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1. Introduction

Several novel techniques have been developed to support the efficient
implementation of Logic based languages oriented towards data in-
tensive applications, such as LDL (Tsur and Zaniolo, 1986; Beeri et
al., 1987) and NAIL! (Morris et al., 1987) and several others (Zaniolo,
1987). A crucial problem in the implementation of these languages is
the efficient support for recursion. Among the most significant tech-
niques developed for the solution of this problem, we find the Differ-
ential (Seminaive) Fixpoint Method {Balbin and Ramamohanarao,
1987; Sacca and Zaniolo, 1988}, the Magic Set Method (Bancilhon
et al., 1986), the Minimagic Method (Sacca and Zaniolo, 1987), the
Counting Method (Saccd and Zaniolo, To appear) and the Magic
Counting Method (Sacca and Zaniolo, 1986; 1987).

1Part of this work was done while the author was visiting at MCC. This author
was also supported by a grant of C.N.R. (project “Sistemi evoluti per Basi di
Dati”).
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These techniques were used in the implementation of the LDL
system that was designed to support and manage efficiently large
data and rule sets (Chimenti et al., 1987), and construct all-answer
solutions to queries more efficiently than current Prolog implemen-
tations. Thus, LDL is a powerful database languages, which re-
moves the “impedance mismatch” between the query language and
the host programming language, currently besetting the development
of database applications.

Take for instance the recursive predlcate SG of Fig. 1,

ro:SG(z,y) : —P(:L',zl),S’G(xl,yl),P(y, yl)
r1:8G(z,z) : —H(z).

Fig. 1. The same-generation example.

where P(z,x1) is a previous parent predicate (either defined as a
parent database relation or as the union of two database relations
mother and father) and H(z) is a database predicate denoting all
humans. Non recursive rules over a fact base can be supported ef-
ficiently in a bottom up fashion by an extended relational algebra
(Zaniolo, 1985) implementing the immediate consequence operator
Tp (Lloyd, 1984). In conformity with the bottom up, matching-
based execution strategy and the operator-based approach we want
to implement recursive queries, by a least Fixpoint operator (Van
Emden and Konolski, 1976).

For instance, for a program P consisting of the SG rules and the
query, .

G1: 15G(z,y) (1)

one will start by setting the initial value of a variable relation SG to
empty and computing a new value, say

SG’ = SG UTp(SG) (2)

where Tp denotes, e.g., the relational algebra equivalent to the SG
rules (Ullman, 1982):

TP(SG) = 7r1,1H U 7r1,5((P Xla=1 SG) D<ig—2 P)) (3)

Thus, after replacing SG by SG’, the computation iterates and
terminates when SG’ = 8G. Since our rules contain only positive
goals, the function Tp is monotonic and continuous in the lattice of
relations defined by set containment, and this procedure computes
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a unique least solution of the Fixpoint equation SG = Tp(SG)
(Tarski, 1955).

This naive Fixpoint approach suffers from two problems. One
is the fact that some computation is repeated unnecessarily— for
instance the naive Fixpoint algorithm will recompute the first level
ancestors of a pair (a,b) at the first step of the Fixpoint iteration
and then again at each step that follows. Differential techniques
(Paige and Koenig, 1982) used to solve this problem, yielding the
differential (alias seminaive) Fixpoint method discussed in the next
section. The second problem occurs when a recursive predicate is
called with some arguments bound. For instance, for the query,

G2: 1SG(adam,y) (4)

the Fixpoint approach will still compute all possible pairs of humans
that are of the same generation, only to later discard those that do
not have “adam” as their first argument. Clearly, we need a strategy
for taking advantage of the constants present in the query. Unfortu-
nately, the simple approach of specializing the rules by substituting
the constants in place of the variables does not work for recursive
predicates. For instance, if we replace the occurrence of the variable
x by “adam” we obtain rules that do not produce humans of the same
generation as adam. (Of course, there are also cases in which the
substitution trick works (Aho and Ullman, 1979); but recognizing
those cases is, in general, undecidable (Beeri et al., 1987).) Thus, we
need novel techniques for taking advantage of constants in recursive
queries. Such a need is underscored by the safety issues discussed
next,

To illustrate a first aspect of the safety issue let us assume that
the only goal (i.e.,, H(z)) is removed from rule r; in Fig. 1. Then,
assuming an infinite underlying universe, the query G1 becomes un-
safe, since any pair (a, a), with a an arbitrary constant would satisfy
it. The query G2 is safe, per se, since only a finite number of people
can be of the same generation as adam; but its evaluation using the
Fixpoint approach is still unsafe and, therefore, unfeasible. To solve
this problem we need an execution plan capable of taking advantage
of instantiated arguments in the recursive goal.

The safety issue is even more of a concern for “computational”
predicates such as that of Fig. 2, which are normally intended for
use only with certain input bindings. The potential sources of unsafe
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behavior in the rules of Fig. 2 are two. One is that the non-recursive
rules r, and r3 define MG to be satisfied by infinitely many pairs of
= values—this is the same problem as in the previous example. How-
ever, even if the z-values range over a finite set, the recursive rules r
and r; generate longer and longer lists at each step in the Fixpoint
computation, which, therefore, never ends (unsafe computation).

ro: MG(z ey, z 0y, z sw): —MG(y, * Y, W), T > 1
T MG(zey,zi ey, z0w): ~MG(z ey, y1,w),z <z,
r2: MG (nil, z, z)
r3: MG(z,nil, 1)

Fig. 2. Merging two sorted lists.

In conclusion, an effective usage of the instantiated arguments in
a recursive goal is vital for performance reasons and to avoid the
non-termination pitfall. Therefore, it should be of no surprise that
a number of interesting approaches were proposed to deal with this
problem, including (Bancilhon et al., 1986; Beeri and Ramakrish-
nan, 1987; Gardarin and De Maindreville, 1986; Chandra and Harel,
1982; Henschen and Nagqvi, 1984; Kifer and Lozinskii, 1986; McKay
and Shapiro, 1981; Sacca and Zaniolo, 1986; Ullman, 1985; Vieille,
1986). The reader is referred to Bancilhon and Ramakrishnan (1986)
for an overview and a comparison of these approaches. As described
in Bancilhon and Ramakrishnan (1986), some of these approaches
lack generality—i.e., the realm in which they work is either limited
or not clearly understood—and they lack robustness—i.e., they are
formulated as a sequential algorithm for main memory based execu-
tion —hence their compatibility with different execution models and
architectures is unclear.

In this paper, we propose a comprehensive rule rewriting approach
and supporting algorithms on which the actual implementation of
LDL is based (Chimenti et al., 1988). The outline of the paper is as
follows:

In Section 2 we present the differential (alias seminaive) Fixpoint
algorithm.

In Sections 3 and 4 we turn to the implementation of recursive
predicates when some arguments in the recursive goal are instanti-
ated. We describe two methods, the magic set method and the count-
ing method. These rewrite the original rules, that, as such, cannot be
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implemented safely and efficiently as a single Fixpoint, into equiva-
lent ones that can be implemented by a pair of (seminaive) Fixpoint
computations safely and efficiently.

In Section 5, we consider the specialized single Fizpoint method
that handles various cases of practical import where one of the two
Fixpoint computations can be eliminated.

In Section 6, we compare the pros and cons of various methods
and study their computational complexity.

In Section 7 we introduce the magic counting method that com-
bines the strong features of the previous methods,

2. Seminaive Fixpoint Algorithm

In a logic program LP, a predicate P is said to imply a predicate Q,
written P — @, if there is a rule in LP having predicate @ as its head
and predicate P in its body, or there exists a P’ where P — P’ and
P —=Q (transitivity). Then, a predicate P will be called recursive
when P — P. Two predicates P, and Q are called mutually recursive
if P— @ and Q — P. Then, the sets of all predicates in LP can
be divided into recursive predicates and non-recursive ones (such
as database predicates). This implication relationship can also be
used to partition the recursive predicates into disjoint subclasses of
mutually recursive predicates, which we will call recursive cligues
(having the graph representation of —, In mind). All predicates in
the same recursive clique will have to be computed together, they
cannot be computed separately. Say that R denotes the vector of
predicates in our recursive clique. Then, a rule defining a predicate
in R will be called recursive if it contains a predicate in R among its
goals, and it will be called an erit rule otherwise {e.g., in Fig. 2, g
and r) are recursive rules, while ro and T3 are exit rules). A recursive
rule that only contains one occurrence of a recursive predicate in R
in its body is called linear. The recursive rules in Figs. 1 and 2 are
linear.

Say now that E defines the value of the relations in R according
to the exit rules, and Tp(R) is the mapping defined by the recursive
rules (e.g., the relational algebra equivalent of the recursive rules).
Then, the Fixpoint algorithm can be formulated as follows:
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Naive Fixpoint Algorithm

begin

J=:0;

R:=¢;

R :=E;

while R’ # R do
begin

- R:=R/;

R’ :=Tp(R)UR;
=41
end

end.

Fig. 3. A naive formulation of the Fixpoint algorithm.

The value R returned by this new algorithm is the least Fixpoint
solution of the recursive equation R := Tp(R) U E, which, in turn,
defines the minimum model for the given recursive rules and exit
rules defining R. In the algorithm of Fig. 3, we also have include a
step counter j, which, although not needed at this point, will become
useful later.

The problem with the naive Fixpoint algorithm is that tuples are
produced over and over again. For instance, in the same generation
example of Fig. 1, the parents of a given human generated in the
first iteration step are generated again in the second step, where
grandparents are first computed. Differential techniques have been
proposed by several authors to solve the problem, including Bancil-
hon (1985) and Balbin and Ramanohanarao (1987). Our approach,
similar to that proposed in Balbin and Ramanohanarao (1987), has
the advantage of being general and not requiring differentiation of
relational algebra expressions.

Assume that SR denotes the “new” tuples obtained at each step of
the algorithm of Fig. 3. Then the previous algorithm can be modified
into the one of Fig. 4. The final answer of the seminaive Fixpoint
algorithm, i.e., R after a step where that §R = ¢, is obviously identi-
cal to the answer R produced by the naive Fixpoint algorithm. This
second algorithm is, however, more efficient than the previous one
since we will next recast the computation §R := Tp(R) — R into a
form that avoids the recomputation of old results.
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Seminaive Fixpoint Algorithm

begin

J=0;

0R := ¢;

R:=E;

while 6R; # ¢do
begin
SR :=Tp(R) ~ R,
R:=R+46R;
ji=j+1
end

end.

Fig. 4. The seminaive formulation for the Fixpoint algorithm.

While previous authors have proposed rather cumbersome trans-
formations on the relational algebra expression for F(R), we will
propose here a more direct and expressive rule rewriting approach.

For the Same Generation example the above seminaive Fixpoint
algorithm could be expressed as follows:
begin
J=0;

S8G(0,z,z) : —H(z);

while SG(j,-,.) do ‘

SG(J + l,m,y) : —P(Z‘,fl‘:l),SG(j,.I‘l,y1),P(y,y1), not (SG(-:E: y)):
J=j+1
end

end. -

Fig. 5. Seminaive Fixpoint for the same generation example
with an Unimproved Iterative Step.

Some remarks about the notation are needed here. First of all,
observe that J +1 is just a short-hand notation of convenience, inas-
much as in a proper Prolog program J + 1 would be replaced by J1
and the goal “J1 is J +1” would be added to the rule. Also observe
that we are now treating our rules as those of production systems,
inasmuch as we use them to updated our current computation state.
Indeed, we have a three column relation SG to which we initially
assign a value derived according to the exit rule, and, at each step
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of the Fixpoint iteration, we augment the current SG according to
the recursive rule. Note that SG(_,z;,y;) will return the x,,y, pro-
jection of all the tuples produced so far in the Fixpoint iteration—
Le., the R relation is updated implicitly, thus eliminating the need
for the explicit step R := R + §R in the algorithm of Fig. 4. Thus,
not(SG(-,z,y)) amounts to a set difference—i.e., to the —R opera-
tion above. Finally, 6R # ¢ holds whenever SG(j, _, -) is true. Thus,
Fig. 5 is in fact a faithful restatement of the seminaive Fixpoint al-
gorithm in the production rule notation.

Furthermore, one need not write the algorithm of Fig. 5. explicitly,
since the application of the Naive Fixpoint of Fig. 3 to the pair of
rules that follows tantamounts to the algorithm of Fig. 5.

SG(0,z,z) : —H(x).
SG(J"‘ 1,56,1/) : _P(z)xl)aSG(JJ:CI’yl)?P(yr yl): (5)
not (SG(_,z,y)).

By now, our reader has probably begun to grasp how the rule rewrit-
ing approach works. We have a program P that we would like to
implement with a seminaive algorithm when only the basic naive
algorithm is at hand. Then, we transform P into an equivalent P’
such that the naive algorithm on P’ behaves as the seminaive on P.

The program above is only a first step, inasmuch as it suffers from
two of problems. The first is that, because of the presence of negation
it does not have a unique minimal model; furthermore, the result of
the Fixpoint algorithm may not yield least solution of the Fixpoint
equation B = Tp(R)—which in fact may not have a least solution
(Kolaitis and Papadimitriou, 1988). Without a clear Fixpoint-based
or model-theoretic semantics a claim of equivalence preserving meth-
ods would have no basis. To solve this problem we observe that we
can rewrite these rules as

G(0,z,z) : —H(x).
SG(J +1,z,y) : —P(z,21), SG(J, z1,91), P(y,11), (6)
not (SG(I,z,y),I < J).

The program so transformed is locally stratified (Przymusinski,
1987). A program P is said to be locally stratified when its Her-
brand Base H can be partitioned into strata Hy, Hy,... such that
for every instantiation r of each rule in P, the negated goals of r
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belong to strata strictly lower than that of the head of r, while the
positive goals of r belong to strata not higher than that of the head
of r. Programs that are locally stratified have a well-defined model
theoretic semantics, based on the concept of perfect model (Przy-
musinski, 1987). Furthermore, the locally stratified programs pro-
duced by our seminaive methods, also have a least-Fixpoint based
semantics (Sacca and Zaniolo, 1988). This provides a formal basis to
the claim that our transformed program is equivalent to the original
one. .

Let us now turn to the second problem, which is that of per-
formance. To derive the seminaive improvement we can observe,
that, at step j, every value of SG(J,z1,¥1) with J < j had already
been used at previous steps of the Fixpoint computation and can be
dropped. Thus, the previous rules can now be simplified into those
of Fig. 6.

SG(0,z,z) : — H(z).
SG(J + 1’ xay) : —P(L',:’L'l), SG(J: zl’yl)sp(yvyl)a
not (SG(I,x,y),1 < j).

Fig. 6. Seminaive Fixpoint for the same generation example
with an Improved Iterative Step.

where the j value to be used (in the relational algebra based imple-
mentation of these rules) is that of the running index of the Naive
Fixpoint of Fig. 3. The improvement of the iterative step in the
seminaive computation is thus straightforward for linear rules.

Non-linear rules require a more complex rewriting, which is dis-
cussed next. In general, each non-linear rule in a recursive clique has
the form

r. P:—DQ,PL,Dl,Pg,...,Pn,Dn, (7)
where Pi, ..., P, denote the occurrences of the recursive predicates
from the clique, (0 < ¢ < n), and Dy, ..., Dy denote non-recursive

predicates or (possibly empty) conjunctions thereof. Let P[5 + 1],
P[j] and P[I;], respectively, denote the predicate P expanded by the
addition of & first argument j + 1, j and “I;,” then our rule r is
expanded into a disjunction of n rules to be used in the seminaive
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algorithm template as follows:

ry: P[j +1]: Do, Pilj],D1,Palla], .., PalIa], D

Iy <j,...,In < 0ot (P[], I < j).
ro: P{j + 1] : —Dyg, P[], D1,P[j], ..., Pulj], Dn

I £5,..., I £ jynot (P[I],I < j).

rg: Plj +1]: =Do, PA[R], Dy, PolL3], .., Palj], D

Iy <4y ooy Inw1 < Jymot (P, T < j).
(8)

For instance, for the non-linear formulation of ancestors, of Fig. 7,

Anc(z,y) : —P(z,y).
Anc(z, z) : —Anc(z,y), Anc(y, 2).

Fig. 7. Non-linear formulation for ancestors.
The rules resulting from the seminaive method are given in Fig. 8.

Anc(0,z,y) : —P(z,y);

Anc(j+1,z,2): —Anc(j, z,y), Anc(ly,y,2), I < j,
not(Anc(I,z,z),I < j).

Anc(j +1,z,2) 1 —Anc(l1,z,v), Anc(j, ¥, z), I} < J,
not(Ane(l,z,z),I < j).

Fig. 8. Seminaive improvement for the example of Fig. 7.

3. The Magic Set Method and the Minimagic Method

As previously discussed, it is often the case that constants cannot be
migrated into recursive rules. For these cases however, a small set of
values, called a magic set, can be derived from these constants and
used to restrict the Fixpoint computation and make it either safe
or more efficient. This observation is at the basis of the magic set
method introduced in Bancihon er al. (1986). For example, in the
query of Fig. 9,
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G5:7SG(adam, y}
re:SG(z,y) : —P(z,z1), SG(x1,v1), P(y, ¥1)
r1:8G(z,z) : —H(zx).

Fig. 9. Find persons of the same generation as adam.

we can restrict our search to the values of z in r; and to the values of
z and z; in 7 denoting persons that are ancestors of adam. Thus, the
set of ancestors of adam is the magic set for the query at hand. From
an operational viewpoint, magic set values are those instantiated by
Prolog during the goal expansion phase (first phase) of the SLD
resolution. During this phase, rg is invoked first and the z value is
bound to “adam” while z; is bound to a parent of adam. As rule rg
is called again, with £ now bound to a parent of adam, z; becomes
instantiated to a grandparent of adam, and so on. Also observe
that y; and y are not instantiated during this phase; these variables
become instantiated during the second (tree reduction) phase, which
begins after new ancestors of adam run out and rule r; is used.
Therefore, the application of the magic set method involves three
steps.

Step 1: The binding passing analysis determines which argu-
ments in the recursive predicates will be instantiated
during the first phase of the SLD resolution,

Step 2:  The rule rewriting step adds rules for computing the
magic sets and modifies the original rules to take ad-
vantage of these magic sets, and

Step 3: The Fizpoint-based ezecution of the rules produced in
Step 2 constructs the answer.

Let us illustrate these steps on the example of Fig. 9. The binding
passing analysis will determine that

(a) the first argument in the recursive predicate is bound by the
query, and

(b) given that the first argument (i.e., ) is instantiated in the
head of the recursive rule, then, the first argument in the re-
cursive predicate of the body (i.e., z1) can also be instantiated
via the goal P(z,z1).
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Thus, we have a cyclic situation illustrated by the graph of Fig. 10
(also known as a binding graph (Saccd and Zaniolo, 1987)), where
SG with a bound first argument (denoted by SG?) in turn binds the
first argument of SG again.

SGt
Fig. 10. Binding passing graph for the example of Fig. 9.

Therefore, for the example in Fig. 9, the first argument of SG is
always instantiated during the first phase of the SLD resolution,
and thus the magic set will collect the various values taken by this
argument during this phase.

The binding passing analysis (Step 1) can be done at query com-
pilation time since it only depends on the intentional information
(query and rules). Step 2 can also be performed at compilation time
since it operates only on the intentional database by adding rules
defining a magic predicate and modifying the original recursive rules
with the addition of the magic predicate as a goal to act as a filter.
However, the magic set computation depends on the extensional in-
formation and must be done at execution time.

For the Same Generation example, for instance, the magic rules
are given in Fig. 11.

%magic rules—ancestors of adam
m.SG(adam)
m.8G(xr1) : —P(z,z1), m.SG(x).

Y%modified rules
SG'(z,y) : —m.SG(x), H(z).
SG,(""": y) : —m.SG(.TJ),P(.'L‘, .’L‘]_), SG’(.’El, yl)’P(ya yl)'

%modified query
?SG'(adam, y)

Fig. 11. Magic rules and modified rules for the query of Fig. 9.

Note that m.SG(z) contains the set of all ancestors of adam, as ex-
pected. Therefore, the addition of the goal m.SG(z) to the original
rules yields a much more constrained (i.e., more efficient) computa-
tion for §G’. The starting point of this computation (as per the exit
rule) no longer consists of the set of all humans, but rather the set of
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ancestors of adam—thus, the goal H(z) could be removed without
making the query unsafe. Moreover, owing to the m.SG goal in the
modified recursive rule, persons who are not ancestors of adam are
discarded at each step of the Fixpoint computation of SG'.

Therefore, the result of the magic set method is a transformed pro-
gram featuring (i) a new recursive clique containing the magic pred-
icates and (ii) the old recursive clique containing the old recursive
predicates with modified rules. Every recursive clique is translated
into a Fixpoint computation; therefore, the original program, that
is unsuitable to implementation via a single Fixpoint computation,
has been transformed into an equivalent one that is amenable to
implementation by a pair of Fixpoint computations. These two Fix-
point computations are then further optimized using the seminaive
improvement described in the last section.

The reader can refer to Sacca and Zaniolo (1987) for a more com-
plete and formal description of the magic set algorithm, including
the binding passing analysis which determines the arguments in the
recursive rules that are instantiated by the query constants. Of more
direct interest in our discussion are the rewriting rules used to im-
plement the magic set method.

3.1. Rewriting Rules for the Magic Set Method

3.1.1. Exit Magic Rule

There is exactly one such a rule and it consists of a unit clause con-
structed from the query goal by eliminating non-constant arguments
and adding the distinguished prefix “m.” to the predicate name.

3.1.2. Recursive Magic Rules
They are derived from the recursive rules as follows:

Case 1. The given rule is linear. Then do the following:

(a) drop the goals with no instantiated arguments(e.g., P(y,y1) is
dropped for the example of Fig. 9),

(b) drop the non-instantiated arguments from the recursive goals,
(y and y; are dropped for the example of Fig. 9)
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(c) exchange the recursive predicate in the head with the recursive
predicate in the tail; these predicates are also renamed with
the prefix “m.” (see Fig. 11 for the case at hand).

Case 2. The given rule is non linear, with n > 1 occurrences of
recursive predicates in the body. Then we do the following:

(a) Construct n linear rules; each such a rule is obtained by delet-
ing all occurrences of the recursive predicates but one (obvi-
ously, a different one for each rule).

(b) Construct a magic rule from each of the n rules so obtained,
using the transformation indicated in Case 1.

3.1.3. Building the Modified Rules

Each original rule is modified by the addition of the corresponding
magic predicate. This has the form m.P(X), with P the predicate
symbol in the head of the rule and X the bound arguments in said
head (For the example of Fig. 10, we add m.SG(x)).

Observe that there is nothing magic about the particular value
adam appearing in the query of Fig. 9, since the solution just de-
scribed applies to any goal SG(z, y) provided that z was instantiated,
say, by previous goals in the rule. All that is needed is the ability to
pass this instantiated value in the exit magic rule of Fig. 11. Thus,
the magic set method-—and, in general all the methods described in
this paper—can also be used to support sideways information pass-
ing into recursive predicates.

The magic set method was first proposed in Bancilhon et al. {1986)
for linear rules; it was then generalized in Sacca and Zaniolo (1986)
to deal with function symbols and certain non-linear rules and fur-
ther extended in Beeri and Ramakrishnan (1987) with a notion of
sideway information passing making it applicable to arbitrary non-
linear rules.

The magic set method is elegant and general, but suffers from two
drawbacks. Concerning the first drawback, observe that the natural
way to support the modified rule of Fig. 11 consists of joining the
current relation SG'(z1,y1) with P{z,z;) and then with m.SG(z).
However, if we assume that P(z,z;) is conditionally safe, i.e., can
be evaluated only when the first argument is instantiated (typically,
arithmetic predicates and recursive predicates are conditionally safe)
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then, the only way to support the modified rules of Fig. 11, is to join
(the relation corresponding to) m.SG(z) with P(z,z;) first, and
then join the result with SG’(xy,y;) and, finally, with P(y,y1). The
second drawback is that the join of m.SG(z) with P(z, z1) is exactly
the computation performed in building the magic set. Thus, rather
than repeating this computation at each step of the second Fixpoint
iteration, we can save the result of the first Fixpoint computation
and use it in performing the second one. This observation is at the
basis of the minimagic method, (Sacc and Zaniolo, 1986) where all
the results of the first Fixpoint computation are saved in a “magic
relation”. This relation is then used in the modified rule computation
in lieu of the original predicates and solved goals. Thus, in the
example in question, the two goals m.SG(z) and P(x,z:) would
be replaced by a goal m.P(x,z;) which is basically the restriction
of the parent relation over the ancestors of “adam”. In general,
the minimagic method avoids duplicate computation at the price of
storing larger data sets.

The magic set transformation for the list-merge example of Fig. 2

and the query
?MG(L]_, L2, w) : (9)

is given in Fig. 12.
m.MG(L1, L2).

mMG(y,z10y1) : —mMG(z ey, z1 0 1), 2 > 2,
mMG(zey,y1): —mMG(zey,z, e Y1), T < 1

MG'(-'” Y, T8y, TOW): -mMG(zey,z, e 1),
MG'(y,z1 0 y1,w),z > 21
MG'(zey, 210y, 51 0w): ~m.MG(z 0 y,z, » ¥1),
MG (zey,y1,w),z < 2,
MG (nil, z,z) : —m.MG(nil, 7).
MG'(z,nil, z) : —m. M G(z, nil).
?MG'(Ly, La, w).
Fig. 12. The magic set method for the list merge example.
Fig. 12 illustrates the problem inflicted upon the magic set method

by predicates that are only conditionally safe. Here the two compar-
ison predicates, z > z; and z < z;, which were used for computing
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the magic set, can not be used in the modified rules to derive new
values of z or ;. Thus we have to start the computation of the
modified rule from the m.MG relation rather than from the smaller
MG

For this particular example, the minimagic method would use no
additional storage, with respect to the magic set method, since it
does not require saving the values of any additional variables. Maore-
over, the minimagic method would avoid duplication of computation
by dropping the goal, z > z; (z < z1) from the first (second) mod-
ified rule and using two distinct magic relations—one for the first
rule and one for the second.

In summary, we have presented the magic set method and also
discussed the minimagic method that improves on the former by
avoiding the repetition of computation. However, we will not dis-
cuss the minimagic method any further since we want to present
next the counting method, that eliminates duplication of computa-
tion even further. As an historical note, however, we would like to
mention the similarity of the minimagic method (Sacca and Zan-
iolo, to appear) with the Alexander method described in Rohmer et
al. (1986). While the Alexander method predates both the magic
method and the minimagic method, it was, at first, overlooked in
the research community and in topical surveys (an unfortunate event
attributable, at least in part, to inadequate documentation). More
recently, the method has become better known through the works of
Beeri and Ramakrishnan (1987) and Demo et al. (1986).

4, The Counting Method

The Counting Method eliminates the duplicate computation of the
magic set method by using counting indices. For instance, the hu-
mans of the same generation as adam can be found by first computing
the ancestors of adam and then the descendants of these ancestors—
provided that the levels of these ancestors and their descendants are
also computed and compared as follows. Starting from adam, who is
a zero-level ancestor of hirnself, we increase the count by one every
time the recursive rule is used to generate a set of new ancestors.
Symmetrically, the descendants of these ancestors are computed, by
decreasing the count at each step in the recursive computation; once
we obtain a descendant of level zero we can add this name to the
query answer. Figure 13 gives the counting method code for the
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query of Fig. 9 (7 + 1 and j — 1 are again shorthand notations of
convenience similar to that used in Section 2).

%counting rules—counting up on ancestors
ent.SG(0, adam)
ent.SG(j + 1,71) : —P(z, 1), ent.SG(4, z).

%modified rules—counting down on descendants
SG'(j,z) : —~ent.SG(j, ), H(z).
SGI(J - 1! y) . _SGl(j’ yl)iP(ya yl)'

%modified query
?78G'(0,y)

Fig. 13. Counting rules and modified rules for example of Fig. 9.

The predicate cnt.SG computes the ancestors of adam and counts
the levels up. The predicate SG’ computes the descendants of these
ancestors and counts the levels down. The modified query selects
the descendants whose associated index is zero and, thus, are of the
same generation as adam.

Figure 13 also illustrates the rewriting rules used to implement
the counting method. The counting sets are generated in a fashion
similar to that of the magic rules; the main differences lie in the
introduction of a counting index to record the level. Since a new
level is introduced at each step, the seminaive Fixpoint computation
of the counting sets can be simplified by removing the duplicate
elimination check. Moreover, the modified rules are much simpler
than those of the magic set method, since they do not contain the
goals previously solved in computing the counting sets. Thus, the
counting method avoids duplication of computation.

The idea of counting was first introduced in Bancilhon et al. (1986)
and formalized in Sacca and Zaniolo (1986) for a simple class of linear
queries. The method was then generalized to more complex situa-
tions in Sacca and Zaniolo (1987), using the rule-rewriting approach
discussed next.

The Generalized Counting Method (Saccd and Zaniolo, 1987)
makes use of additional indices and supplementary counling sets.
The additional indices are required when there is more than one
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recursive rule defining a recursive predicate or when there are non-
linear rules. The supplementary counting set is used to save val-
ues that will then be needed during the second phase. Figure 14,
for instance, gives the generalized counting method for the query
?MG(Ll,Lg, w)

%Counting Rules:
7ent. MG(0,0,L1, L2).

b MG(+ 1,2+ k+0,y,z1031) : —cnt. MG(j, k,x ey, z1 o 1),
T 2 Z1

et MG(j +1,2xk+ 1L,z ey): —cnt. MG(j,k,z oy, z10yy),
r<I

%Supplementary Counting Rules:
spert. MG.1(4,k,z) : —ent MG(j, k,z oy, z1 0 y1), 2 > 23
spent MG.2(4,k, 1) : —ent. MG(j, k,z ey, z1 0 4n), 2 < 7,

%Modified Rules:

MG'(j —1,(k - 0)/2,z e w) : —spent. MG.1(j — 1,k/2, z),
MG (5, k,w)

MG (G-1,(k—1)/2,z; e w): —spent. MG.2(5 — 1,(k - 1)/2,z,),
MG'(j, k,w)

MG'(§, k., z) : —ent. MG(j, k,nil, z).

MG'(j,k,z) : —ent. MG(j, k, z,nil).

%Modified Query:
TMG'(0,0, w).

Fig. 14. The counting method on the list merge example.

The integer arithmetic performed on the second index & is such
that the complete history of the rules used in the counting phase are
preserved and can be recovered in the second phase.

The counting method has two strong points and a weak one. The
first plus for the method is represented by its performance that has
been shown to be superior to that of other methods, both in terms
of typical behavior (Bancilhon and Ramakrishnan, 1986) and worst
case behavior (Marchetti-Spaccamela et al., 1987). The second plus
is that it provides a framework to identify many cases of practi-
cal interest where one the two Fixpoint computations becomes un-
necessary and the method can be further improved. On the minus
side there is the potentially unsafe behavior of the method in the
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presence of cycles in the database, and problems with managing the
supplementary indices needed for arbitrary depths of recursion. We
will discuss these three issues next, beginning with the cases in which
the counting method reduces to a single Fixpoint computation.

5. Specialized Single Fixpoint

In many practical situations, the computation plan prescribed by the
magic set method or the counting method is unnecessarily complex.
These are the cases in which the given recursive query with constants
can be supported efficiently via a single Fixpoint computation. A
typical situation is the computation of a transitive closure, such as
for the linear ancestor example of Fig. 15:

anc(z, ).
anc(z, z) : —anc(z,y), Py, 2).

Fig. 15. A right linear formulation of ancestor.

Tanc(john, ).

cnt.anc(0, john).

ent.anc(j + 1,z) : —ent.anc(j, x).
anc'(j,z) : —cnt.anc(f, ).

anc'(j — 1,2) : —and'(j,y), P(y, 2).
Tanc’(0,z).

Fig. 16. Counting method for query (5.1) on rules of Fig. 15.

Since the indices are no longer needed in the modified rules as
shown in Fig. 16, the counting rules become useless and can be elim-
inated. In short, the computation reduces to the program of Fig. 17

anc'(john).
anc'(z) : —anc'(z), P(y, z).
—?anc'(z).
Fig. 17. Specialized single Fixpoint program for query (5.1).

Thus the computation reduces to a single Fixpoint on a unary
relation.
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Consider now the second query (5.2) on the same set of rules of
Fig. 15.
Tanc(z, mark) (10)

For this query, the counting method yields the program in Fig. 18:

cnt.anc(0, mark).

ent.anc(j + 1,y) : —ent.anc(f, z), Py, 2).
anc'(j,z) : —ent.anc(j, z).

anc'(j — 1,z) : —anc'(j, z).

?anc’(0, z).

Fig. 18. Counting method for query (5.2) on rules of Fig. 15.

Observe now that the modified recursive rule performs no function
other than decreasing the index by one, and copying the old values
for z. But, since the initial value of j established by the exit rule
is positive, j eventually becomes zero and z becomes an answer to
the query. Therefore, we can dispense with the modified rules, and,
hence, with the indices from the counting rules (which then look
much as magic rules). The whole computation thus reduces to that
of Fig. 19. Symmetric solutions work for the second formulation of
the ancestor rule.

ent.anc(mark)

ent.anc(y) : —ent.ane(z), Ply, z).
anc'(z) : —cnt.anc(x).

Tanc'(z).

Fig. 19. Specialized single Fixpoint program for query (5.2).

In summary, the counting method can be specialized to detect and
eliminate a trivial first phase or trivial second phase, and produce
a set of equivalent rules where (1) constants have been pushed into
recursion, and (2) the constant arguments have been eliminated from
the recursive predicates. Thus we have a solution that frees the user
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Consider now the second query (5.2) on the same set of rules of

Fig. 15.
Tanc(z,mark) (10)

For this query, the counting method yields the program in Fig. 18:

ent.anc(0, mark).
cnt.anc(j + 1,y) : ~cent.anc(f, 2}, P(y, z).
anc'(j,z) : —ent.anc(j, ).
anc'(j — 1,z) : —anc'(j, z).
?anc’ (0, z).
Fig. 18. Counting method for query (5.2) on rules of Fig. 15.

Observe now that the modified recursive rule performs no function
other than decreasing the index by one, and copying the old values
for z. But, since the initial value of j established by the exit rule
is positive, j eventually becomes zero and z becomes an answer to
the query. Therefore, we can dispense with the modified rules, and,
hence, with the indices from the counting rules (which then look
much as magic rules). The whole computation thus reduces to that
of Fig. 19. Symmetric solutions work for the second formulation of
the ancestor rule.

ent.anc{mark)

cnt.anc(y) : —ent.anc(z), P(y, z).
anc'(z) : —ent.anc(x).

?anc’(z).

Fig. 19. Specialized single Fixpoint program for query (5.2).

In summary, the counting method can be specialized to detect and
eliminate a trivial first phase or trivial second phase, and produce
a set of equivalent rules where (1) constants have been pushed into
recursion, and (2) the constant arguments have been eliminated from
the recursive predicates. Thus we have a solution that frees the user
from having to customize the recursive rules to the particular pattern
of bound/free argument in the goal, and also leads to a very efficient
implementation.

While the domain of applicability of the techniques just proposed
is limited, they supply good heuristics for cases such as transitive
closures that are common in applications. In general, the question
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The query graph G'g = (N, A) is the subgraph of G, induced by all
nodes that are reachable from a (recall that e denotes the constant
or vector of constants in the query goal). We call @ the source node
of Gg. The query graph Gg, in turn, is composed by the three
subgraphs GL = (NL,AL), GE = (NE,AE) and GR = (NR,AR),
such that Ay, Ag and Ag are all the arcs in A corresponding to
pairs in L, E and R, respectively. It is easy to see that Ny and
Npg are disjoint and contain Z-nodes and R-nodes, respectively, and
Np UNgR = N. On the other hand, Gg is a bipartite graph having
arcs from L-nodes to R-nodes. Finally, A7, A and Ag are disjoint
and ALUApUAg = A. The number of respective nodes of Gg, G,
Gr and Gg will be denoted by n, ny, ng and ng, while the number
of respective arcs is denoted by m, mr, mg and mg.

Let & and ¢ be two nodes in the query graph. If there is a path
from b to ¢ with length k, we say that ¢ has a distance & from b.

Consider the graph Gr. It follows directly from the definitions that
the nodes of this graph are the magic set values; Ny = MS. Thus
we will call Gr the Magic Graph and refer to magic graph nodes
and magic set values as synonyms. The counting set CS consists
of pairs (j,b) where b is a node in the magic graph and j is its
distance from the source node @, as it will be shown below. The
set of values obtained from CS by projecting the indices out will
be denoted C'S_;; obviously CS_; = MS. Moreover, let I, denote
the set of indices j such that (j,b) is in CS. Then a node b will,
respectively, be called

(a) single if I is a singleton set,
(b) multiple if I, has a finite cardinality greater than one,
(c) recurring if I, is infinite.

The magic graph of a query will be called regular, when all its
nodes are single and non-regular otherwise.

For the query graph shown in Fig. 21, G is the subgraph induced
by the nodes a, ai,...,as, while Gg is the subgraph, represented
by darker arcs, induced by the nodes by,...,b19. The graph Gg is
composed by the dashed arcs in Fig. 21. The magic graph is regular
since all nodes in G, are single, i.e., they have a unique distance from
a. If we add the tuple (a2, as) to the relation L then the query and
the node as become multiple; instead, if we add the tuple (as, as),
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then the query becomes cyclic and the nodes az, a3z and as become
recurring.

Proposition 1. Let Q be a query and G be the query graph. Then
MS = (CS5_; = Ni. In addition, given a node b in G,

a) b is single if and only if all directed paths from the source node
a to b in G have the same distance,

b) b is multiple if and only if there at least two directed paths from
a to b in G with different length,

c) b is recurring if and only if there is a cyclic directed path from
atobin Gy, and

d) the set I of indices associated with b coincides with the set of
all distances of b from a.

=TTy TN T D

b.l. bz byo
Yo, Yo,
e
& bS ! bﬁ
Y \ S, |
by bg " by

Fig. 21. Query Graph

As shown in Saccd and Zaniolo (1986) and Marchetti-Spaccamela
et al. (1987), there is also a simple graph based interpretation of the
query answer:

Fact 1. A node bis in the answer of @ if there is a (possibly cyclic)
directed path from the source node a to b in G¢ such that this path
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is composed by exactly k arcs from Ay, one arc from Az and k arcs
from Ag, where k is any non-negative integer. 0

Consider the query instance whose graph is shown in F ig. 21. Then
bs is in the answer because of the path a, a1, b3, bs. The other answer
nodes are by, bg, by and b1g. Note that the latter node is in the answer
because of the cyclic path

a, a1, a3, as, byo, bip, b19, b10- (11)

The path from a to &y is cyclic as well.

Within this graph formalism, interesting complexity results about
the magic set and the counting methods have been obtained in
Marchetti-Spaccamela et al. (1987). The costs of the two meth-
ods are summarized in Table 1 for the different kinds of Magic
Graphs (MG) The basic cost unit is the cost of retrieving a tuple
in a database relation. We use the notations O and © for describing
asymptotic time complexity. If the cost function of an algorithm is
f(n), where n is the problem size, and g(n) is another function of n,
then

a) f(n) = O(g(n)), if there exists a constant d such that fln) <
d x g(n) for all but some finite (possibly empty) set of non-
negative values for n, and

b) f(n) = ©(g(n)), if both f(n) = O(g(n)) and g(n) = O(f(n)).

Table 1. Costs of the counting and magic set methods.

MG Counting MagicSet

Regular | ©(m; + nr x mpg) &(mr x mg)
Acyclic O(ny X mg +ny X mg) ©(mr x mpg)
Cyclic unsafe’ O(mz x mp)

tIn Marchetti-Spaccamela et al. (1987) it has been shown that the
counting method can be extended to deal with cyclic graphs and its
cost is ©(mxn?). Also note that the costs for the magic set method are
actually higher than those given in Table 1, since arcs not in Gg can
be developed at each step of Fixpoint computation using the modified
rules. For simplicity, these costs can be neglected since they simply
reinforce the superiority of magic counting methods.
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Proposition 2. Let C and Ms be the costs of the counting method
and of the magic set method, respectively. Then

a) If the magic graphs are regular then C = O(M3s).
b) If the magic graphs are acyclic and mp = O(mg), then C =
O(Ms).

Proposition 2 says that the counting method always works better
than the magic set method when the magic graphs are regular. In
addition, since it is realistic to assume that mp is, on the average,
of the same order of my, it is fair to say that the counting method,
on the average, works better than the magic set method when there
is no cycle. In fact, in the average, we have that C = @(n x m) and
Ms = O(m x m). Note that having m; <« mpg is not sufficient for
the magic set method to work better than the counting method.

Thus the counting method is superior to the magic set method in
terms of worst case behavior. This superiority is even more dramatic
when typical behavior is considered; in the comparative study pre-
sented in Brancilhon and Ramakrishnan (1986) the counting method
was shown to be more efficient than all other methods by an order
of magnitude (including the magic set method but excluding Pro-
log and the Henschen and Naqvi (1984) methods that often deliver
comparable performance).

Unfortunately, the potential presence of cycles in the database
compromises the applicability of the counting method in many sit-
uations. Note that, a database being logically acyclic (e.g., a non-
incestuous family tree for the same generation example) does not
guarantee that the physical database is cycle free, since checking
acyclicity upon updates is very expensive and not often done in
practice—thus there could be accidental cycles that throw the count-
ing method astray. Therefore, a method that combines the perfor-
mance of the counting set method with the safety of the magic set
method is highly desirable.

7. Magic Counting Methods
We now propose a family of methods that combine the magic set and

the counting methods and that are, therefore, called magic counting
methods. All methods in the farmily make use of a reduced magic set
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and a reduced counting set. A reduced magic set, denoted by RM,
is any (possibly empty and not necessarily proper) subset of the
magic set MS. Likewise, RC will denote any (possibly empty and
not necessarily proper) subset of the counting set CS, while RC_;
denotes the set of values in RC without their indices. In addition,
for each b in RC_;, R, is the set of all indices associated with b in
RC (obviously Rl C I).

The general structure of the magic counting methods consists of
two steps. In the first step, a reduced magic set RM and a reduced
counting set RC is constructed; in the second step, both the magic
counting method and the magic set method are applied using the
reduced sets. This second step is implemented as shown in Fig. 22.

Modified Rules & Query For MC Methods

Sc(J, Y) : — RC(J, X), E(X, Y). (1
Sc(J -1, Y) : = Sc(J, Y1), R(Y, Y1) (2
3

SeM(X, Y) : — RM(X), E(X, Y). (
Sm(X, Y) : = MS(X), L(X, X1), Su(Xy1, Y1), R(Y, 11). (4
Answer(X) : — Sg(0, X). (5)
Answer(X) : — Spy(a, X). (6)
?Answer(X)

Fig. 22. The independent magic counting method.

Observe that the modified rules of a magic counting method are
basically the juxtaposition of the modified rules for the counting
method (Rules 1 and 2) and those for the magic set method (Rules
3 and 4). However, they use reduced counting sets and magic sets.
Thus, the predicate RC has replaced CS in the exit rule of S
(Rule 1), while RM has replaced the original MS in the exit rule
for Sy (Rule 3). Since Rules 1 and 2 operate independently from
Rules 3 and 4, the methods conforming to the script of Fig. 22 are
called independent magic counting methods. The following theorem
characterizes the domain of correctness for these methods (Sacca and
Zaniolo, 1987).

Theorem 1. An independent magic counting method is correct when
the following two conditions hold:
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a) RMURC_; =MS, and
b) for each b in RC_; — RM, RI} = I;.

This theorem allows us to divide the nodes of the magic graph into
the set RC that uses the counting method and the set RM that uses
the magic set method. Since the counting method is better than the
magic method for all nodes but the recurring ones, the ideal solu-
tion would assign the recurring nodes to RM and all others to RC.
However, this ultimate goal is not easy to reach, since the existence
of recurring nodes is not known at compile time and must be de-
tected at run time at the price of some computational complexity.
Thus, we present three alternative methods that approximate the
ultimate goal with solutions that offer practical advantages of their
own. Since detecting non-regular graphs is easier than detecting
cyclic ones, these methods use the regularity of the magic graph as
their decision criterion.

The simplest method to implement is the basic method, as follows:

a) Basic Method. If the graph Gy is regular then RM = @ and
RC = CS, otherwise RM = MS and RC = @. The basic
method coincides with the counting method in the former case
and with the magic set method in the latter case.

For instance, the graph G of Fig. 23 is not regular, thus RM =
MS ={a,b,...,l} and RC = 0.

‘While the basic method removes the compile-time dilemma of hav-
ing to choose between counting and magic sets, it is clearly subopti-
mal since it does not, as it should, use the counting method for the
parts of the graph which do not contain any multiple or recurring
nodes. The next method accomplishes that by recording the level at
which non-regular nodes are first found:

b) Single Method. Let k be the maximum index such that all
nodes in CS_; having an index less than k are single. Then,
RC_; is the set of all (single) nodes with index less than k, and
RM =MS - RC_,.

In Fig. 23, for example, we have k = 2, RC_; = {a, b, ¢, d} and
RM ={e, f,..., l}.

Using an index to partition the graph horizontally represents too
coarse & criterion, since nodes in different vertical branches of the
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graph are smeared together. For the example of Fig. 23, for instance,
the nodes e and f are assigned to RM, although they are single. The
next method solves this problem:

¢) Multiple Method. RC_; is the set of all single nodes and RM =
MS — RC_; (ie., RM contains all multiple and recurring
nodes).

For the example of Fig. 24, we have RC_; = {a, b, ¢, d, e, f}
and RM = {g, h, 4, j, k, I}.
Our final method uses counting for both single and multiple nodes.

d) Recurring Method. RC_; is the set of all single and multiple
nodes and RM = M S— RC_; (thus, RM contains all recurring

nodes).

For the magic graph G in Fig. 24, the Recurring Method will
produce, RC_; = {a, b, ¢, d, e, f, h, k} and RM = {g, i, j, 1}.

L il

o

Fig. 23. Magic Graph
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Before turning to the actual computation of the reduced set RC
and RM, let us observe how, in the last three methods, the RM
nodes have been relegated to the part of the graph most remote
from the source—i.e., to the upper part of Fig. 24. As the magic set
computation for these nodes progresses, it moves to the lower part
of the graph (i.e, closer to the source node) where no recurring node
exists—thus it can be improved by using the counting method. This
idea has given birth to a further refinement of the magic counting
method called an integrated magic counting method (Sacch and Zan-
iolo, 1987) (as opposed to the independent method just discussed).
A discussion of the integrated counting method is outside the scope
of this paper.

The computation of the sets RC and RM must be performed
together, using a modification of the seminaive Fixpoint algorithm.
The key idea is that the seminaive computation of the magic set and
that of the counting set are very similar and, thus, can be combined
together. Consider for instance the problem of implementing the
Multiple Magic Counting method; here we must detect all single
nodes and include them in the reduced counting set. To this end, we
can use a temporary relation im, where the second column records
whether we are dealing with the first occurrence of a node or the
second one. Then, both first and second occurrences are used to
generate other nodes in order to identify all multiple or recurring
nodes (thus, we may need to use the same path twice) (see Fig. 24).

MS5(0,1,a).

m(.? + 1)1:X1) : —W(J’l,x)7L(Xﬁ Xl):
not (MS(I,-, X1),I < j).

_S(J + 1121X1) : _W(J: —'JX)vL(XaXl)am(Ka 1=X1)’K S j:
not (MS(I,2,X1),I<3).

Fig. 24. Reduced sets computation for
the multiple magic counting method.

At the end of the above Fixpoint computation, the multiple meth-
ods compute RC_; as the set of all single nodes and RM as the set
of all multiple/recurring nodes in the following way:

MS(Y):-M5(_,1,Y).
RM(Y):-M5(-,2,Y). (12)
RC(I,Y): ~MS(I,1,Y), not (RM(Y)).
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If RC happens to be empty (i.e., there are no single nodes), then the
mntegrated method adds the pair (0, a).

The implementation of the recurring method is more complex,
since the determination of cyclic structures in a graph is more suis-
able to depth-first search than to the breath-first expansion of the
Fixpoint algorithm. An effective algorithm for detecting all recurring
nodes consists in generating first the magic graph

ML(X,Y): —-MS(X),L(X,Y). (13)

and then use the following algorithm to detect the non-recurring
nodes NR(Y), with the help of an auxiliary predicate UP(J,Y),
which, at the end of each step J, contains all Y’s that have an
unsolved predecessor, i.e., there is an edge from some node in N R
into Y.

NER(0,0) : — not (ML(-,a)).
UP(0,Y): ~ML(X,Y),X # .

NR(j+1,Y): —=NR(j, X), ML(X,Y), not (UP(I,Y),1< J).
UP(j+1,Y): -UP(j;,Y), not (NR(j,Y)).

Fig. 25. Computation of non-recurring nodes.

The program of Fig. 25 is locally stratified (Przymusinski, 1987);
its perfect model can be computed efficiently using the Naive al-
gorithm of Fig. 3 (Saccd and Zaniolo, 1988). At the end of this

algorithm we have:
RC(X):-NR(_,X). (14)

Thus, all is left is to compute the indices for the set RC as shown in
Fig. 26:

RC(0,a).
RC(j +1,Y): ~RC(j,X),ML(X,Y), RC(Y).

Fig. 26. Computation of indices for non-recurring nodes.

Consider now the computational complexity of performing the
seminaive computation on the rules of Fig. 25. Observe that for
node Y is added to NR after n,, attempts, at most. Moreover, the
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size of UP is always less than ny and the basic Fixpoint is performed
M.y times. Thus, if n,, and m.,, denote the number of non-recurring
nodes and arcs between these, respectively, then the worst case com-
plexity of computing ML and NR is O(my, + 1, X My, + 1z, X M)
(This upper bound is the actual one for complete graphs.) For the
computation of Fig. 26, observe that for each node, there are at
most My, paths of different length between the node and the origin
a. Thus, the complexity of the Fixpoint computation on the rules of
Fig. 26 is ©(n,, XMy ). Thus the cost of computing RC is dominated
by that of computing NR.

It also easy to see how the computation of UP in Fig. 25 can be
improved by deleting tuples from a P table, rather than copying
the entire table at each step. Then the complexity of the overall
computation reduces to @(mg + nm x my,).

All magic counting methods are safe in the presence of cycles;
moreover, they work better than the magic set method, and they
coincide with the counting method when the query is regular (Sacca
and Zaniolo, 1987). Furthermore, the recurring magic counting
method behaves as the counting method, i.e., with complexity O(ny, x
mr +nr X mg), for acyclic graphs. In the integrated form discussed
in Sacca and Zaniolo (1987), the recurring magic counting method
has, for cyclic graphs, complexity ©(mz, +np, X M) + (mp —ny) x
Mg + ny, X mg)—thus it behaves as the counting method for all
non-recurring nodes and as the magic set method for the recurring
ones,

8. Conclusion

In this paper, we have presented a comprehensive solution that uses a
Fixpoint based implementation for recursive predicates and compile-
time rewriting techniques to make it safe and efficient. The first issue
discussed was the application, via rule rewriting scripts, of symbolic
finite differencing to improve the basic Fixpoint algorithm by re-
moving redundant computation. Then, we tackled the key problem
of taking advantage of bindings existing in recursive goals. To this
end, the magic set method and the counting methods were devel-
oped which recast the original recursive rules into equivalent ones
that are amenable to a safe and efficient implementation by two
Fixpoint computations. A novel treatment was then proposed for
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dealing with those important cases, where one of these two fixed-
points can be eliminated. A performance comparison between the
magic set and the counting method was also presented; the results of
this comparison motivated the introduction of a method, called the
magic counting method, that integrates the strengths of the previous
methods.

Many approaches were proposed in the past for supporting recur-
sion in logic based languages; all these approaches have strengths
and weaknesses (e.g., limited generality). The contribution of this
paper consists in integrating some of the more powerful methods
into a comprehensive framework which (i) provides a unified com-
parative treatment of the various methods, and (ii) supplies the basis
for a general and robust system implementation where the various
methods are chosen and combined to maximize their strengths and
compensate for their weaknesses (Chimenti et al., 1988).
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