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Abstract—We address the problem of publishing a Naive Bayesian
Classifier (NBC) or equivalently publishing the necessaryiews for build-
ing an NBC, while protecting privacy of the individuals who provided
the training data. Our approach completely preserves the aturacy of
the original classifier, and thus significantly improves on arrent ap-
proaches, such as randomization or anonymization, which gerally
degrade accuracy to preserve privacy. Current query-view scurity
checkers address the question of ‘Is the view safe to publih and
are computationally expensive (oftenl'[é’-complete). Here instead, we
tackle the question of ‘How to make a view safe to publish?’ ad pro-
pose a linear-time algorithm to publish safe NBC-enabling iews.
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data mining phase:

(i) Individuals may not trust any parties except themsebes
therefore they perturb their sensitive data before subgitt
it to the server that does the publishing or the mining.

(ii) In a database-publishing scenario, a trusted partdsthe

individual records, and it either performs some pertudrati
over the raw data before publishing it, or it only publishes
parts (views) of it.

We first show that a simple measure that restricts the ratios b-
tween the published NBC statistics is sufficient to preventay breach
of privacy. Then, we propose a linear-time algorithm to enfaoce this
measure by producing perturbed statistics that assure bottfi) individ-
uals’ privacy and (ii) a classifier that behaves in the same waas the
NBC trained on the original data. By carefully expressing tre per-
formed statistics using rational numbers, they can be furtler used to
derive synthetic (sanitized) datasets. Thus, for any givedataset, we
produce another dataset that is secure to publish (w.r.t. a miform
prior) and achieves the same classification accuracy. Finlg) we extend
our results by providing sufficient conditions to cope with abitrary
(non-uniform prior) distributions, and we validate their e ffectiveness
in practice through experiments on real-world data.

(iii) The trusted party that holds individuals’ data comgmithe
mining models locally; then, instead of publishing the erig
inal data or even an anonymized/perturbed version of it, the
trusted party only publishes the mining results—while mak-
ing sure that the publication of these results does not com-
promise privacy.

While our work uses several techniques adapted from sae(igyi
its objectives are aligned with (iii), as illustrated by tloddlowing
example.

Privacy breaches when publishing NBCsConsider a database
schemdl’ = (Adr, Age, Sal), where the address field can be ei-
ther Westwood Blvd.1{”) or Palms St. P), and age is eithe30 or
40. The sensitive attribute is annual salary, which is eigi@rK
or $70K. Assume that we want to publish (or train) an NBC over
. ) ) ) this database, such that giveadr, Age) the model can predict the
Recent advances in digitized information has led to esocalaff person’s salary; this means viewddr, Sal) and(Age, Sal) must
global concerns on individuals’ privacy [3, 2, 1]. Privayeserving e released—or alternatively, the counts of all such pairs from
Data Mining (PPDM) has been proposed to address these emncer \yhich these views can be built. The views in question are show
However, the goals are conflicting: On one hand, to proteet th j, Figure 1(a). The intended users will invoke the NBC foranul

_privacy of the individuals whose s_ensiti\(e information iegent (see eq.(2) in Section 3) to build a Bayesian classifier. Hewe
in our database, we should not disseminate such databases. Omalicious user Bob, who is trying to breach the privacy ofcali

the other hand, many other legitimate users/applicatiamsben- (she was part of the training data), will instead generdt@as-

efit from such data. For example, studying and mining medical gjp|e instances that are consistent with his additionairinfition
records, consumers’ behavior or insurance history by atggan that Alice lives on Westwood and that she is in H6s?. Thus,
often lead to invaluable statistical knowledge which beaséffie so- Bob will obtain instancesd; to dio, shown in Figure 1(a).Then,
ciety at Iarge.. I?PDM methods seek to achieve these benefits wi ¢, eachd;, Bob counts the ratio of the tuplésV, 40, 70K over
out compromising privacy. ) __ those that havélV, 40) in their first two columns (all possible tu-
Scenarios.Privacy-preserving methods can be applied during (i) ples that match his info about Alice). Thus, Bob géts for di,
the data collection phase, (ii) the data publishing phasgiipthe 3/4 for do, ds, da, ds, and1 for all the others (i.eds to dio). Fi-
nally, by averaging thesH) different ratios, Bob infers that with a
probability of =(4/5 + 4 x 3/4 4+ 5 x 1) = 88% Alice earns a
70K salary. Bob could have a prior knowledge, e.g. he knew the
overall distribution of salaries, but not the dependencsatdry on
other attributes This assumption is solely for the sake isf¢ham-
ple. In general, we do not restrict Bob’s prior knowledgeu3hf
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1We call such views NBC-enabling views—Section 3.

2In general, Bob does not need to know all the attributes afeAli
to breach her privacy.



Published Views

All consistent instances with

7TAd7',Sa,l(T1) y WAge,Salary(Tl) dy da ds dy ds

W, 70K 40, 70K W, 40, 70K W, 40, 70K W, 40, 70K W, 40, 70K W,30, 70K

W,70K 40, 70K W, 40, T0K W, 40, T0K W, 40, T0K W, 30, 70K W, 40, 70K

W, 70K 40, 70K W, 40, 70K W, 40, 70K W, 30, 70K W, 40, 70K W, 40, 70K

W, 70K 40,70K W,40, 70K W, 30, 70K W,40, 70K W,40, 70K W,40, 70K

P, 70K 30,70K P,30, 70K P,40, 70K P,40, 70K P,40, 70K P,40, 70K

W,50K 40,50K W,40, 50K W,40, 50K W, 40, 50K W, 40, 50K W, 40, 50 K

P,50K 30,50K P,30,50K P,30,50K P,30,50K P,30,50K P,30,50K

ds dr ds doy dio

W, 40, 70K W, 40, 70K W, 40, 70K W, 40, 70K W, 30, 70K

W,40, 70K W,40, 70K W,40, 70K W,30, 70K W,40, 70K

W, 40, 70K W, 40, 70K W, 30, TOK W, 40, 70K W, 40, 70K

W, 40, 70K W, 30, T0K W, 40, 70K W, 40, 70K W, 40, 70K

P,30, 70K P, 40, 70K P, 40, 70K P, 40, 70K P, 40, 70K

W, 30, 50K W, 30, 50K W, 30, 50K W, 30, 50K W, 30, 50K

P, 40, 50K P, 40, 50K P, 40, 50K P, 40, 50K P, 40, 50K

(a) View setl; and all its possible worlds
Published Views All consistent instances with,
7 adr,5al(T2) , Tage,5a1(T2) d'y ds d's dy d's d's

W, 70K 40,70K W, 40, 70K W, 40, 70K W, 30, 70K W, 40, 70K W, 40, 70K W, 30, 70K
W, 70K 40,70K W, 40, 70K W, 30, 70K W,40, 70K W,40, 70K W,30, 70K W,40, 70K
P, 70K 30,70K P,30, 70K P, 40, 70K P, 40, 70K P,30, 70K P, 40, 70K P, 40, 70K
W,50K 40,50K W,40, 50K W,40, 50K W,40, 50K W,30,50K W, 30,50K W,30,50K
P,50K 30,50K P,30,50K P,30,50K P,30,50K P,40,50K P,40,50K P,40,50K

(b) View setV» and all its possible worlds

Figure 1: NBC-enabling views for two tiny databases and theicorresponding worlds

his prior belief on Alice earninGOK was% = 71%, after seeing
those views, there would be a significant breach of Alicelgguy
(from 71% to 88%).

the well-known notions of no privacy breach [14] andloseness [24],
which we reformulate for the case of view publishing.
Attack model. The computational power of the attacker consists

Now instead, suppose that the views in question were the onesof considering all possible worlds that are consistent withset of
shown in Figure 1(b), and Bob did the same exhaustive computa published views, and then counting the number of tuplestbiahe

tion over all possible instances, showndasto d’ in Figure 1(b).

In this case, the ratio of the tupléB/, 40, 70K’) over all the tuples
having(W, 40) averaged ovet'y, - - - ,d'c is £(2/3+1/2+1/2+
141+ 1) = 78%. Comparing these two sets of NBC-enabling
views, clearly the latter case was safer to publish as it ordyed
Bob’s prior knowledge fron71% to 78% instead 088% in case of
the former set of views. As discussed later, privacy breadh i

a measure that limits the amount of additional knowledge ttia
attacker can obtain from the published data.

The key observation to be made is that although these twakets
views V7 andV; (Figure 1) are so different in terms of privacy, the
two NBCs built from them, will still return the same results finy
tuple to be classified. For example if the test inpu{#530), the
NBC built on V3 predicts the class label &K becaus&ii <
2% 3. The prediction from the second classifier (built &) is

again50K because3:: < 233 (A review of NBC formula is

is interested in, to compute the probability of the desinetijzate.

Previous work has focused on the privacy breach risk tha-is i
herent in publishing a black-box predictor, i.e., proviglihe pub-
lic with the functionality of making predictions, while cqietely
concealing the mechanisms and statistics by which they ere d
rived (see discussion in [17], and Section 2). Here, we assum
the risk of publishing a black-box predictor was deemed jatece
able, but then the black box proved impractical (e.g., ccatmn-
ally intractable[16]). Therefore, this paper tackles thestion of
whether, rather than the mythical black box, we can instéadge
the simplest of classifiers, i.e., an NBC, and still offer saene pri-
vacy guarantees.

Contributions. By reformulating the notion of privacy breach
in the context of view publishing, we derive sufficient cdialis
that are independent from (i) the predicate that the attaiskaf-
ter, and (ii) the amount of his prior knowledge about the viti

given in Section 3, see eq. (2) ) The reader can also check theual’s attributes. Said conditions also guarantee thatttheler can

consistency of these two classifiers for all other possifyets.
Despite its simple formulation, NBC has proved to be one ef th
most effective classifiers in practice and in theory [12]widwger, as
suggested by the above example, given an unsafe NBC, it &-pos
ble to find an equivalent one that is safer to publish. In shiogtob-
jective of this paper is determining whether a set of NBChkéing
views are safe to publish (against the aforementioned ctatipn
by Bob), and if not, how to find a secure database that prodhees
same NBC model.
Problem statement. In this paper, we assume a single trusted
party who has a dataset containing sensitive personalniaoon
on some individuals. The goal is to publish an NBC model (Whic
consists of NBC-enabling views or counts, described iniSe@),
such that the privacy of the individuals who provided oumiray
data is protected. The privacy guarantees that we providedre

3A brute-force decision procedure for checking the equivedeof
two classifiers is exponential, but later we proposed a titieze
algorithm that guarantees their equivalence.

never gain knowledge on an individual’'s sensitive-attieb(class
label) in excess of the specified privacy limit. Thus, for NBC
enabling views, we show that total privacy (i.e., elimioatiof
privacy breaches) can always be enforced when the backdjroun
knowledge is uniform, while retaining perfect utility irrtes of the
NBC accuracy. We extend our results by providing sufficiemt-c
ditions to cope with arbitrary (non-uniform) distributignand we
validate their effectiveness in practice through expenitsen real-
world data. We propose a simple and efficient (i.e., lingae}
algorithm for transforming a given set of NBC-enabling vieiwto
another set of views that (i) guarantees the required prilael,
(i) imposes no accuracy loss in terms of building an NBC il
general-purpose techniques, such as randomizatioh-andnymity).
Overview of the paper. The rest of this is organized as fol-
lows. After reviewing related work in Section 2, we providbréaef
background on NBC in Section 3. In Section 4 we reformulage th
notion of row-level privacy breach [14] to suit view publisb,
followed by our results on safety conditions in Section 5r €nst
algorithm for uniform distributions is proposed in Sect@&mwhich



is extended for arbitrary distributions in Section 7. Fipah Sec-
tion 8, we validate the effectiveness of our algorithms af-veorld
data. We conclude in Section 9.

2. RELATED WORK

We briefly discuss closely related lines of prior work to iflar
the context of our result—for a more general survey see [8d] a
references within.

Perturbation Methods. Such methods come in two flavors.

1. General-purpose approachesnclude but are not limited to
randomization [4, 15, 25, 13k-anonymity [33],/-diversity [26].
Here, the goal is to guarantee the requested privacy levgehy
eralization, obfuscating, randomizing, permutation,papsion or
sanitization while minimizing the information loss. Seakeat-
tacks have been proposed against such approaches(e.gfof26]
k-anonymity, [19, 18, 30] for randomization), and they faéie e
ciency issues as well (e.g. [27] féranonymity and [5] for ran-
domization). However, generic information-theoretic sweas of
error in the raw data are sufficient but not necessary camditior
high accuracy of particular mining models. Thus, while therfer

is not possible in some cases [32], the latter might be stitible.
As a usual trade-off, accuracy loss is a downside of aforéoresd
general-purpose methods—see Section 8.2.

2. Ad-hoc methodsare designed for a particular mining algorithm.
They suppress or sanitize those parts of the model thattgipla
vacy before publishing it. For example [7, 36] are for fregjue
pattern mining.

Query-View safety checking.A pioneering work here is [28]
that addressed the query-view security problem, consigettie
sensitive information as a set of secret views (or querids)se
safety must be checked once other views or query resultsufre p
lished. However, their measure of perfect security is vergts
requiring that prior and posterior knowledge of the attackest
remain exactly the same after publishing the views whichlttig/s
many practically acceptable cases. Similar problems ftaldese
publishing and integration systems have been studied inJ1JL
In particular, the ‘Guarantee 3’ in [31] is more similar tor@as-
sumption, as it ensures that an attacker who lacks othernexte
knowledge about the possible sources cannot learn anytidang.
Violation of k-anonymity in view publishing was studied in [39]. In
such approaches the complexity is usually prohibitive, derid-
ing this problem for conjunctive views i35-complete [28]. More-
over, their result is a ‘safe/unsafe’ answer, and does rotige a
method for making the view safe to publish without loosinfpin
mation. In this paper we consider simpler views (NBC-emapli
views) but provide an efficient algorithm to make them safe.

Privacy breach. We extend the existing notion of privacy breach
introduced by Evfimievski et al. [14], which relates the eltex’'s
prior/posterior beliefs before/after seeing the pertdrbata. Ev-
fimievski et al. assume that each individual publishes her tw
ple after applying some perturbation methods. However,un o
context, individuals have trusted a single data publisiveng is in
charge of perturbing the entire database before publishiidso,
our algorithms are deterministic, while they exploit prbitiatic
methods (e.g, randomization). However, there is still @&loon-
nection between the two. In particular, our Lemma 2 corredpo
to Statement 1 in [14], where thejrcorresponds to oys. Fur-
thermore, previous work on prior/posterior informatiooyed that
no anonymization can achieve both privacy and utility whiea t
attacker’s prior knowledge is already too large [32].

Mining result privacy. Reference [17] addresses the question
of ‘when can a classifier be published (to be freely invokedhw
out violating privacy?’. However, it assumes that the dfaesscan

be published as a black-box whose inside representatiorotae
seen. Similarly, [16] proposes a multi-party approach iy
a separate rule for all possible tuples. Representing an A&
rule-based classifier involves an exponential number esrulhile
our method uses linear time and memory (in input size).

3. NOTATIONS

Let the original databasg be an instance of a relatibdefined
asR = (Ai,--- , An,C) inwhich A;’s are (the domains of ) the
attributes and” is (the domain of) the class label. Each tuple is
associated with an individual. For example, in Figure 1sslabel
is the salary while address and age 4drés. In order to build an
NBC, the only views that need to be publishedare ¢ (T") for all
1 <4 < n,andrc(T). We user for relational projection, antll
to denote productAlso, since throughout this paper we allow du-
plicate tuples, one can reconstruct these projection vilmwksow-
ing how many times each pair of values have occurred togeitter
other wordsgquivalentto publishing these views, one can instead
publish the following counts. For < i < n,Vt € A;,c € C,
define:

Nio=|oa,—inc=e(T)]

alsoVc € C define:
Pe = |oc=c(T)|

For example, in Figure 1(aW(§‘,ji7TOK = 4, Psox = 2 and so on.

In practice, NBCs are usually published using these couwitisef
normalized as ratios or in their absolute value) due to theiter
memory efficiency over the view representation. Throughbist
paper we shall switch between these two equivalent reptasems
as needed to simply the discussion.

Using these counts, we can express the NBC's probability est
mation as follows. For alt = (t1,--- ,tn) € A1 X -+ x A, and
for all ¢ € C, the NBC's prediction is:

Nt

7 L ()
|UA1 =tiNANAp =ty (T)|/|T|
Since the NBC goal is to comparer[Class(7) = ¢| and
Pr[Class(t) = '] whenc # ¢/, we can further simplify eq. (1)

by ignoring those terms which are independent of the cldss,la
and only compare

Pr{Class(t) =] = (1)

@)

N; -
ti,c ti,c
c

Xr,c =P, H ?’ and X‘r,c/ =P - P

For simplicity, in this paper we assume thatcounts are always
non-zero, and therefore eq. (2) is always well-defined.PAsand
N/ . counts are sufficient for building an NBC, we use the pair
(P, N) as the signature for each NBC . Thus, the problem (or input)
size isO(Y7, [C] - | Aql).

In real-world datasets, there can be multiple sensitivibates.
Moreover, different individuals can have different priyaoncerns,
e.g. some people may consider their age more sensitive fieém t
salary. For simplicity, in this paper we assume thais the only
sensitive information i7" for the following reasons. It can be eas-
ily shown that all (non-class) attributes will benefit frohetsame
or greater level of privacy that our results provide for ttess label
C. Intuitively, this is due to the fact that in NBC-enablingwis,
we always release more information abéuthan about any other
A;'s, asC appears im views while eachA; appears in only one
view. Informally, this means that knowing the values for goof

i

“Throughout this paper we use the terms ‘database’, ‘talid’ a
‘relation’ interchangeably.



the A;’s associated with Alice, after seeing the NBC, Bob can learn (set of) view(s)’, whose answer ovér is Vj, we say that publish-

more about her class label rather than her unknalwa. Further- ing V(T') = V, causes a privacy breach with respect to a pair of

more, multiple (sensitive or non-sensitive) class labals always given constantd < L; < Lo < 1, if either of the following holds:

be combined together to form a single class label.
Notation | Explanation

1. UpwardL;-to-Lo:  PQ™ < I, < L, < PP,

A (domain of):-th attribute Q Qu
C (domain of) the class label 2. DownwardLo-to-L1:  P37% < L1 < Le <Pr°.
Ni.c # of tuples with labet, and valug for thei-th attribute

Returning to our example in Section 1, the first set of viewg-(F
ure 1(a)) caused an upwald1-to-0.8 privacy breach, as the prior

" # of tuples with Tabet
(P,N) NBC-enabling viewset composed Bfand N counts

. NBC score for tupler, ¢) and posterior weré0% and 88%, respectively. With respect to
T a given quasi-identifier the same privacy level (i.el,; = 0.51 and L, = 0.8), the sec-
I (Alice’s) value for] ond set of views (Figure 1(b)) would be safe to publish, a# the
D all instances that have at least one tuple Witk I, prior/posterior weres0% and 78%, respectively. However, if we

had a more strict privacy policy, sdy; = 0.5 andL2 = 0.6, none
Table 1: Notation summary. of those viewsets would be safe to be published. Roughlykipga

the notion of privacy breach reflects the degree to which agha
in the adversary'’s prior knowledge is tolerated.

4. PRIVACY BREACH FOR VIEWS In Sections 4 through 6, we assume a uniform distribution of
In this section, we adapt the notion of privacy breach [14] to the database instances, wherebyladl D are equally likely in the
our context, where views are published by a single publi¢Gee absence of any views. Also, after seeing the view(s), ahimses in

Section 2). We define a quasi-identifieras a non-empty subset S are equally likely, whereS = {d € D|V (d) = V,} contains all
of A; attributes, whose values for Alice are known to Bob. We instances satisfying the given view(s). This assumpticsirislar
refer to the tuple made of these valued@sor simply sayl = Io. to that in [35]. We will remove these uniformity assumptians
For instance, iffl = (A1, As), any (t1,t3) € A1 x As can be Section 7.

a possiblely. Also let D denote the family of all table instances

whose projection o containsl, as a tuple, thatish = {d | 3t € STATEMENT 1. Let Iy be the value of a given quasi-identifier
d,t.I = Iy} wheret is a tuple andl is a table instance. Table 3, I, and letl}, be the value of a given vieW(T"). If there exist some
summarizes our notation. m1, mz > 0 such that for allc € C:

Privacy breach relates the adversary’s prior and postkeniow!-
edge about some propery : C — {True, False} of the class
label C' in a tuplet, namelyQ(¢t.C'). For example, one possible
Q(c) can bec = HIV V ¢ = Cancer, where the domain is the
disease types in a hospital. Here, we are overloadiftne domain
of class labels) to also denote the class label of a tupl€hus,
QS'IO) 1S de};'r}ed ag)(c) Whent.C = ¢ for somec < . Let that the following amplification criterion holds:
P;° andP;° be respectively the adversary’s prior and poste-

; N ’ 4 ma _ Ly 1—14
rior knowledge on a given property, defined as: — <

mi — L1 1—Ls
PR = " PQ(t.O)|t € d,t.I = I] - Pd] (3)
deD

mi 1 c ma

St 2 PBas< & ®)
ICT = 18] ZS =e]

where3g = P[t.C = c|t € d,t.I = Ip), then for any property)
and any pair ofL, Lo > 0 publishingV” = V; will not cause any
upward or downward privacy breaches w.ift; and L», provided

(6)

Intuitively®, Statement 1 implies that a vieW should not be too
specific toward a particular class label. Publishing a vieayses

Qlo - o many table instances to be ruled out, and therefore the nfahe o
P = Z PlQ(t.C)|t € d,t.1 = I - P[d|V(d) = Vo] (4) PG values for theremainingones, must beelatively closeto the
mean of3; values forall instances. This closeness, is determined
by constraints (5) and (6) which are functions of the givecuse
rity requirements (i.e.L.1,L2). Moreover, the same closeness must
hold for all class labels € C.

Note that although Statement 1 provides a sufficient caiti
for a view publishing to be safe, finding suety , m. that satisfy
the constraints (5) and (6) requires computifi§ values for all
d € S, andc € C. However, the following lemma introduces
yet another condition that is sufficient to satisfy thosest@ints,
but only requires computing the means)f values for different
¢ € C. An efficient algorithm for enforcing this new condition Wil
be proposed in Section 6.

deD
Here, P[Q(¢t.C)|t € d,t.I = Io] is the probability that, in the
table instancel, property@ is true for the class label of a tuple
t that is consistent with Bob’s quasi-identifier about Ali¢el (=
Iv). Note that Bob knows that one such tuple must be associated
with Alice®. For example, if there are two tuplesdrthat satisfy
t.I = Iy, but@ is only true for one of them, Bob knows that
given d, with a probability of50%, the property@ holds for the
class label of Alice. Moreover, sineé € D, there exists at least
one such tuple (i.e., Alice) satisfyingl = I, and therefore, this
conditional probability is always well-defined.

In eq. (3) and (4)P|[d] is the probability that the original table
wasd, while P[d|V (d) = V;] is the conditional probability of the

same event, knowing that the answer of a viéwon d wasVj. LEMMA 2. For a given quasi-identified — Io, a given view

DEFINITION 1 (PRIVACY BREACH FORVIEWS). LetQbeany V(T) = V; is safe to publish against ardy; -to-L. privacy breaches,

property on the sensitive class lal€l For a given tablel’ and a if there existy > 1 such that the following conditions hold:
®In a row-level publishing scenario [14] the owner of each row p+p2(Cl=1) Ly 1—1I4
is known once its content is revealed. However, in our case (a 7/) FioT—1 < I, 1-L (7)

table-levelpublishing scenario) the attacker also has sojesi-
identifier of the victim(s) that helps him restrict all the possible SAll omitted proofs and running examples can be found in [29]:
rows in the table to a few. http://w s.cs.ucl a. edu/ saf emi ner/i ndex. ht m




andforalle, ¢ € C:
2 acs Pa
’
zdeS (‘pg

<p

®)

PROOF We prove by showing that the conditions above imply
Statement 1. To do that, we need to find numbersm- for which
conditions(S) and (6) hold. By means of (8) foralt’ € C:

Z‘ﬁd < Z‘Bd<P Z‘Bd
des des des
Using this observation and the fact that:
Z Z PBi) =
ceC des

it can be proved by contradiction that for alE C:

1
- - fp <
L+ p(IC] - ; =t |C|
1 [ p-1C]
ICl1+p(IC] = 1) ; = |C|P+|C|—1
Therefore, by choosingn, = 2 andms = &

condition (5) is satisfied. Also condition (6) holds, beaascord-
ing to (7):

|c
my _ Gt 14p(Cl-1) L 1-L
o lel 1 1 —1 L1 1—-1L
C T T/ L T
|

Condition (8) is similar to the notion of amplification in @dom-
ization methods for the row-level publishing scenario [1#hus,
we use their terminology, referring f@ as amplification. Notice
that for everyp > 1:

p-1C]

me _ gHorT _ 14p(01-1)
m T AT T (/0T 1)
Also,
i _L¥e(Cl=D

p—1t 14+ (1/p)(IC] = 1)
These imply that for any givep > 1, we can find g > 1 such
thatz—f < g. On the other hand, by definitidh< L; < Lo < 1.
So we have:2 - =z > 1. Therefore for any givetL1, Lz, by

choosingg = % . tf; > 1 we can select the largest possible
p for which =2 < g and then only check whether condition (6)

holds, since ‘condition (7) is automatically satisfied.

Hence, Lemma 2 allows us to recast our privacy goal as that of

checking/enforcing condition (8) for a givenassuming that max-
imum allowed amplification is determined by formula (7), e

condition can always be achieved by replacing the origimals
with synthesized/sanitized ones that both satisfy comuli¢8) and
result in the same classification behavior. Below and in #s¢ of
this paper, we refer to NBC-enabling views simply as viewsetd
use their( P, N) representation.

LEmMMA 3. With respect to a givelly as the value of a quasi-
identifier I, and a given amplification ratip, the viewset P, N)
is safe to publish, if for alk, ¢’ € C,1 < i < nandt € A, the
following conditions hold:

P.

Vp ]]\\;“ < Wp 9)

t,c’

PrROOF We show that (9) implies condition (8) which implies
the safety of publication w.r.t. the given We prove this by induc-
tion on the size of , namely|I| which is the number of columns in
the given quasi-identifier. The base case= 1 follows immedi-
ately from (9) because:

c 1
uesPi _ Mo <5<,
Zdes SBd Nt1 <’
wherelp =< t1,--- ;). By assuming that for the firgt < |I|

attributes off the ratloM is at mostp**/!7) one can show
des

that the ratio will not get ampllfled by more tha®'!’! times, after
adding the(k + 1)-th column. The detailed proof can be found in
our technical report [29]. (J

Lemma 3 is a sufficient criterion that ensures the safety of a
viewset publication, only whenaparameter and a quasi-identifier
are both given. However, in practice the same privacy gueean
must be provided for all individuals and for all possible sjta
identifiers (i.e., all non-empty’s and,’s). To resolve this issue
we make the following observation.

Since the condition (9) is a function ¢f|, and not ofI or Io,
all quasi-identifiers that have the same cardinality (hember of
attributes) can be blocked at the same time, once we ensigre th
condition for one particular pair of andI,. Moreover, note that
1< |I| <nand

{z/ﬁ < nf\l/ﬁ < e < \l/ﬁ
Thus, all privacy breaches for all quasi-identifiers of aagdnality
can be blocked by simply blocking the one with largest caalitiy)
namelyn. Therefore, we have the following corollary.
COROLLARY 4. With respect to a given amplification ratjg
the viewsef P, N) is safe to publish, if foralt, ¢’ € C,1 <i < n
andt € A; the following conditions hold:

P N;
0<=ZL<t/p and 0< 2% < /p (10)
P. Ng
Next, we show how this leads us to an efficient algorithm for
transforming viewsets.

L, and L, are the privacy parameters specified by the user. Al- 6. FROM UNSAFE VIEWS TO SAFE ONES

though this check is a sufficient and not a necessary conditio
avoiding privacy breaches related to a givenit is still a weak-
enough condition to allow us to publish any classifier withay
accuracy loss (after some transformation, Sections 5 and 6 )

5. SAFETY CONDITION FOR NBC VIEWS

While checking for condition (8) on an arbitrary set of views

might not be an easy task, in Lemma 3 we provide a sufficient con

dition for NBC-enabling views. In Section 6, we prove thasth

The previous section provided the sufficient conditionsfaid-
ing any privacy breach with respect to a given Now the next
question is ‘what if condition (10) for NBC-enabling view$ &
particular database does not hold?’. To address this guestie
provide a linear-time algorithm that enables us to tramsftine
original set of views into a safe set of views which satisftes t
safety condition of Corollary 4, and has the ‘same quality’ the
purpose of building an NBC. We next clarify this notion ofrisa
quality’ more formally.



6.1 Equivalent views in building NBCs

In this section, we define the notion of equivalent sets ofvsie
(or counts) in terms of building an NBC. As mentioned in Sec-
tion 3, the class prediction for a tupteis determined by th&( .
values in the following way. If there is a class lakglsuch that
forallc € C\{co}, X7,c, > X-,c, Obviously the classifier's pre-
diction will be ag. However, to break the ties, there is also a pre-
assigned precedence order among class labels. Namaly, if=
X, . then the classifier prediction goes to the one that has atighe
precedence. In this paper, for the sake of presentation dhd w
out loss of generality, we assume that the class labels anbens
from 1 to |C/|, and the larger the class label the higher the prece-
dence. For example, & = {1,2,3} and X, = X2 = X, 3,
the classifier’s prediction will be class lakl In case of a recom-
mendation system where we need an ordered prediction frem th
classifier, the order would bBfirst,2 next andl last.

DEFINITION 2 (NBC-EQUIVALENCE). Let f and f' be two
functions that map each elemenfléfl; x C to a non-negative real
number. We callf and f NBC-equivalentif V7 € T1A4;,Vc, ¢’ €
C,e<
11)
(12)

f(re) S f(r, ) & f(r,0) < f(7,¢)
f(re) > f(r, ) & f(1,¢) > f(7,¢)

Itis easy to show that NBC-equivalence is in fact reflexiyens
metric, and transitive. The real value that an NBC assigreatd
(1,¢) € IIA; x Cis its estimation ofPr[Class(7) = ¢] which is
computed using equations (1) or (2). Informally, Definit®m-
plies that we are interested not in the actual values buEsegwing
the totalorderamong them, namelf(r, c1), f (7, c2), f(7,¢3),- - -
for all possibler.

Notice that in many contexts, the classifier prediction iede
mined only by the label that has the highest associated pildlpa
which means that all those classifiers whose first predidiien,
ArgMax{ X .}) is the same, have the same effect. However, there

are some applications such as recommendation systems thleere
entire ranking matters. Thus, our notion of equivalent sifess
(Definition 2) preserves the entire ranking as well.

6.2 Transformation algorithms for unsafe views

So far, we established the safety of publishing a viewsetwte
sufficient condition holds (see (9) in Lemma 3 and (10) in Goro
lary 4). Now the next problem is what if the original viewsees
not satisfy this condition? In the following, we present fgoathm
that solves this problem by transforming an arbitrary vietato
an NBC-equivalent one that is safe to publish. A high-lewsymo
code of this algorithm consists of four successive stepgu(ei2),
where each step is a linear-time computation. The main gart o
this algorithm takes place itep 2which makes the viewset safe
to publish, by lowering the ratio between the counts ungytkat-
isfy eq. (10). The key idea of this step, is the following atvasion.
Raising all the counts to the same power does not changeabsicl
fication; In other words a set of NBC-equivalent viewsetdased
under exponentiation. For example, one could raise alRrend
N values in eq. (2) to a fixed power, sqg—, without changing
the order betweeX - . and X, .- for all 7,c andc’. Therefore,
by choosing a small-enough power, the ratio between thétirggu
numbers goes down while the original classifier does notghan

However, the initial viewset might contain zero counts vhic
will result in undefined ratios (i.ex0). Thus, before applyin§tep
2, in Step 1we carefully replace all those zeros with small-enough
positive numbers in such a way that none of the existing ialtigs

are affected. Moreover, after raising all the numbers tostmae
power the following condition will no longer hold:

PC:ZNZ,C

teA;

This issue will be resolved i8tep 3 Finally, in Step 4we normal-
ize the counts before publishing them.

Algorithm SafetyTransform(V/, p)
Input:
V is the given view consisting OVfTC'S andP.’s;
p amplification ratio (see Lemma 3)
Description:
Stepl(V): Replace all thoséV; .'s that are0 to non-zero
StepZ(V,pﬁ): Scale down aIWZTC’s to new rational
numbers that satisfy the given amplification ratio
Step3(/): Adjust the numbers such that agdinN; . = P.

t
Step4(/): Normalize the numbers or turn them into integers
Return V'

Figure 2: High-level steps to moving an unsafe view towards a
safe one.

In Figure 2, each step takes a viewgEt N) as input and returns
a new viewset which will be denoted 1§, N); These viewsets are
provably NBC-equivalent. The output from each step is giasn
the input to the next step. Thus, due to the transitivity ofONB
equivalence, at the end of these four steps (when the lastete
is safe to be published w.r.t. a givel, the resulting NBC is still
equivalent to the original one. Next, we present each stejetail
and prove their correctness separately.

6.2.1 Stepl

The pseudo code f@tep 1is given in Figure 3. In each iteration
of the main loop (Line 2), a zero is replaced with a positivenber.
Therefore, at the end, there will be no zeros left (RementizmR
values were positive, Section 3). Also, by a careful impletaton,
Line 2.1 will only take constant time. Therefore, the total running
time for the main loop (Line 2) and the initialization (Ling &
linear, with respect to the problem input size. Thus, aff teenains
to be proved is that the output &tep lis NBC-equivalent to its
input viewset, formally stated below.

STATEMENTS5 (STEP11S NBC-PRESERVING. After
algorithmStep 1 (P, N) and (P, N) are NBC-equivalent.

PROOF. 7 Since non-zero counts have not changed, we only
need to consider those= (¢1,--- ,tn,c) € (ILA;) x C for which

Bi,Ntii,c = 0. For all suchr, X, . = 0. Thus, we need to show
that for anyc’ for which X .- > 0, we will have: X, . < X, . =
X, . Also, for any other’ > ¢ whereX, ., = 0, we must show:
Xr.e <X, . To show this, notice that at any point in timé. and
m. represent the maximum and minimum possible values of non-
zero factors inX; .'s and X, ./'s, respectively. Therefort:SQc is
the maximum value that can be assigneditq such that the NBC
inequality still holds. For the equality case Xfr,¢") = 0 then
because of the descending ordercsfin removing zeros (Line 2)
we are guaranteed thfitr, ¢') > 0, forall ¢ > ¢ when processing
c. And in the case of’ < ¢, since in(P, N) their corresponding

"As we usedTHIS font to denote the output from each step, let
X, be similarly defined by formula (2) whet¥ is replaced with
X, N with N and P with P.



Algorithm Stepl1(P, N)
Input:
(P, N) is the given viewset;
Description:
1: Foreach € C,
For each4;,
M} — Max{Nj . |t € A;}
mi «— Min{N{ > 0,400 |t € A;}
M. «— [[ M

® .
me — [[me

2: For each:Z € C'in descending order,

For each4;,
For eacht € A;,
If N{.=0,
Sie=Min{Ze M| ¢ € C\{c}}

Ni . « s, where0 < s < S} .
2.1: UpdateM?,mt, M. andm. accordingly
EIseNt . — Nt .
Return (P, N)

Figure 3: Step 1 - Removing zeros.

counts were both zero, anchas precedence ovet, any positive
number forN; .. in (P, N) will not change the classifier.[]

6.2.2 Step2

Algorithm Step2((P, N), p)
Input:
(P, N) is the given viewset;
p > 1is the requested amplification ratio (Corollary 4)
Description:
Max{N{ ,.P; | 1<i<n.,teA;,ceC}
Min{N} .,P; | 1<i<n,teA;,ceC}
2: Choose & such that: > ”l‘fj’%
3: Foreach: € C,
For each4;,
Pe — VPe
For eacht € A;,
i,c — k\/ Nti,c
4: Express th@. andN;C values using rational numbers,
with enough precision.
Return (N, P).

1w~

Figure 4: Step 2 - Enforcing the amplification condition.

The pseudo code fdstep 2is given in Figure 4. Note that per-

forming k*" root (Line 3) preserves the NBC-equivalence. More-
over, since this operation scales down the numbers, theifampl

cation requirement will be satisfied if is chosen carefully.k is
chosen (Line 2) such that the largest ratio between eacloptie
original counts will be less than Also, w in Line 1 is always de-
fined, as no zero count is left aft8tep 1 Thus, one can show that:

LEMMA 6. At the end of Line 3 in Step 2P, N) and (P, N)
are NBC-equivalent and forall, ¢ € C,1 < i < n andt € A;,

we have:
P NZ

S N &)

t c’
However, the more |mportant challenge here is how to apprate
the new numbers with rational numbers such that NBC-eqeria

is not violated (We need them to be rational if we want to turn
them into another synthesized database—see Section.@r2the
following, = denotes a rational number approximatiorcoffo see
why an arbitraryfixed precision may cause trouble, consider the
following example.

Preserving ties.Suppose that the number of attributesis- 2
and that for some, ¢/, originally we hadV; ; x N/ ; = 4x4 =16
andN/, x N;, , = 2 x 8 = 16. Assuming that, = P, = 100,
the original NBC would predict the class labelas= 2, because
of the tie and the precedence of class= 2 over classc = 1.
Now, in case of = 2 (i.e., &), if we used a precision ofl0~2
we would havelN; ; x Nj,; =2 x 2 = 4andN{, x N}, , =
1.41 x 2.83 = 3.9903. AlsoP; = P, = 10. Thus, the new
NBC would predict the class label as= 1 which is inconsistent
with the original NBC. Our solution to this issue is to usdaliént
precisions for the counts associated with different ckassgch that
the magnitude of the error goes in favor of the higher-prened
classes. In other words, df> ¢, over-approximatéV; . andN; ,
suchthat < N , — NI , < Nj . — Ni .. By doing the opposite
to P. values, we can ensure that Whenexié,lrc = X, ., then
X” > XT . However, this can cause another issue, described
next.

Preserving inequalities.Forc > ¢, since the over-approximation
of theN' values was larger than that N; » (and the opposite
direction’ forIP) for somer it can happen that we originally had
X, o > X; o but nowXT o < XT c. This results in a different
classification. To address both of these issues we use tbeiiod
result, which can be derived from the theory of Taylor series

STATEMENT 7. Arealk > 0, a naturaln > 1, and finite sets
Yi,-o Y, C INYF = {g]2* € 17\7} are given. For any > 0,
there exists a serieg < \. < . < --- < A} < ) for which
we can find a rationalkr for eachz € U Y“ such that for any

1<i#j<r (x1, -,z )eY”and( c L yn) €Y
i< f[lxs - ﬁlys f[l%s < ﬁlgs (14)
n n n - n -
€< I_Ilms - 1:[1y5 = I_Ilms > 1:[1y5 (15)
Also foranyz; € V;,1 <i<r:
Zi+ AN < Z<zi+ N (16)

Notice that Statement 7 only preserves those original iakittps
whose differences were at leastln order to preserve all inequal-
ities, the following statement provides a lower bound orhsaiee
for our special case.

STATEMENT 8. Let M = Maz{Nj Jc € C;1 <i < n,t €
A;}. Ifthere exist(ty, - -+, tn) € A1X--- Ay Such that_f[thli,c +

H N/ ./, then for anyk > 1:

n 1
|\/H NE . ’\C/_glNgM,l > — 17)
‘ k-M—F

A symmetric approximation faP. values can be derived in the op-
posite direction, but is omitted here for lack of space. Alsing a
similar technique used iStep 1 we can ensure that the amplifica-
tion condition belweeﬁiid andP. values still holds.

,c/

8The same problem can happen even for much higher precisions,
as long as it is a fixed precision.



6.2.3 Step 3

Algorithm Step3(P, N)
Input:
(P, N) is the given viewset;
Description:
1: Foreach € C,
For eachA;,
1.1 5§« >, Ni.
1.2: Ry — L5t
For eachA;,
1.3: RS — Rﬂsf“
2: For eachP,,
21 P. «+— R§ - P.
For eachV; ..,
22N}, < R{-N{,
Return (P, N)

Figure 5. Step 3 - Adjust the numbers such that again

Zt 24,4: = IP>c

The purpose o8tep JFigure 5) is to assert that eaBh is actu-
ally equal to the sum of its correspondihg . values, a condition
that could have been violated Btep 1and2. In the following
statement, we also show the degree to which the amplificediim
can change as a result of this step, and that the NBC-equosle
still preserved.

STATEMENT 9. Given a viewsetP, N), the new view gener-
ated by algorithnStep 3 say(P, N), has the following three prop-
erties:

a. Realistic viewve € C,1 <i<n,P. =3, N ..

b. Classification preservingvc € C,7 € [], Ai, X;c =
XT,(:~

c. Amplification ratio: If3p > 1 s.t. (i) Va,y € {Pe|c
CHO < £ < pand (i) Va,y € {Ni.fe € C,1 <
n,t € A;},0 < £ <p then we have:
(i) Va,y € {Pclc € C},0 < £ < p*"** and (iv)Vz,y €
{(NieeC,1<i<nteA},0<2<p?t?

IAM

6.2.4 Step4

After Step 3 N/ .'s and P.’s are positive rational numbers that
are (i) NBC-equivalent to the original counts and (ii) sadeptib-
lish. Now these rational numbers can be turned into integgam
in Step 4in a straightforward manner. Having these positive in-
tegers (Niyc’s andP.’s), they can easily be used to make a new
synthesized database. Based on the users’ preference \eélwan
publish the views (the tuples in each view will be permuted in
dependently), or solely publish their corresponding iategpunts,
namely(P, N). Another choice is to always normalize these counts
before publishing them, as such counts are enough for bgilain
NBC even without revealing the actual size of the origindhtase.

6.3 Uncertainty and Indistinguishability

Two important aspects of any privacy technique are unceytai
and indistinuishability [38, 37]. Indistinuishability éefined as the
inability of telling the difference among individuals in eogip. Un-
certainty requires that the attacker cannot tell the sgasialue of
an individual among a group of values. Non-probabilisticem
tainty is often based on whether the sensitive value can iogiefy

inferred from the released data [22, 8, 20, 7] while prolisiil
uncertainty concerns whether the cardinality of the setoskible
sensitive values inferred for an individual is large enoagld is
often based on data distribution [39, 26, 14, 4, 28]. Ourrnéagke
provides a high degree of both uncertainty and indistiritabdity.
Uncertainty. The output of our algorithm is practically indistin-
guishable from the original data. The generated viewséssldike
a real database, and in fact it is the original database i& safe
in the first place, i.eSafetyTransforrbecomes an identity transfor-
mation. Thus, the adversary cannot tell whether he is dgalith
the origanl (safe) database or with a transformed one. Mereo
the adversary cannot uniquely find the original viewset e
ing our algorithm for the following reasons. Similar to [$afety-
Transformintroduces several layers of uncertainty throughout the
transformation:

1. In Stepl, Line 2g values can be arbitrary/randomely chosen
from the specifies interval.

2. In Step2, Line 2, ank value that satisfies the inequation can
be arbitrary chosen.

3. In Step4, the final cardinality of the published database c
be arbitrary chosen.

Although theSafetyTransforralgorithm is known to the adversary,
the data publisher does not need to announce the specifiesvalu
chosen for the choices mentioned above. Next, we formadiie st
why SafetyTransformalso provides indistinguishability.

Indistinguishability. More strict notions (such as polynomial
indistinguishability) are often used in cryptography, inthe database
literature more practical metrics are usually appliedhsag sym-
metric indistinguishability [38, 37], defined next.

DEFINITION 3 (SIND). Consider a tableT" defined over a
schemd& = (PA, SA), whereP A and.S A are the public and sen-
sitive attributes. A transformatiof/() is said to provide symmet-
rically indistinguishable (SIND) if for any table instande where
M(d) = M(T), and for any two tupleép:, s1), (p2, s2) € dthere
exists another instana such that:

1. M(d')=M(T),
2. (p1,s1),(p2, s2) ¢ d’, and
3. (p1,52), (p2,51) € d'.

Note that we do not publish' but publish both\M/ () and its result
onT', namelyM (T). Intuitively, SIND requires that one can swap
the sensitive attributes between any two tuples, and thdtireg
table will still be a possible instance, i.e. it will be casteint with
the published information that i8/(7"). In our case,M() con-
sists of the NBC-enabling views followed & fetyTrans form
algorithm.

One can easily show that SIND is an equivalence binary calati
and thus, it will induce a partition on the set of tuples idgimg
SIND equivalence classes. SIND requires all the tuples io bee
same class, while a more practical notion can be similarfinee.

DEFINITION 4 (K-SIND). We say atransformatiof/ () pro-
videsk-SIND, if each SIND equivalence class has a cardinality of
at leastk.

Notice thatk-anonymity is a special case &fSIND property.
Next result shows thabafetyTransfornalso provides such indis-
tinguishability guarantees.



LEMMA 10. TheSafetyTransfornalgorithm provides:-SIND,

where
k= Min.ccP.

PrRoOOF Note that any two tuples that have the same class la-
bel, can swap their sensitive attribute (i.e, their clabsllewithout
changing any of the NBC-enabling views. Thus, since thetinpu
viewsets are the sam8afetyTransfornwill also create the same
output. Therefore, all tuples with the same class label f@iSiND
equivalence class. The smallest cardinality of such ctassthe
smallestP, value. [

7. ARBITRARY PRIOR DISTRIBUTIONS
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Figure 6: Visual demonstration of EST. () is the prior distri-
bution of class labels, whose ratios are 1:2:3, proportiony.
(b) is the original view of the data that deviates from the prior.
Thus, (e) is the published view that must be more similar to(a)
while still NBC-equivalent to (b).

In Statement 1 and Lemmas 3 and 2, we assumed that the prior

knowledge of the adversary is a uniform distribution ovércklss
labels. In this section we extend our results to arbitratsicfty-
positive) distributions.

For simplicity, we assume that the prior knowledge of the ad-
versary is in the form of a pmf (probability mass functioh)that
assigns non-zero probabilities to each class label. Inrgerntbe
adversary’s knowledge can be more specific, e.g. the priityabi
of each class label given some quasi-identifiers, but herdonet
discuss such cases.

According to [28], for any given set of views that contain an
aggregate function, there exists a prior knowledge distidin that
will change after publishing the views. Note that NBCs apal
aggregate functions. Therefore, we make the assumptidrititba
prior knowledge of the adversary (i.e%) is known to us, as the
data publisher. This is a common assumption in the field [24, 9
which according to the above mentioned results (proven &j)[2
cannot be easily avoided in the view publishing context. STt
practice, in order to protect privacy under the worst-casmario,
our publisher must assume that the adversary has accesstiegh
publicly available knowledge about the application domaktor
instance, in the case of medical data, a publisher must a&sthah
the adversary knows the most recent statistics of diffedmgtases
and thus can accurately estimafe Hence,F(HIV) = 0.001,
F(Cancer) = 0.004 and F(Cold) = 0.995 might be a reason-
able choice if the statistics show that on averagés of patients
(say, in US) have HIV and so on. Thus, the posterior knowledge
that the adversary obtains after seeing the data publishadtsA
hospital should be as close as possibl®.id%, for HIV cases at
that hospital. This policy minimizes the additional infation that
our Bob will acquire about the hospital and patients suchlazA
(who was treated there).

We next introduce a strong privacy measure that capturesthi
tion of closeness between the prior and the posterior bdigtdns,
while the related algorithm is given in Section 7.2.

7.1 r-Closeness
We now introduce the notior-closeness as follows:

DEFINITION5  (r-CLOSENESY. Forr > 1, we say that pub-
lishing V' (T") = V4 satisfies-closeness w.r.t. a given prior knowl-
edge distributionF, if for all I = I, and any propertyQ(c) of the
class labele, we have:

1 pQh

Z<
r = P‘lQ

<r (18)

WhereP2Q"IO is the adversary’s posterior knowledge defined in eq.
(4) and,P‘f is his prior knowledge of propert§, now defined as:

PR =" F(o)

Q(e)

(19)

Note that the above definition is consistent with the intuitthat
the smaller- is, the more similar the posterior distribution is to the
prior one. Thatis, when = 1, the two distributions meet. The no-
tion of r-closeness is semantically similar to thatafloseness [24],
which instead requires that the distance (either variatidistance
or KL distance) between the prior and posterior does notezkte
In our r-closeness, the distance is defined by the maximum ratio
of the two distributions on each possible class label. Thsisyn-
tactic definition is similar to the concept of ‘Amplificatiorj14],
which in turn corresponds to oyr in Lemma 2. Analogous to
Lemma 2 for privacy breach, the following result providesuiis
cient condition to guaranteecloseness. Notice that;closeness is

a stronger form of privacy breach. In other words, ongdoseness
is guaranteed, no privacy breach can occur w.r.t. any pdif of.,
Wherei—f > .

STATEMENT 11. PublishingV'(T') = V; satisfiesr-closeness
w.r.t. a prior distributionF, if for all I = Iy and all¢, ¢’ € C we
have:

1 F(c)
r F(c)

c,Ip
P2

</, Io
P2

< (20)

This sufficient condition enables us to use the algoriafety-
Transform(Section 6.2) as a subroutine for enforcingloseness
(if possible) w.r.t. an arbitrary strictly-positive prialistribution
that is available to the adversary. This is discussed next.

7.2 Enforcing r-closeness

We first explain the general idea of the algorithm using the ti
example of Figure 6. For each one of the original class laipels
6(b), we create several new sub-labels, shown(it) 6 The num-
ber of sub-labels assigned to each original label is prapmat to
its prior probability, 7. Here, the prior ratio between HIV, Cancer,
and Migraine was assumed to be 2 : 3 resp., shown in @).
Then, we substitute the label of each tuple {ih)6with one of its
sub-labels, in &). Each sub-label of a label gets the same share of
the tuples that initially had that label, e.g. the tuplegw@ancer in
6(b) are equally split between new lab&ld andC2. Now, pro-
vided that such a split is allowed (explained later), we aams@er
all these sub-labels (i.ef1,C'1,C2,M1,M2,M3 in 6(c)) as hew
labels which now have a uniform prior distribution. Therefathe
required assumption for applyir@pfety Transforrholds. In the re-
sulting view of this algorithm, shown in(@), the probabilities of
different class labels are ‘somewhat’ close. Finally, byrgirgg all
class labels that were sub-labels of the same original Igbgl,
the counts of”'1 andC2 become somehow ‘combined’ as the new
counts forCancer in 6(e)), the new probabilities will be ‘some-
what’ similar to the prior. This is because the number of Eliels
for each label was chosen accordingfo



There are several technical difficulties that need to belvedo LEMMA 12. LetW be the maximum number of sub-labels mapped
before such an algorithm works. In general, splitting andgne  to a single label, i.e¥ = Mam{|\1'*1( )|}. Also assume that nei-

ing class labels are not necessarily NBC-preserving. Again- ther V nor V has a tie. A spllt defined ove is NBC-preserving

sider the tiny example in Figure 6. For a givenin 6(b) we may - i¢ < My wherels, and M are the first and the second largest
have X cancer > Xr v, but X- c1 < X- 1 in 6(c), as the

counts for labels”1 and C'2 are now half the counts fafancer. Ni.in V. Similarly, a merging defined over is NBC-preserving
Likewise for merging: X, a2 < X-.c1 in 6(d) may change to if v < %, whereM; andM are the first and the second largest

Xr Migraine > Xr,Cancer IN 6(€). The algorithm which resolves N} ¢ in V.

this problem, calle@ST(Extended Safety Transform), is provided

in Figure 7. In the following, we explain each step of EST sepa When there are no ties, |<§f*— # 1
rately and address the aforementioned issues. e

M, Mo
Algorithm EST((P, N), F, r) %ZZ?{ — >z gy and M“{XT,C, R ESTA
Input:
p(R N) is the given viewset; Referring toM; asSy, Lemma 12 implies that one can multiply
F is the given pmf over the class labels; all the counts of a particular class label by any constaas long as
r is the requested value forcloseness; itisin the intervalﬁ < s < Sa- Another interesting observation
Description: is that by exponentiating all the counts¥nto the same powet,
1:Resolving the tiessuch thatve, ¢, 70 Xr.c # X, o we can enlarge this interval arbitrarily from either sidecll that
2:Split((P, N),F): Scale upN; . and P. values; then split each exponentiation is always NBC preserving). That$ss — oo
class labet: according taF (c) whenf — oo, or equivalentlyc — 0% when — 0T. This s
3:SafetyTransform((P, N),r): Run the algorithm on new (sub)- the main idea behind tk@plltstep, described next.
labels as if their prior distribution was uniform Split. Let us assume théf(c) values are either rational numbers
4:Merging((P, N)): See if the new class labels can be merged or are given in a precise-enough rational representatika the
back to the original labels, otherwigeturn FAIL. method used in Section 6.2.2). Thus, we can find their greates
Return (P, N) as the output from the last step common divisor, sayf. That is, for allc € C, F(c) = F - F
] ] for some positive integef.. Now for eachc € C, we create
Figure 7: Steps in EST new sub-labels, - - - , ¢, that are all mapped to label Let /' =
Resolving the ties. As we see later in Lemma 12, we need to Ai%x{Fc}. In order for the this split to be NBC-preserving, we first
first resolve all possible ties in the original NBC, i.e. fdlr-aand raise the original counts to a big enough powdsefore applying
¢ # ¢, Xe,r # X - This can be easily done using the following  the split. More precisely, for an§ >> lo;“(gif) the conditions

simple technique. Find a small enough- 0 such that adding itto  of | emma 12 will be satisfied, since after raising the couatte
all the counts of any of the class labels does not change atieof power off, we will haveS}, = Sx® > F whereS}, denotes the

original inequalities. Finding such a number can be donéar new value.

time, by a technique similar to that used in Section 6.2.2wWNo  gafetyTransform subroutine and Merging. As previously men-

consider an arbitrary seri€s< ¢ < --- < €jg|-1 < €0 = € tioned, after performing a split, the new class (sub)lalueisie

and adde; to all the counts of the-th class label. Since the from a uniform distribution. This allows us to apply algbrit

th class label has priority over theth label,i < j, all ties will SafetyTransform after which a merging operation is pertmras

be broken towards the higher precedence label while nonkeof t = fqiows, For each: € €, all sub-labels::, - - - ,cr, are mapped

original inequalities are affected. Thus, NBC-equivakeie still back toc (new NBC counts are determined according to Defini-

preserved. . ] ] . tion 6). Assuming that such a mapping is possible (laterteSta
Before presenting the rest of this algorithm, we formallfit®  ment 14 determines when it is possible), we have the follgwin

the following operations on NBCs. analysis. After SafetyTransform (according to the resitSec-

DEFINITION 6 (SPLIT, MERGING). LetV (with P.’'sandN;..'s) tioI\lG.Z),/for allltqu(?ls_i—identifiergo, alle,c" € Cand alle; €
andV (with P.’s andN; .’s) be two NBCs defined over the same set U7 (e),c; € UTH():

of attributes but with two different classes, .41, -, A,,C) L peido L Fo.piTo .
and (A1, --- , A,,C) respectively. Also consider a mappisg : TS T STo= Es S ﬁ ST,
C — C forwhichW~'(c) # ¢ forall ¢ € C. We callV a split of P " 2
Vifforall c € Candallt, = Tifs < T <ris
i 1 1 :
Nic = WM,C and Pc = mpc Therefore, the required conditions for Statement 11 haldyipg
o . . thatr-closeness is satisfied once the merging step is possibée. Th
wherec = V(c). Likewise, we call’ a merging ofV if for all following lemma summarizes the properties of this algonith
c € Candallt,q:
Ni . =|¥"Y(c)|- Min {Nic} and P. = |¥ *(c)|- Min {Pc} LEMMA 13. !EST runs ir_1 Iir_1ea( time, anc_i when returning a
¥(C)=c ¥(C)=c view V' for a given prior distributionF, a privacy levelr (for

A split (or merging) is called NBC-preserving when for aland r-closeness) and the original vieW, V' is safe to publish w.r.tr,

all ¢, ¢’ € C, the following holds:X,. » < X, . ifand onlyifthere ~ Yetis NBC-equivalent tt/.
existc, ¢’ € C such that¥(c) = ¢, U(c') = ¢ andXc¢ » < X¢r» . .

Lastly, we provide a closed form to determine the beslbseness
The following result provides a sufficient condition for disfor (i.e., smallest’) that our algorithm can enforce without losing any

merging) to be NBC-preserving. accuracy.
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STATEMENT 14. For a givenV and a prior distribution of class
labelsF , EST generates an NBC-equivaléfitthat guarantees-
closeness w.r.tF, if there exists a large enoughfor which the
following condition holds:

log T
) (2n2+3n)(0-log & +10g F)

. S0
F< (2
F

wheren, m, M are the number of attributes ifr, the minimum
count inV (after removing zeros), and the maximum coun¥in
respectively.

(21)

Taking the limit a®) — oo, the condition simplifies to

logr
2 . T
(2n4+3n)-log ™

F< Sy

It is worth mentioning that for uniform distribution’s = 1, and
this was why SafetyTransform could achieve any level ofgoyw
Moreover, note that Statement 14 is a sufficient but not assecyg
condition. However, in practice, tighter analysisSf; is possible
which can lead to smaller values for Also, as shown in Sec-
tion 8.1, the SafetyTransform algorithm provides much rejes
amplification ratios than the requestediue to its conservative ap-
proach. This means that in practice EST can call SafetyToems
with a much lowen- than what is guaranteed by Statement 14, and
still achieve the same or betteicloseness than what was initially
requested. Thus, the applicability of EST depends on bettuéa
viation of the actual data frot and the requested privacy level
(for r-closeness). If the distribution of the underlying dataidms
too much from(F'), apparently no one can guarantee a very small
r without losing accuracy.

Moreover, another possibility is to trade-off accuracyslagainst
privacy (i.e., smaller’s) by performing the merging step (regard-
less of being NBC-preserving) with that ranges in < »’ < »”,
wherer is the required privacy level and’ is the smallest value
for r-closeness that satisfies Statement 14. At the extremess-cho
ing ' = r completely ignores the accuracy loss, while= "
preserves the accuracy, ignoring the requested privacydd/Net
discuss such possible trade-offs here, as in this paperaus fanly
on the accuracy preserving case (whenever it is consistémthe
requested privacy level, namek/ < r).

8. EXPERIMENTS

The goal of our experiments is to evaluate (i) the effectagsn
of our algorithms in practice (Section 8.1) and (ii) the aecy
loss imposed by other general-purpose techniques on NB&s (S
tion 8.2).

The experiments were conducted on a P4 machine running Linux

with 1GB RAM. Our algorithms (SafetyTransform & EST) were
implemented in C++. We used the Adult dataset [6] which is a
classic benchmark for privacy-preserving techniquess tataset
contains32, 561 tuples from US Census data. The attributes that

> 50K or < 50K. The running time of EST for processing this
dataset wag.920 seconds.

8.1 Amplification ratio and »-closeness

In the Adult dataset, the ratio of tuples with salafy0 to those
with > 50K was?24720 to 7841, i.e. F' ~ 3. Moreover, in the
original dataset, the minimum (satisfying Corollary 4) wag38.

By running SafetyTransform for < p < 283, we measured the
actualr-closeness that is achieved by EST for this dataset, plotted
in Figure 8. The actual-closeness was measured by using combi-
natorial counting of all possible instances (that afterSpét step,
were assumed equally likely). As shown in Figure 8, the dotua
closeness is much better than the theoretical worst caseided

by Statement 14). This is due to the conservative upper bdend
rived from Lemma 3. This implies that, in practice, for a resjed
level of r-closeness, we can call SafetyTransform with that is
much higher tham, and still preserve both NBC-equivalence and
privacy level. This is because SafetyTransform achievesiehm
lower amplification guarantee tharf. We have repeated this ex-
periment with a different number of attributes, and also<wn-
thetic datasets (both uniform and non-uniform distribogipand
observed similar results.

8.2 NBC Accuracy

In this section, we have only focused on the effect of determi
istic privacy methods on NBCs, but apparently the randotitina
techniques will also impose accuracy loss depending on ¥aei
ance. Thus, we usdganonymity as an example of a well-studied,
general-purpose privacy technique, since it preservemtist ac-
curacy compared to Entrogydiversity, Recursivé-diversity, and
t-closeness (see the experiments in [26, 24]). But everkfor
anonymity, the accuracy loss was considerable for recaihawn
in Figure 9(b).

For anonymizing the Adult dataset we used Incognito impleme
tation [23] which is a full-domairk-anonymity algorithm. We
trained an NBC on the anonymized data (for different values o
k) and compared the results with an NBC trained on the output of
SafetyTransform, which is equivalent to training it on thiggimal
data. For ETS, we used= 1.3 for a prior belief of75% on < 50K
label. But note that the accuracy for both ETS and Safetysfoam
are always equal to that obtained on the original data, déggs of
the chosen value far, and therefore we represent them all with the
same (red) bar in Figure 9(a),(b). Each time, we Ud&d of the
tuples for training and the rest for testing. The overallumacy of
NBC does not drop much usirkganonymized data (abob¥t, Fig-
ure 9(a)). However, the classification quality drops dréacadly for
less common classes. Since in the Adult dataset, tuplessaldigny
of > 50K are much fewer (one third) than those with50K’, the
recall for this smaller class is significantly affected, aswen in
Figure 9(b). In many applications, classifying less comraeants
is much more critical, e.g. in an online recommendationesysor
search engine advertisement, the probability of a click particu-
lar ad is very small. Also, since our algorithms retain theltorder
(NBC-equivalence), all metrics remain the same, such agacg,
recall, precision and F-measure.

Vi AN AN SrvALHRENVPRES o

ing. We presented sufficient conditions that are easy toaeforce,
when the views in question are used to train Naive Bayesias-C
sifiers (NBC). Indeed, we provided algorithms that (i) rutimear-
time, (ii) guarantee the privacy of the individuals who poad the

we used were Age, Years of education, Work hours per week, andtraining data, (iii) incur zero accuracy loss in terms oflthinig an
Salary. The class label is based on salary which can be eitherNBC, (iv) work for any given database as long as the priorithist



81 40 Original dataset

< 80 Original dataset ,?35 or results of

< 79 or results of 230 Safety

5‘ SafetyTransform =5

©

g k=4 ;3 20

< Q 151 K15 Kketz o0 KB

g =10 =

z 5 ~K=20<|—’—1—|— -

0 | |
Training data Training data
@) (b)
Figure 9: Drop in accuracy (a) and recall (b) of NBC when trained with k-anonymized data.
tion is uniform, or it satisfies our sufficient condition. Walidated [14] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting paivy breaches
the applicability / effectiveness of our algorithms by sevexper- in privacy preserving data mining. PODS 2003.
iments on real-world datasets. [15] Z.Huang, W. Du, and B. Chen. Deriving private infornoatifrom
randomized data. IBIGMOD, 2005.
Our proposed method has a clear advantage over generasgurp - . ) . . )
. 2 [16] M. Kantarcio@lu and C. Clifton. Assuring privacy whbig brother is

approaches, such &sanonymity and randomization, that compro- watching. INDMKD, 2003.
mise the accuracy of information to achieve privacy. In acle- [17] M. Kantarcioglu, J. Jin, and C. Clifton. When do datanmg results
parture from these and other previous approaches that izmtime violate privacy? IrKDD, 2004.
information loss in terms of the average error, we showetlftiia [18] H.Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On tieapy
NBCs, a perfectly accurate mining model may still be actitva Ipé%sﬁrvz”(‘)%gmper“es of random data perturbation tectesiqin

even if the average utility of a perturbation method is pobhis

- R . .. 19] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. Randiata
promising finding, also calls for more efforts in designingdeal- [19] gup Q 9

perturbation techniques and privacy-preserving datangit{now!.

specific privacy-preserving approaches optimized for i§ipgain- Inf. Syst, 2005.

ing methods of wide usage. In the end, this could deliver more [20] K. Kenthapadi, N. Mishra, and K. Nissim. Simulatablediing. In
concrete benefits than seeking general-purpose technighieb PODS 2005. _ _ o
have proven to be computationally complex and practicaitgal- [21] E. Keogh and M. Pazzani. Learning augmented bayesassitiers:

A comparison of distribution-based and classificationebas

istic [32]' . . . approaches. Iith. Int'l Workshop on Al and Statistic$999.
While NBCs are widely used in many successful le.iss'f'cat'on [22] J. Kleinberg, C. Papadimitriou, and P. Raghavan. Angliboolean

and recommendation systems, we are currently extendintp ol attributes. IlPPODS 2000.
niques to general Bayesian networks. In fact, several probl [23] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognifficient
such as sensitivity analysis [10] on Bayesian networks eaefor- full-domain k-anonymity. I'SIGMOD, 2005. _
mulated using our notion of amplification. Some meta-atyars [24] N.Li, T. Li, and S. Venkatasubramanian. t-closenes#ay beyond
such as bagging can be accommodated in a straightforward man k-anonymity and I-dversity. IRCDE, 2007,

9ging . S . 9 [25] K. Liu, J. Ryan, and H. Kargupta. Random projectiondzhs
ner. Moreover, we are investigating the extension of oureggh multiplicative data perturbation for privacy preservirigtdbuted
to augmented NBCs [21], decision trees built from NBCs, and i data miningITKDE, 18(1), 2006.
cremental publication of NBCs over a data stream. [26] A. Machanavajjhala, D. Kifer, J. Gehrke, and

M. Venkitasubramaniam. L-diversity: Privacy beyond k-aymity.
ACM Trans. Knowl. Discov. Datd (1), 2007.
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