Supporting Semantic Web Search and
Structured Queries on Mobile Devices

Andrea Dessi
University of Cagliari
09124 - Cagliari, Italy

andrea.dessi@unica.it

Maurizio Atzori
University of Cagliari
09124 - Cagliari, Italy

atzori@unica.it

ABSTRACT

There has been much recent interest in user-friendly in-
terfaces that support queries and searching the Semantic
Web, without requiring knowledge of SPARQL and the inter-
nal structure used by DBpedia or other knowledge bases.
Although powerful, the existing proposals assume the use of
desktop computers featuring rather large displays and point-
ing devices such as a mouse or trackpad. In this paper we
tackle the problem of querying and searching the Semantic
Web from mobile devices, by taking full advantage of their
small touch-enabled screens. We focus on a user-friendly
interface that can be used from smartphones, mini tablets,
smart watches and possibly other wearable computers such
as Google Glass. Indeed existing approaches become much
less usable and effective on mobile since these support and
require different modalities of user interaction. Our pro-
posal is based on an adaptation of the recently proposed
concept of SBE query system, developing a novel mobile
interface that allows both browsing and querying the Se-
mantic Web without using SPARQL nor knowledge of the un-
derlying ontology/schema of the supporting knowledge base.
To demonstrate the properties of the proposed interface we
have developed QPedia', a mobile app that allows to take
full advantages of DBpedia through our mobile-enabled user-
friendly interface.

Keywords

Semantic Web Search, Mobile User Interface, Human Com-
puter Interaction

Lavailable at http://dmi.unica.it/qpedia/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SSW’13, August 30, 2013, Riva del Garda, Italy.

Copyright 2013 ACM 978-1-4503-2483-0/30/08 ...$15.00.

Andrea Maxia
University of Cagliari
09124 - Cagliari, Italy

andre.maxia@gmail.com

Carlo Zaniolo
University of California
Los Angeles, CA 90095, USA
zaniolo@cs.ucla.edu

1. INTRODUCTION

The advent of smartphones and thus mobile computing
confirm that the future of the Web is to create more trans-
parency and simplicity, to allow an easy use though there
exist problems such as low interoperability with the devices,
small screens and more. In parallel, the recent evolution
of the web, namely the Semantic Web, is growing rapidly,
and contains a large amount of data and knowledge. The
challenge thus will be to join Semantic Web technology and
the mobile world to provide new additional supports for
knowledge-based, location and context-aware information.

An excellent testing ground is DBpedia [2], a very well-
known Semantic Web data source which provides informa-
tion that could be useful for knowledge exploration, backed
by the Virtuoso triplestore®. DBpedia is available through
W3C standards for the Semantic Web and it stores its data
as Resource Description Framework Schema (RDF/S) tri-
ples [6]. The DBpedia dataset has been extracted from
Wikipedia and currently has more than 3.77 million things
with 400 million facts. It also features labels and short ab-
stracts in 15 different languages, 588, 000 links to images and
3,150,000 links to external web pages.

There has been a number of useful web interfaces to navi-
gate and query DBpedia and they are discussed in Section 4.
Unfortunately they are based on interfaces that require a
standard monitor and mouse, handling specific user events
such as the mouseover event. Fig. 1 shows how four exist-
ing interfaces are rendered on a recent smartphone screen,
drastically reducing the usability on such devices.

We propose a novel cross-platform system called @QPe-
dia which supports querying SPARQL endpoints dynamically
without previous knowledge of web semantics from a mobile
device. We try to address for the first time the problem
of accessing and querying semantic web data coming from
any endpoint (not necessarily DBpedia, and no assumptions
on the schema or the content), using the search by example
approach in [1] and adapting it to mobile devices.

Our work is therefore motivated [7] by the need for an eas-
ier way of using semantic web resources, such as DBpedia,
for casual users accessing from a mobile device, therefore
with a small screen, no proper pointing device and without
knowledge of the ontology behind the Semantic Web. Our
proposal and its related prototype QPedia described next

Zhttp://virtuoso.openlinksw.com/

v

=] D =

(b) Faceted Search
and Find service

(a) Faceted Wikipedia
Search

=B B

B wwwhakia.com/web?q=(

Home Enterprise Solution
Semantic Technology NewPubmed

MoodTRADE About Us

hakla Cagliari

Cagliari - Wikipedia, the i

Cagliari ([n 1] Latin: Caral
Web municipality and the capit
News Sardinia, an Autonomous
Blog Sardinian name Casteddt
has 149.883 inhabitants,
metropolitan area: Elmas,
http://en.wikipedia.org/w

Pubmed
Credible
Galleries Cagliari Calcio - Wikipedii
Cagliari Calcio is an Italia
Cagliari, Sardinia. The clu
and currently plays in ital
alarge part of recent year

Rifiuta Condividi posizione

(c) Hakia

(d) DBpedia Mobile

Figure 1: Existing approaches rendered on a recent
mobile browser

introduce a novel approach to display, query and interact
with the Semantic Web from the mobile using well-known
gestures, voice recognition, a simple way of introducing con-
straints and enabling location-based queries based on the
user position.

2. THE QPEDIA APP

QPedia allows users to show DBpedia facts and search
among them in an intuitive way from smartphones and other
mobile devices. Searches can be done by providing keywords,
values or ranges for properties (either through a keyboard
or by voice), and/or location constraints, optionally based
on the user location (through GPS if available).

The way constraints can be provided by the user leverages
the achievements of the Search By Example approach in [1],
where the constraint is associated to a specific RDF property
without requiring the user to know the name of the property
(e.g., dbpedia-owl:birthplace or dbpedia:placeofbirth).

QPedia can be accessed by a mobile phone’s web browser,
using as a development framework jQuery Mobile [4] which
is compatible with all mobile browsers. The application can
be used on any smartphone operating system and desktop,
with an interface able to adapt to any resolution and method
of interaction.

Figure 2: User interaction QPedia

QPedia’s initial view contains a free text search and a
search button. The way it works is very simple and intu-
itive: when the user enters some search terms (also by voice
through speech recognition), and press enter or the search
button, then the application will try to match those terms
against DBpedia entities. In case the provided terms are
too short or anyway no result is found, a dialog box will pop
up warning the user inviting her to change the keywords.
Otherwise, the matching results are shown.

Before starting a search, the user can flick (i.e., swiping
with the finger) the page on the left, showing an map area
that indicates the user position and allowing to select a loca-
tion range constraint about the entities looked for. The map
view can be unzoomed (and therefore the location range will
update) through pinch-to-zoom, i.e., by touching screen’s
surface with two fingers bringing them closer together, or
zoomed if moved them apart, in order to respectively in-
crease or decrease the location range constraint. Location
constraint can be easily switched off by a slide button. Fig-
ure 2 shows the various QPedia interface views under a re-
cent Android web browser.

After launching the search, a new view will appear show-
ing matched entities in DBpedia. By clicking on a result,
its corresponding entity will be chosen, and its infobox (as
in Wikipedia) will be shown. This is done to introduce en-
tity data to the user in a familiar way. The user can then
choose, flicking the view on the left or on the right, between
the current infobox view, the advanced search view and the
map view.

The advanced search view shows all the properties of the
current resource, using an expandable listview instead of the
infobox. In this view, by a long press on a property, it’s pos-
sible to introduce a new constraint on the selected property.

Figure 3: Searching and querying in QPedia

By further flicking, the map view is shown. If spatial in-
formation is available (such as latitude and longitude), the
map will be centered on that point, also allowing to input a
location constraint. Interactions among views are shown in
Fig. 3.

By pressing the search button, it will be started a back-
ground SPARQL query generated by QPedia. Fig. 4 shows
the raw SPARQL query, available to experienced users, for
the corresponding query “all Sardinian cities with population
between 15,000 and 25,000 inhabitants”. In order to write
such query the user will just specify the constraints for each
property of interest, by and editing dialog, such as chang-
ing Sardinia for the property “region” or the range 156000<>
25000 for the property “population total”; after pressing the
search button in the action bar dialog, QPedia will list all
Sardinian cities with a population total between 15,000 and
25, 000.

Query code

select distinct 2p as 2Campo str(?val)
as ?Valore ?data where {

{?data rdfs:label "Cagliari"@en.
{2data 7p 7val)

minus

{2data ?p ?val. FILTER
(langMatches(lang(2val) , "+))}

region

Sardinia

v oK

union
{2data rdfs:label "Cagliari*@en
2data ?p 2val FILTER
(langMatches(lang(2val) , "en®)}
)aroup by ?p 2val

wert ui o
order by 7p q y P

asdf gh j k'

& zx cvbnmaea

ns3 . 6o

(a) Background
SPARQL Query

(b) Property Change

Figure 4: Search By Example in QPedia

3. IMPLEMENTATION

So far we described the user interface of QPedia. In order
to achieve such user-friendly experience, QPedia is made of
a number of modules that we review in the following.

The Ul Module. This module is responsible for showing
the user interface described in the previous Section. In order
to be portable and available on the majority of the devices,
this part has been developed using HTML and JavaScript,

\ T infobox
AJAX html q
- /i ® -

Local Triplestore with full-
text search indexes

properties.
position

— SWIPE

A

Figure 5: The QPedia System

therefore accessible through any mobile browser. Most of
the interface has been developed with jQuery Mobile [4],
compatible with almost all browsers in use. QPedia should
therefore be available on any smartphone operating system
and desktop, with an interface self adapting to any resolu-
tion and method of interaction. The use of jQuery Mobile
allows skins to be personalized depending on the device/OS
used, enhancing the UX.

The UI module is also in charge of communicating with
the QPedia backend server through AJAX calls (see Fig. 5),
sending user inputs and obtaining the elements to be shown
in the interface. In particular, constraints provided by the
user in the query are sent to the server, which in turn will
answer with the query results. Results are graphically elab-
orated by the UI module before showing them to the user.

The Query Manager. This module is responsible to gen-
erate the SPARQL queries to be sent to the triplestore de-
scribed next. The Query Manager is in charge of interpret-
ing the conditions entered by the user through the user in-
terface. These conditions can correspond to a text-based
keyword search on some RDF properties (e.g., dbpedia-
owl:abstract), a constraint on a location property (e.g.,
geo:long and geo:1lat) of RDF entities expressed using the
map view of QPedia UI, or a constraint on other RDF prop-
erties (currently any available in DBpedia).

Other than a query translation function, the query man-
ager also provides alias for the items shown by the interface,
i.e., instead of showing raw RDF attributes, the QM sends
more explicative strings such as the ones obtained querying
the rdfs:label property of the entity at hand.

Most of the features and solutions regarding this mod-
ule are part of the Search by Example approach used in
SWIPE [1]. One big difference in QPedia is that in SWiPE
the user inputs the constraints within the HTML of the orig-
inal infobox, which is a non trivial problem to solve given
the fact that there is no markup to recognize the property
position within the HTML, and RDF values do not necessar-
ily match strings in the infobox. In our case, QPedia shows
a structured list of properties that allows the user to input
a constraint, therefore it is straight-forward to know which
property the user was meaning to edit. On the other side,
the properties should be shown where the user will expect
to be, that is, in the same order as shown in the original
infobox (which is one flick away from the advanced search
view).

Finding the order in which properties appears within the
infobox HTML is a new non-trivial problem to solve. For-
tunately we can leverage the tools developed in [1] to find
property positions and therefore, by inspecting the top CSS
attribute, we can easily recover how properties are vertically
sorted in the infobox HTML.

Triplestore / Execution Manager. This module is respon-
sible for executing the SPARQL query and returning the re-
sults to the users. In order to ensure fast response and ex-
ecution times we have experimented with alternative query
execution engines. In particular, the Virtuoso system used
in DBpedia proved too slow on some keyword-based queries
where multiple attributes where involved. Further, the on-
line service freely provided by DBpedia (either standard and
“live” endpoints) showed low service availability when ac-
cessed programmatically. To solve theses performance prob-
lems we have developed a version of QPedia backend server
that uses full-text Lucene indexes on a local server, based on
a modified version of the Apache Jena triplestore. QPedia
also features a mechanism that dynamically tries different
endpoints whenever a service availability issue might occur.

Native Android Client. Generally a web application has
limits and missing features, avoidable only through a native
client. The restrictions primarily affect some performances,
for example, using for a long time a web application the
browser cache can get saturated and the UX will decrease.
Other opportunities coming from a native app are the so-
cial aspects, integration with other mobile apps, sharing cus-
tomized searches or new features like bookmarking favorited
searches. Therefore we also developed an Android appli-
cation based on a simple webview, optimizing performance
and implementing such extra features. The main screen is a
Fragment Activity® with a PagerAdapter that contains two
sections, module search and favorites list, where it’s pos-
sible to save each favorited search on smartphone physical
memory. To overcome possible cache problems, every search
runs on a different webview using a new javascript interface.
This solution, after a number of tests has shown a significant
performance improvement..

4. RELATED WORK

The existing proposals, such as SWiPE [1], Faceted Wiki-
pedia Search [5] (Fig. 1a) and Virtuoso Faceted Web Search
(Fig. 1b), allow users to ask complex queries only with a
desktop user interface. In more detail SWiPE [1] gener-
ates automatically semantic queries for DBpedia using the
Search by Example approach, helping people who do not
have knowledge about SPARQL to pose their desired query.
The system provides an interface like Wikipedia which has,
on the infobox, editable fields to input the query. The user
can choose which fields to modify in order to start a new
query using shown information about the underlying related
DBpedia page.

Another example of semantic web search engine is Hakia
(see Fig. 1c), that brings relevant results based on concept
match rather than keyword match or popularity ranking.

A few others try to address the problem of making web
semantic data useful in a mobile context, such as DBpedia
Mobile [3] (Fig. 1d), that provides a map view annotated
with DBpedia entities and information from other knowl-
edge bases. This application, based on geographic location,
generates a map that contains information of the surround-
ing locations contained in the DBpedia dataset. It works
on desktop browsers, while for mobile devices, the applica-
tion is optimized for QVGA display (320x240 pixels) there-

%http://developer.android.com/reference/android/
support/v4/app/FragmentActivity.html

fore not specifically focused on current devices (featuring full
HD displays). Other than being designed for low-resolution
screens, DBpedia mobile is a system that tackles only a spe-
cific search need, by focusing on locations. Therefore it is not
addressed to the general problem of accessing and querying
large datastore of (possibly) unknown domains.

5. CONCLUSION AND FUTURE WORK

This paper has presented a new graphical user interface
which combines the advantages of both mobile devices and
Semantic Web. We described in details how our application
functions with different search modalities. Our proposal and
its related prototype @QPedia introduce a novel approach to
display, query and interact with the Semantic Web from
the mobile using well-known gestures, voice recognition, a
simple way of introducing constraints and enabling location-
based queries based on the user position. Future work will
be devoted to extend our application with new features, such
as graph search through constraints on multiple infoboxes,
query composition and query templates.

Acknowledgements. Work funded in part by RAS Project
CRP-17615 DENIS: Dataspaces Enhancing Next Internet in
Sardinia, and by NSF under grant IS 1118107.

6. REFERENCES

[1] M. Atzori and C. Zaniolo. Swipe: searching wikipedia
by example. In A. Mille, F. L. Gandon, J. Misselis,
M. Rabinovich, and S. Staab, editors, WWW
(Companion Volume), pages 309-312. ACM, 2012.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,

R. Cyganiak, and Z. G. Ives. Dbpedia: A nucleus for a
web of open data. In K. Aberer, K.-S. Choi, N. F. Noy,
D. Allemang, K.-I. Lee, L. J. B. Nixon, J. Golbeck,

P. Mika, D. Maynard, R. Mizoguchi, G. Schreiber, and
P. Cudré-Mauroux, editors, ISWC/ASWC, volume
4825 of Lecture Notes in Computer Science, pages
722-735. Springer, 2007.

[3] C. Becker and C. Bizer. Dbpedia mobile: A
location-enabled linked data browser. In C. Bizer,

T. Heath, K. Idehen, and T. Berners-Lee, editors,
LDOW, volume 369 of CEUR Workshop Proceedings.
CEUR-WS.org, 2008.

[4] M. Firtman. jQuery Mobile - Up and Running: Using
HTMLS5 to Design Web Apps for Tablets and
Smartphones. O’Reilly, 2012.

[5] R. Hahn, C. Bizer, C. Sahnwaldt, C. Herta,

S. Robinson, M. Biirgle, H. Diiwiger, and U. Scheel.
Faceted wikipedia search. In W. Abramowicz and

R. Tolksdorf, editors, BIS, volume 47 of Lecture Notes
in Business Information Processing, pages 1-11.
Springer, 2010.

[6] B. McBride. The resource description framework (rdf)
and its vocabulary description language rdfs. In
S. Staab and R. Studer, editors, Handbook on
Ontologies, International Handbooks on Information
Systems, pages 51-66. Springer, 2004.

[7] M. L. Wilson, B. Kules, M. C. Schraefel, and
B. Shneiderman. From keyword search to exploration:
Designing future search interfaces for the web.
Foundations and Trends in Web Science, 2(1):1-97,
2010.

