overall accuracy of
NBC does not drop much usingk-anonymized data (about5%, Fig-
ure 9(a)). However, the classification quality drops dramatically for
less common classes. Since in the Adult dataset, tuples withsalary
of > 50K are much fewer (one third) than those with≤ 50K, the
recall for this smaller class is significantly affected, as shown in
Figure 9(b). In many applications, classifying less commonevents
is much more critical, e.g. in an online recommendation system or
search engine advertisement, the probability of a click on aparticu-
lar ad is very small. Also, since our algorithms retain the total order
(NBC-equivalence), all metrics remain the same, such as accuracy,
recall, precision and F-measure.

9. CONCLUSION AND FUTURE WORKIn this paper, we reformulated privacy breach for view publish-
ing. We presented sufficient conditions that are easy to check/enforce,
when the views in question are used to train Naı̈ve Bayesian Clas-
sifiers (NBC). Indeed, we provided algorithms that (i) run inlinear-
time, (ii) guarantee the privacy of the individuals who provided the
training data, (iii) incur zero accuracy loss in terms of building an
NBC, (iv) work for any given database as long as the prior distribu-



(a) (b)
Figure 9: Drop in accuracy (a) and recall (b) of NBC when trained with k-anonymized data.

tion is uniform, or it satisfies our sufficient condition. We validated
the applicability / effectiveness of our algorithms by several exper-
iments on real-world datasets.

Our proposed method has a clear advantage over general-purpose
approaches, such ask-anonymity and randomization, that compro-
mise the accuracy of information to achieve privacy. In a clear de-
parture from these and other previous approaches that minimize the
information loss in terms of the average error, we showed that for
NBCs, a perfectly accurate mining model may still be achievable
even if the average utility of a perturbation method is poor.This
promising finding, also calls for more efforts in designing model-
specific privacy-preserving approaches optimized for specific min-
ing methods of wide usage. In the end, this could deliver more
concrete benefits than seeking general-purpose techniqueswhich
have proven to be computationally complex and practically unreal-
istic [32].

While NBCs are widely used in many successful classification
and recommendation systems, we are currently extending ourtech-
niques to general Bayesian networks. In fact, several problems
such as sensitivity analysis [10] on Bayesian networks can be refor-
mulated using our notion of amplification. Some meta-algorithms
such as bagging can be accommodated in a straightforward man-
ner. Moreover, we are investigating the extension of our approach
to augmented NBCs [21], decision trees built from NBCs, and in-
cremental publication of NBCs over a data stream.
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