
The VLDB Journal (2013) 22:73–98
DOI 10.1007/s00778-012-0302-x

SPECIAL ISSUE PAPER

Automating the database schema evolution process

Carlo Curino · Hyun Jin Moon · Alin Deutsch ·
Carlo Zaniolo

Received: 12 January 2012 / Revised: 10 November 2012 / Accepted: 26 November 2012 / Published online: 28 December 2012
© Springer-Verlag Berlin Heidelberg 2012

Abstract Supporting database schema evolution repre-
sents a long-standing challenge of practical and theoretical
importance for modern information systems. In this paper,
we describe techniques and systems for automating the
critical tasks of migrating the database and rewriting the
legacy applications. In addition to labor saving, the ben-
efits delivered by these advances are many and include
reliable prediction of outcome, minimization of downtime,
system-produced documentation, and support for archiving,
historical queries, and provenance. The PRISM/PRISM++
system delivers these benefits, by solving the difficult prob-
lem of automating the migration of databases and the rewrit-
ing of queries and updates. In this paper, we present the
PRISM/PRISM++ system and the novel technology that
made it possible. In particular, we focus on the difficult and
previously unsolved problem of supporting legacy queries
and updates under schema and integrity constraints evolution.
The PRISM/PRISM++ approach consists in providing the
users with a set of SQL-based Schema Modification Opera-
tors (SMOs), which describe how the tables in the old schema
are modified into those in the new schema. In order to sup-
port updates, SMOs are extended with integrity constraints

C. Curino (B)
Microsoft, Mountain View, CA, USA
e-mail: ccurino@microsoft.com

H. J. Moon
Google Inc., Mountain View, CA, USA
e-mail: hyunm@google.com

A. Deutsch
UCSD, La Jolla, CA, USA
e-mail: deutsch@cs.ucsd.edu

C. Zaniolo
UCLA, Los Angeles, CA, USA
e-mail: zaniolo@cs.ucla.edu

modification operators. By using recent results on schema
mapping, the paper (i) characterizes the impact on integrity
constraints of structural schema changes, (ii) devises rep-
resentations that enable the rewriting of updates, and (iii)
develop a unified approach for query and update rewriting
under constraints. We complement the system with two novel
tools: the first automatically collects and provides statistics
on schema evolution histories, whereas the second derives
equivalent sequences of SMOs from the migration scripts
that were used for schema upgrades. These tools were used
to produce an extensive testbed containing 15 evolution his-
tories of scientific databases and web information systems,
providing over 100 years of aggregate evolution histories and
almost 2,000 schema evolution steps.

Keywords Schema evolution · Rewriting · Updates ·
Mapping · SMO · Integrity constraints management ·
Relational

1 Introduction

The incessant pressure of schema evolution is impacting
every database, from the world’s largest1 “World Data Centre
for Climate” featuring over 6 petabytes of data to the small-
est single-website DB. DBMSs have long addressed, and
largely solved, the physical data independence problem, but
their progress toward logical data independence and graceful
schema evolution has been painfully slow. Both practitioners
and researchers are well aware that schema modifications can
(i) dramatically impact both data and queries [22], endan-
gering the data integrity, (ii) require expensive application

1 Source: http://www.businessintelligencelowdown.com/2007/02/top_
10_largest_.html.

123

http://www.businessintelligencelowdown.com/2007/02/top_10_largest_.html
http://www.businessintelligencelowdown.com/2007/02/top_10_largest_.html

74 C. Curino et al.

maintenance for queries, and (iii) cause unacceptable system
downtimes.

The problem is particularly serious in web informa-
tion systems, such as Wikipedia [55], where significant
downtimes are not acceptable while a mounting pressure
for schema evolution follows from the diverse and com-
plex requirements of its open-source, collaborative software
development environment [22].

The need for solutions that was already in traditional
enterprise environments is made even more pressing by the
growing popularity of large web information systems, Big-
Science projects, and many other open-source, collabora-
tive software development environment [22]. For instance,
Wikipedia [55] experienced over 240 schema versions in
6 years, and Ensembl Genome [28], a data-intensive, Big-
Science project, over 410 schema versions in 9 years—we
use this as our running example, introduced in Sect. 2.1.

The large number and diversity of stakeholders, and the
highly collaborative, fast-progressing environment that is
typical of today’s enterprise and web and scientific endeav-
ors, in fact accelerate the pace of evolution while reducing
tolerance for migration downtime. The urgency of the prob-
lem is also supported by our study of the histories of 15 major
information systems collected in our schema evolution test-
bed [19]. This analysis shows the need to provide support for
data migration and query adaptation but also integrity con-
straints and updates: for instance, the Ensembl DB schema
history contains over 175 individual changes of primary and
foreign keys and that almost 20 % of the SQL statements in
the Wikipedia workload are legacy updates.

The following comment2 by a senior MediaWiki [56] DB
designer reveals the schema evolution dilemma faced today
by database administrators (DBAs): “This will require down-
time on upgrade, so we are not going to do it until we have
a better idea of the cost and can make all necessary changes
at once to minimize it.”

Clearly, what our DBA needs is the ability to:

(i) predict and evaluate the impact of schema and integrity
constraint changes upon queries/updates and applica-
tions using those queries,

(ii) minimize the downtime by replacing, as much as possi-
ble, the current manual process with tools and methods
to automate the process of database migration and query
rewriting,

(iii) document schema evolution automatically thus provid-
ing: data provenance, flash-backs to previous schemas,
historical queries, and case studies to assist on future
problems.

2 From the SVN commit 5552 accessible at: http://svn.wikimedia.org/
viewvc/mediawiki?view=rev&revision=5552.

The objective of our research is to provide an integrated
solution to these three requirements, making a significant
improvement on the current state-of-the art. In fact, the cur-
rent practice is for the database administrator (DBA) to man-
ually migrate data from the old to the new schema, and for
application developers to carefully adapt old applications to
operate on the new schema. These operations are extremely
time-consuming and error-prone—over 18 % of Wikipedia
evolution steps contained errors detectable by an automatic
tool.

Until today, this manifest need for schema evolution
support remained largely unanswered, even though much
progress was made on the related topics, such as mapping
composition, invertibility, and query rewriting [26,30,31]
that provide the formal basis for sound solutions. The compu-
tational costs of these techniques in their general form have
prevented their practical deployment, leaving a gulf between
the elegant advances in theory and the needs of struggling
practitioners—a gulf that has only partially bridged by recent
results [16,49].

These techniques have often been used for heterogeneous
database integration. The PRISM3 system we first introduced
in [23] exploits such techniques to automate the transition to
a new schema on behalf of a DBA. In this setting, the seman-
tic relationship between source and target schema, that is,
the schemas before and after evolution, assisting the DBA
during the design of schema evolution, PRISM can thus
achieve objectives (i–iii) above by exploiting those theoreti-
cal advances and prompting further DBA input in those rare
situations in which ambiguity remains.

Therefore, PRISM provides an intuitive, operational inter-
face, used by the DBA to evaluate the effect of a possible
evolution steps (both structural changes and integrity con-
straints changes) w.r.t. redundancy, information preservation,
and impact on queries and updates. Moreover, PRISM auto-
mates error-prone and time-consuming tasks such as query
translation, computation of inverses, and data migration. As
a by-product of its use, PRISM creates automatic documen-
tation of the schema evolution history, which, in our expe-
rience, is of great use to support data provenance, database
flash-backs, historical queries, and user education about stan-
dard practices, methods, and tools.

PRISM exploits the concept of schema modification oper-
ators (SMO) [16], representing atomic schema changes,
which we then modify and enhance by (i) introducing the
use of functions for data type and semantic conversions, (ii)
providing a mapping to disjunctive embedded dependencies
(DEDs), (iii) obtain invertibility results compatible to [29],

3 PRISM is an acronym for Panta Rhei Information & Schema
Manager—‘Panta Rhei’ (Everything is in flux) is often credited to Her-
aclitus. The project homepage is as follows: http://yellowstone.cs.ucla.
edu/schema-evolution/index.php/Prism.

123

http://svn.wikimedia.org/viewvc/mediawiki?view=rev&revision=5552
http://svn.wikimedia.org/viewvc/mediawiki?view=rev&revision=5552
http://yellowstone.cs.ucla.edu/schema-evolution/index.php/Prism
http://yellowstone.cs.ucla.edu/schema-evolution/index.php/Prism

Automating the database schema evolution process 75

and (iv) define the translation into efficient SQL primitives
to perform the data migration.

In [20], we introduce PRISM++ a significant evolution
of our previous attempt. To the best of our knowledge,
PRISM++ is the first system to offer end-to-end support for
query and update adaptation through both structural schema
changes and integrity constraints evolution. This is achieved
by: (i) complementing the SMO introduced above with a set
of integrity constraints modification operators (ICMO), (ii)
constraining the use of SMOs, and (iii) extending the basic
query rewriting scheme to soundly, yet not completely, sup-
porting query with negation and update rewriting.

Given a specification of the desired schema and integrity
constraints evolution, PRISM++ automates the migration of
the data and the mapping of (legacy) queries and updates
from the old schema to the new schema.

The notion of a sound mapping for queries and updates
across schemas has been extensively studied in the past and
can be formalized as follows4:

Let the current schema be S′, the current database instance
I ′, and let S be a past schema version.

1. Given a legacy query Q defined over S, PRISM++ con-
ceptually migrates I ′ “backwards” to an S-instance I ,
by inverting the schema evolution steps. Then, the result
Q(I) of executing Q on I is returned.

2. For a legacy update U against schema S, PRISM++ con-
ceptually migrates I ′ backwards to S-instance I , applies
the update to obtain U (I), and then migrates U (I)
“forward” through the evolution steps, to obtain a new
S′-instance, replacing I ′.

The challenge in achieving this semantics is to avoid the
prohibitive cost of actually migrating data to support legacy
queries or updates. Rather than performing the costly mate-
rialization of I , PRISM++ rewrites the legacy queries Q
and updates U to queries Q′ and updates U ′ against cur-
rent schema S′, such that the intended semantics is pre-
served by operating only on the current database version:
Q′(I ′) = Q(I) and U ′(I ′) is equivalent to executing U (I)
and migrating it forward to S′.

The first version of our system, PRISM, achieved these
objectives for a large class of queries as described in [23];
however, it did not support updates and could not handle evo-
lution steps that include integrity constraint modifications. In
this paper, we focus on the PRISM++ system that overcomes
those limitations and supports:

1. update rewriting to adapt legacy updates to run on the
current schema,

4 This is an adaptation of the classical view-update semantics [14,25,
37] to our context, in which evolution operators replace the views.

2. evolution of integrity constraints significantly extending
the class of evolution steps covered, and finally

3. a wider class of queries that now include queries with
negation and simple functions.

In addition to these external functionality extensions,
major changes were made internally to incorporate the
advances made in modeling and mapping legacy update,
including

(i) the representation of updates in a fashion that is
amenable to rewriting, namely based on query equivalence,
(ii) a new inference engine combining novel algorithms
and chase-based rewriting technology to rewrite queries and
updates through both structural changes of the schema and
integrity constraints evolution, and (iii) a set of operators
that support modeling of integrity constraint evolution, and a
characterization of how integrity constraints are affected by
structural schema changes.

In its design, the system balances the need to achieve
sufficient expressivity to cover a wide range of practical
cases, with computational complexity of several related
problems that are notoriously hard in the general case,
including the view-update problem [14], deciding schema
equivalence [43], schema mapping composition [30] and
inversion [31], and consistent query answering [12]. The
most general version of the schema evolution problem mod-
eled under these formalisms tends to be intractable or even
undecidable (for schema mappings expressed classically, in
the language of arbitrary views [53] or of source target
tgds [34,38])—see Sect. 9 for a discussion of related work.
Thus, the design of PRISM++ uses the evolution language
as its main defense against the complexity threat: indeed,
this language allows us to “divide and conquer” the tasks, by
applying case-by-case analysis for each evolution operator.

Our newly developed testbed [19] provided us with a way
to test the expressivity of the PRISM++ evolution language
and the effectiveness of our rewriting techniques on the evo-
lution history and workloads (queries and updates) of several
real-world systems, including Ensembl DB and Wikipedia.
A short video demo of PRISM++ is available online.5

Furthermore, we introduce two new important companion
tools to our system:

– an automatic schema evolution history analysis tool and
– a semi-automatic tool to extract SMO-based evolutions

from SQL migration scripts.

The former provides completely automatic data collection
and analysis for evolution histories. This tool helps DBAs
to asses the intensity and nature of the evolution of their
databases by reporting and visualizing several key statistics

5 See: http://tinyurl.com/updaterewriting.

123

http://tinyurl.com/updaterewriting

76 C. Curino et al.

(e.g., lifetime of a table, the number of tables in each revision,
frequency of revisioning). This provides a unique vantage
point on long and complex evolution histories. We leveraged
this tool to scale our data collection and analysis and thus
validate several of our hypotheses about frequency and nature
of various evolution steps on a broader spectrum of evolution
histories—we present this tool early in the paper to motivate
the rest of our work by reporting some of our findings.

The latter is a tool that significantly eases the barrier to
use our system, by allowing DBAs to write regular SQL to
evolve our system (the common practice today), and then
feed this into a semi-automatic tool that extracts SMOs. This
means that DBAs can leverage the many advantages of our
formal framework and rewriting capabilities without the need
to immediately embrace a new language. Moreover, the fact
that we could build such a tool, and achieve 100 % precision
and 66–100 % recall on large evolution histories is a testa-
ment of a good design of our set of operators.

Contributions The PRISM++ system harnesses recent theo-
retical advances [27,31] into practical solutions, through an
intuitive interface, which masks the complexity of underling
tasks, such as logic-based mappings between schema ver-
sions, mapping composition, and mapping invertibility. By
providing a simple operational interface and speaking com-
mercial DBMS jargon, PRISM++ provides a user-friendly,
robust bridge to the practitioners’ world.

System scalability and usability have been addressed
and tested against some of the most intense histories of
schema evolution available to date, including Wikipedia and
Ensembl.

PRISM++ is, to the best of our knowledge, the first prac-
tical system to address integrity constraints evolution, and
update rewriting.

We provide a practical tool for the analysis of schema
evolution histories that automates data collection, statistics
gathering and visualization for relational database schema
versions, and a pattern-based tool that converts SQL migra-
tion scripts into sequences of SMOs, thus providing signifi-
cant support to user aiming at using our tools.

Alltogether PRISM++ is today one of the most complete
solutions for schema evolutions we are aware of.

Paper Organization The rest of this paper is organized as
follows: Sect. 2 presents a new tool to collect and analyze
scheme evolution histories, and introduce our datasets and
a running example, Sect. 3 introduces our schema evolution
language, Sect. 4 presents the problems related to data migra-
tion through SMOs and ICMOs. We then discuss our novel
rewriting technology in Sect. 5 and present implementation
and optimization concerns in Sect. 6. We then introduce a tool
to automatically extract SMOs from SQL scripts in Sect. 7
and evaluate our system and tools in Sect. 8. Related work is
discussed in Sect. 9, and we conclude in Sect. 10.

2 Automatic evolution analysis and motivation

In [22], we argued for the need to develop automatic tools for
the analysis of long schema evolution histories. This serves
two important purposes: in the context of our research, it
allows us to automate the collection and analysis of large
amount of schema evolution data, to challenge our theories
on practical scenarios, and in the context of a database
administrator (DBA) everyday life, such a tool provides
an useful companion to observe the evolution of a data-
base and detect particularly troubling areas and trends. For
example, by analyzing Wikipedia, we detected a clear grow-
ing trend that matches both the increase in popularity and
increase in features of such a large system. Observing the
history the sheer number of changes to tables related to
anti-spam features (ipblocks, page_restrictions,
user_restrictions, logging) highlights the contin-
uous fight against vandalism of the Mediawiki developer
team.

To facilitate this information gathering, we built a com-
pletely automatic tool that explores both SVN and CVS
repositories, downloads multiple versions of a schema, and
automatically analyze the evolution, providing several statis-
tics and visualizations. This is a one-stop global view of the
evolution for DBAs. We applied this tool to several informa-
tion systems, some of which are listed in Table 1. A sample of
output for the Ensembl database is available at: http://tinyurl.
com/evolution-stats.

Among several visualizations that the tool provides, we
reproduce Fig. 1, which is the number of Ensembl schema

Table 1 Evolution histories of popular IS in our dataset

System name System type # of schema
versions

Lifetime
(years)

Atutor Educational
CMS

216 7.9

CERN-DQ2 Scientific DB 51 1.3

Coppermine CMS 36 4.8

Dekiwiki CRM 16 4.2

E107 CMS 16 8.5

Ensembl Scientific 412 9.8

KtDMS CMS 105 6.3

Mediawiki Wiki 323 8.9

Nucleus CMS 51 8.9

PHPwiki CMS 19 7.2

Slashcode News
Website

256 12.5

Tikiwiki Wiki 152 7.0

TYPO3 CMS 39 8.3

XOOPS CMS 11 3.5

Zabbix Monitoring
solution

196 10.8

123

http://tinyurl.com/evolution-stats
http://tinyurl.com/evolution-stats

Automating the database schema evolution process 77

Fig. 1 Sample of our automatic evolution analysis: Ensembl evolution,
monthly revision count

Fig. 2 Sample of our automatic evolution analysis: Ensembl evolution,
column count

revisions in each month, and Fig. 2, which shows the num-
ber of columns over time. In our experience, this aggregate
statistics are very useful to quickly assess the nature of the
evolution. As an example of ease of assessment observed
in Fig. 2. The constant increase in the number of columns
indicates that the database is supporting either a growing set
of applications or applications that are quickly augmenting
their functionalities, hence requiring new kinds of data to be
stored (both effects are at play for Ensembl).

Figure 3 shows another visualization, and it uses the
Mediawiki evolution history as an example. This visualiza-
tion reports aggregated statistics for column evolution, index
changes, type changes, rollbacks of the evolution, etc., as well
as a combined metric we defined, the “table evolution rate”.
The table evolution rate has been computed by assigning
weights to the various statistics, as a linear regression based

Fig. 3 Sample of our automatic evolution analysis: Mediawiki evolu-
tion

on human-generated judgments (by five grad students) of the
intensity of the evolution history of a table. The goal of the
table evolution rate is to provide a quick estimate/visual clue
of how intense the evolution history has been. For example,
this metric properly captures the evolution intensity of the
page table in Mediawiki. The page table has been subject
to frequent and dramatic refactoring aiming at providing con-
venient and high performance access to the metadata of an
article (the core of the Mediawiki schema).

We argue that this tool allowed us to collect large schema
evolution histories (listed in Table 1) and learn a great deal
from them. We expect this to be useful for DBAs as well.
Most importantly, this tool provided us with a vantage point
on schema evolution from which we spotted important lim-
itations of our previous research efforts. Our first work was
limited to query rewriting and to structural schema changes
only. That was an important first step, but the many evo-
lution histories we collected made evident the need to sup-
port updates and integrity constraints evolution as well—this
motivates the effort we discuss in this paper.

In the remainder of this section, we introduce a running
example that will be used throughout the paper. The running
example has been adapted from the actual evolution history
of the Ensembl genetic database, one of the richest datasets
from Table 1.

2.1 Running example: a genetic DB

The Ensembl project1, funded by the European Biology
Institute and the Welcome Trust Sanger Institute, provides
a data-centric platform used to support the homonymous
human genome database, and other 15 genetic research
endeavors. Ensembl DB has witnessed an intense schema
evolution history. In about 9years of life-time over 410+
schema versions appeared to public (i.e., almost a version
a week in the last decade). Ensembl users can access the
underlying database in multiple ways, including web-page-
mediated searches, direct SQL access, and data mining and
querying APIs. Every change to the schema potentially
impacts all the applications and interfaces built on it; some
developed by third parties and therefore hard to upgrade.
Hence, there is a substantial need for transparent evolution
support.

123

78 C. Curino et al.

Fig. 4 Three (simplified) schema versions from the actual Ensembl genetic DB schema history

We select from this long schema history a few representa-
tive examples, compressed and adapted for the sake of pre-
sentation. The starting schema S1 of Fig. 4 is an excerpt of
the CVS.6 schema revision 188.2.6; this schema describes
how the Ensembl DB stores its information about DNA
sequences, exons,7 and genes. Underlined attributes are pri-
mary keys and arrows indicate foreign keys. Each table has
a primary key constituted of one numerical identifier, except
for the exon table, where the rank of an exon is also needed
to uniquely identify its tuples. Both exon and gene refer to
DN A sequences stored in tableseq_region, by referenc-
ing their region_id and specifying start and end positions
in the DNA sequence. The g_descr table stores textual
descriptions of genes.

In July 2003, the team of DBAs decided to remove from
exon the rank attribute and force id to be the new primary
key, discarding violating tuples,8 leading to the schema S2 in
Fig. 4 (revision 188.2.8 CVS schema).

In August 2005, a new evolution step impacting this subset
of the schema appeared in the public release of the DB. This
evolution step involved two actions: (i) renaming of column
type to biotype in table gene and (ii) the joining of the
tables gene and g_descr into a unified table gene, lead-
ing to the schema S3 in Fig. 4 (revision 226 of CVS schema).
This example is used throughout the paper to illustrate our
technical contributions.

Next, we introduce a language to capture schema evo-
lution, which will allow us to divide and conquer the hard
problem of query and update rewriting, as we discuss in the
rest of the paper.

3 A schema evolution language

3.1 Schema modification operators

In [23], we introduced the SMO of Table 2. SMOs tie together
schema and data transformations and carry enough infor-
mation to enable automatic query mapping. The SMOs in
Table 2 are the result of a difficult mediation between con-

6 See Ensembl CVS repository at: http://tinyurl.com/ensembl-schema.
7 An exon is a nucleic acid sequence related to a portion of DNA.
8 This information is derived from the CVS logs and from the SQL
used for data migration.

Table 2 A language for schema evolution: SMO + ICMO

Schema modification operators (SMO) Syntax

CREATE TABLE R(a,b,c)

DROP TABLE R

RENAME TABLE R INTO T

COPY TABLE R INTO T

MERGE TABLE R, S INTO T

PARTITION TABLE R INTO S WITH cond, T

DECOMPOSE TABLE R INTO S(a,b), T(a,c)

JOIN TABLE R,S INTO T WHERE cond

ADD COLUMN d [AS const | f unc(a, b, c)] INTO R

DROP COLUMN c FROM R

RENAME COLUMN b IN R TO d

Integrity constraints modification operators (ICMO) syntax

ALTER TABLE R ADD PRIMARY KEY pk1(a, b)<policy>

ALTER TABLE R ADD FOREIGN KEY f k1(c, d) REFERENCES
T (a, b)<policy>

ALTER TABLE R ADD VALUE CONSTRAINT vc1 AS
R.e = “0”<policy>

ALTER TABLE R DROP PRIMARY KEY pk1

ALTER TABLE R DROP FOREIGN KEY f k1

ALTER TABLE R DROP VALUE CONSTRAINT vc1

flicting requirements: atomicity, usability, lack of ambiguity,
invertibility, and predictability. The design process has been
driven by continuous validation against real cases of web
information system schema evolution, among which we list
MediaWiki, Joomla!, Zen Cart, and TikiWiki.

An SMO is a function that receives as input a relational
schema and the underlying database and produces as out-
put a (modified) version of the input schema and a migrated
version of the database.

Syntax and semantics of each operator are rather self-
explanatory; thus, we will focus only on a few, less obvious
matters: all table-level SMOs consume their input tables, for
example, join table a,b into c creates a new table c
containing the join of a and b, which are then dropped; the
partition table operator induces a (horizontal) partition
of the tuples from the input table—thus, only one condi-
tion is specified; nop represents an identity operator, which
performs no action but namespace management—input and
output alphabets of each SMO are forced to be disjoint by
exploiting the schema versions as namespaces. The use of

123

http://tinyurl.com/ensembl-schema

Automating the database schema evolution process 79

Fig. 5 SMOs characterization w.r.t. redundancy, information preser-
vation, and inverse uniqueness

functions in add column allows us to express in this sim-
ple language tasks such as data type and semantic conversion
(e.g., currency or address conversion) and to provide practi-
cal ways of recovering information lost during the evolution.
The functions allowed are limited to operating at a tuple-level
granularity, receiving as input one or more attributes from the
tuple on which they operate.

Figure 5 provides a simple characterization of the oper-
ators w.r.t. information preservation, uniqueness of the
inverse, and redundancy. The selection of the operators has
been directed to minimize ambiguity; as a result, only join
and decompose can be both information preserving and
not information preserving. Moreover, simple conditions on
integrity constraints and data values are available to effec-
tively disambiguate these cases [52].

When considering sequences of SMOs, we notice that (i)
the effect produced by a sequence of SMOs depends on the
order; (ii) due to the disjointness of input and output alpha-
bets, each SMO acts in isolation on its input to produce its
output; and (iii) different SMO sequences applied to the same
input schema (and data) might produce equivalent schema
(and data).

3.2 Integrity constraint modification operators

Schema modification operators alone do not capture integrity
constrains evolution. PRISM++ extends this approach by
introducing six new operators used to edit the schema
integrity constraints: the ICMOs shown in the second part of
Table 2. The “< policy >” place-holder is used as a selec-
tor to chose among the various integrity constraints enforce-
ment policies offered by PRISM++, as discussed in detail in
Sect. 4. PRISM++ supports three basic integrity constraints:
primary keys, foreign keys, and simple value constraints.9

These constraints cover all the constraints that were actually
used in the large dataset of [19]. In the following, we pro-

9 These are simple equality assertions about the value of a column and
constants, supported by the SQL DDL.

vide the details on how the two sets of operators interact and
combine into a powerful and intuitive language for evolution.

Let us start by presenting as an example the evolution step
S1 − S2 of Sect. 2.1. The DBA describes the structural and
integrity constraints changes as in the following:

Example 1 Three operators that transform S1 into S2

The operators 1 and 3 are ICMOs (introduced by the
ALTER keyword), while operator 2 is an SMO.

The keyword ENFORCE in the third statement prescribes
that the systems will discard all tuples involved in a violation
of the newly introduced key. This is only one of the alternative
enforcement policies provided by PRISM++, as detailed in
Sect. 4.

3.3 Impact of SMO on integrity constraints

Integrity constraint evolution occurs directly (when the
administrator adds or removes constraints via ICMOs), for
example, adding of a foreign key to the schema, or indirectly
(when an SMO changes a schema structure referred to by a
constraint), for example, when a table target of a foreign key
relationship is joined to another table. An interesting ques-
tion is thus: “given a set of constraints I C1 on schema S1

that is evolved by the sequence of SMOs and ICMOs M into
schema S2, which are the constraints I C2 that must hold on
S2?”

Formally, we say that I C2 is implied by I C1 under the
evolution M and we denote it as I C1 |�M I C2. Note that,
for general evolution steps given by arbitrary views and for
general classes of integrity constraints, this problem is noto-
riously hard: checking that a constraint is implied is unde-
cidable, and the implied constraints may have non-finite
cover [36].

However, in PRISM++, we do not have to solve the gen-
eral version of this problem. We only have to deal with
three types of supported constraints (key, foreign key, and
value) and with simple evolution steps expressed by SMOs
and ICMOs—that have been carefully designed to enable all
common evolution scenarios while avoiding complexity and
decidability pitfalls. It is therefore feasible to pre-compute,
for each type of constraint on the initial schema and for each
evolution operator, the derived constraints it corresponds to
on the evolved schema—we call this “constraints implica-
tion”.

With reference to Fig. 6, let ic be an integrity constraint
for schema S2, while I1 and I2 are instances of S1 and S2,
respectively, we formally introduce the notion of:

Definition 1 Constraints implication Let I C1 be a set of
integrity constraints over schema S1, and M a mapping from

123

80 C. Curino et al.

Fig. 6 The general framework

S1 to S2, then we write:
I C1 |�M ic iff ∀I1, I2(I2 = M(I1) ∧I1 |� I C1

�⇒ I2 |� ic)

Definition 1 says that the integrity constraint ic on schema
S2 is implied by I C1 under M , if and only if: for every
instance I1 of S1 and I2 of S2 obtained as the mapping of
I1 through M , the following holds: if I1 satisfies I C1 then I2

satisfies ic. 10 The notion of closure is naturally obtained as:

Definition 2 The closure of I C under M is defined: I C M :=
{ic | I C |�M ic}

Thus, I C M is the set of all integrity constraints implied on
S2 by I C under M . Using this notion of closure, we define
the set of all the integrity constraints I C2 valid on schema
S2 as I C2 = I C M

1 . Applying this definition to each of the
structural SM Os defined in Table 2, we obtain a precise char-
acterization of the impact of structural SM Os on integrity
constraints.

We exploit the modularity offered by the SM Os to achieve
identical results in a programmatic way. In fact, thanks to the
independence of the actions performed by each SM O in a
sequence, we can derive output constraints observing one
SM O at a time (and its input constraints). This reduces the
general problem to the one of generating the correct set of
output integrity constraints for each SM O type (and each
input set of IC), which is easy to achieve in practice, thanks
to the atomicity of SM Os.

Consider as an example the following input schema S1

with integrity constraints I C1:

S1 : V (a, b, c)

I C1 : V (a, b, c), V (a, b′, c′) �⇒ b = b′, c = c′

And a forward SMO:
DECOMPOSE V INTO V1(a,b), V2(a,c)

Which transforms schema S1 into the following schema S2:

10 Note that we apply the definition only for the case when M is a
functional mapping. This suffices in our context since we force evolu-
tion operators to be invertible (as explained below). In general, how-
ever, classical schema mappings [34] may associate several possible
S2-instances with a given S1-instance.

S2 : V 1(a, b), V 2(a, c)

By applying the Definition 2 to I C1 under the logical map-
ping M corresponding to the above SMO, we can determine
the set of output integrity constraint I C2 to be the following:

I C2 : V 1(a, b), V 1(a, b′) �⇒ b = b′

V 2(a, c), V 2(a, c′) �⇒ c = c′

V 1(a, b) �⇒ ∃cV 2(a, c)

V 2(a, c) �⇒ ∃aV 1(a, b)

3.4 Forcing information preservation for SMOs

It turns out that the key technical challenges to PRISM++
data migration and query/update rewriting are raised by those
evolution operators that are not information preserving. We
introduce the notion of information preservation in terms of
the existence of an invertible inverse, intuitively this char-
acterizes a transformation between schemas that can be tra-
versed (by data) back and forth without loss of information.

Definition 3 We say that an evolution operator O from
schema S1 to schema S2 is information preserving if (i) O is
functional, that is, for every S1-instance I1, there is a unique
S2-instance I2 with O(I1) = I2, and (ii) there is an operator
O−1 from S2 to S1 (the inverse of O) such that for every
S1-instance I2, O−1(O(I1)) = I1.
This notion of information preservation is related to classi-
cal notions of invertibility of schema mappings [31], schema
equivalence [43], information capacity [42], instantiated to
the special case when the schema mapping is given by our
evolution operators: O is information preserving if and only
if it is invertible, if and only if schemas S1 and S2 are equiv-
alent, that is, have the same information capacity.

Since non-information-preserving operators require spe-
cial care, we made the design decision of minimizing their
number by normalizing the evolution history so as to force
every structural change operator (i.e., every SMO) to apply
in a context in which it is information preserving—this is an
important difference from [23]. To this end, we successfully
exploited ICMOs, which are by definition not information
preserving and require special handling anyway (as discussed
in Sects. 5.3 and 5.5).

No generality is lost in our approach, since every struc-
tural change operator can be sanitized into its information-
preserving counterpart by simply adding the proper ICs—
whereby any information loss will now be imputed to the
sanitizing ICMOs rather than the SMO. This makes the over-
all set of SMOs and ICMOs a more precise, finer-grained tool
for describing evolution—the intuitive advantage is to sepa-
rate management of structural modifications from alterations
in the information capacity (i.e., IC editing).

This is illustrated by Example 2, which displays the oper-
ator sequence used to evolve schema S2 into S3.

123

Automating the database schema evolution process 81

Example 2 Three operators that transform S2 into S3

The example contains the following evolution steps: (i)
renaming of column type to biotype in table gene
(operator 1) and (ii) the join of table gene and g_descr
(operator 3), plus the needed integrity constraints change
(operator 2).

Operator 2 introduces a foreign key to table gene, con-
straining its values, and thus guaranteeing that the subsequent
JOIN operator is information preserving (lossless). As one
can see, any loss of tuples that would have been incurred
by operator 3 is now imputed to operator 2, for example,
any tuple in table gene not matching a corresponding tuple
in g_descr is filtered out by operator 2, and the remain-
ing tuples can go through operator 3 with no information
loss. Similar sanitizing IC alterations have been studied and
identified for each SMO. PRISM++ automatically suggests
the sanitizing ICMOs required before each SMO entry and
provides feedback on the potential data losses. This is possi-
ble because for each SMO, we can statically define a set of
pre-conditions under which each the operator is information
preserving.

The DBA tightens or relaxes the integrity constraints in
the schema, by issuing ICMOs that add or remove such con-
straints without modifying the schema structure. Issuance of
such ICMOs (and the choice of enforcement policies) can: (i)
affect the current DB content and (ii) determine the rewriting
of queries and updates as discussed in the following. These
are the subjects of the next two sections.

4 Data migration

The new evolution language we designed guarantees that data
migration steps through SMOs will always be invertible (and
information preserving), this significantly simplifies their
handling. The focus of this section is thus on migrating data
through evolution steps that involve changes of the integrity
constraints; in particular, we discuss two policies to handle
violations of integrity constraints.

In terms of database content, we will assume that the data-
base satisfies the initial constraints I C1. Thus, after a con-
straint is dropped (I C2 = I C1 − k), the DB instance also
satisfies the new relaxed constraints (I1 |� I C2), and there-
fore, no additional measures are required. However, when
constraints are added (I C2 = I C1 + k), the original DB
instance I1 might violate the new constraint k and some cor-
rective action is required. PRISM++ helps the DBA in this
phase by offering two alternative IC enforcement policies,

which are very common in practice [19]. These are CHECK
and ENFORCE.

When CHECK is used, the system verifies that the current
database satisfies the new constraint k. The ICMO operation
is rolled back otherwise. This policy is very common in real-
life scenarios, where constraints are often enforced at the
application level long before being declared in the schema—
for example, all of the foreign keys currently declared in the
Ensembl genetic DB have been enforced at the application
level for years, before being explicitly introduced.

When ENFORCE is chosen, the system removes all tuples
violating the newly introduced constraint k: if a pair of tuples
agrees on the key attributes but disagrees on any non-key
attribute, then both tuples are removed. If a tuple violates
a foreign key constraint, it is removed, and if its removal
leads to additional foreign key violations, the removal cas-
cades recursively. The “removed” tuples are not lost: they
are stored in the new database instance in temporary viola-
tion tables, to support any inconsistency resolution action
the DBA might wish to carry out. We denote the contents of
the violation tables with I viol

1 . The remaining tuples form an
instance I sat

1 , which satisfies the constraint, and which we
call the canonical repair of I1.

Our design was motivated by the goal of enabling
PRISM++ to work in a permissive mode in which inconsis-
tencies do not halt evolution. PRISM++ supports (but does
not mandate) the DBA’s intervention for inconsistency res-
olution. As long as this intervention is delayed (possibly
indefinitely), inconsistencies are tolerated and their eventual
resolution continues to be supported. Our objective is not
to hard-code the “best” repair technique, but to provide the
interface in PRISM++ for the DBA or domain expert to plug
in their favorite. This is achieved via violation tables and
the default repair policy mentioned above. Well-known DB
repair techniques (including manual repair) can be applied
starting from our canonical repair. Our approach is in con-
trast to that of minimal repairs from the literature [12]. For
instance, in a minimal repair, only one of the two tuples vio-
lating a key constraint is removed. This suffices to restore
consistency and is less invasive. There usually are several
minimal repairs possible, and many theoretical works advo-
cate evaluating queries under certain answer semantics over
the set of minimal repairs. Minimal repairs are a very attrac-
tive concept, but unfortunately, they lead to intractable data
complexity of query answering [12] even for very restricted
query languages.

In PRISM++, we part from this classical notion and insist
on choosing a single repair in order to preserve tractable
query answering. This can be the canonical repair that,
though non-minimal, is prevalent in practice, and it is also
compatible with subsequent conversion into any standard
minimal repair (performed by transferring the appropriate
tuples back from the violation tables into the instance).

123

82 C. Curino et al.

5 A new rewriting technology

In the following, we discuss our rewriting technology. Just as
a reminder, PRISM++ implements by means of query/update
rewriting the semantics we introduce in the introduction, that
is, the rewriting we present is equivalent to a virtual migration
of the data from the current schema back to the past version
schema being queried and updated by some legacy appli-
cation. More precisely, the DBA using PRISM++ evolves
the old schema S1 (with integrity constraints I C1) into a
new schema S2 (with integrity constraints I C2) by issuing a
sequence M of SMOs and ICMOs. In order to adapt legacy
queries and updates designed to work on (S1,I C1) to oper-
ate on (S2,I C2), the system semi-automatically generates
an inverse sequence M ′ conceptually migrating data back.
SMOs and ICMOs in the inverse M ′ determine the seman-
tics of the rewriting.

Extending the rewriting engine, we introduced in [23] to
handle integrity constraints, updates and query with nega-
tion and functions proved to be a major technical challenge.
We first introduce basic query rewriting through SMOs, than
discuss the extensions to handle negation and functions, and
than present rewriting through ICMOS.

5.1 Query rewriting through SMOs

In order to rewrite queries and updates through SMO-based
evolution steps, the PRISM++ system: (i) inverts SMO
sequences,11 (ii) translates each SMO into an equivalent logi-
cal schema mapping expressed in the language of DED [27],
and (iii) rewrites queries using these DEDs by means of a
chase-based algorithm named chase&backchase (C&B) [27].

The C&B algorithm reformulates a query on a schema S1

to an equivalent query on a schema S2 when the schemas
are related by a schema mapping given as a set of DEDs,
and when the integrity constraints on the two schemas are
expressed as DEDs. DEDs are sufficiently expressive to
capture key, foreign key, and all other types of constraints
declared in SQL’s DDL. This process is an extension of the
one discussed in [23], and we only illustrate it via the example
in Fig. 7.

Figure 7 shows an example of rewriting through opera-
tor 3 of Example 2 (i.e., a JOIN SMO). The system auto-
matically inverts the operator by means of a DECOMPOSE
SMO, and derives a logical mapping between schema ver-
sions expressed as DEDs. The DEDs are fed into the C&B
rewriting engine [26] to rewrite the input query into an equiv-
alent one operating on the new schema, according to the fol-
lowing semantics:

11 This process is semi-automatic, and the user is guided by the system
in the selection –at evolution time, not at query rewriting time– of the
inverse for each SMO [23].

Fig. 7 Query rewriting through SMO

Definition 4 A query Q2 on schema S2 is an equivalent
rewriting of query Q1 on S1 if for every instance I2 of S2

the following holds: Q2(I2) = Q1(M ′(I2)).

Here, M ′ is the logical mapping derived from the inverse
of the input SMO (e.g., the DECOMPOSE SMO of Fig. 7) that
conceptually migrates the instance I2 back to schema S1. In
PRISM++, every SMO step is guaranteed to be information
preserving, thus the inverse SMO exists and an M ′ mapping
I2 to I1 can easily be derived as in [23].

We can show the following, which extends the results
in [23] to incorporate integrity constraints on the schemas:

Theorem 1 If Q1 is a union of conjunctive queries, the for-
eign key constraints on both schemas S1, S2 are acyclic, and
the SMO operator is information preserving, then an equiva-
lent rewriting Q2 of Q1 always exists, and the C&B algorithm
of [27] is guaranteed to find one.

The acyclicity of a set of foreign keys is a classical con-
cept [11], and a special case of the notion of weak acyclicity
of a set of embedded dependencies [34]. In essence, it rules
out cycles in the dependency graph constructed as follows:
the nodes of the graph are the attribute names of all tables in
the schema (prefixed by the table name to avoid confusion).
For every equality of key attribute K in table R to foreign key
attribute F in table S (as asserted by some foreign key con-
straint), an edge is added from R.K to S.F . This acyclicity
condition is satisfied by a majority of practical scenarios and
widely accepted in the literature as having significant practi-
cal impact. Acyclicity (as well as its generalization to weak
acyclicity) suffices to guarantee the termination of the chase
procedure[11], which the C&B algorithm[27] relies on.

Theorem 1 follows from the facts that (i) the C&B algo-
rithm is guaranteed to terminate when the foreign key con-
straints are acyclic, (ii) the C&B algorithm is complete (i.e.
finds a rewriting whenever one exists) for rewriting unions of
conjunctive queries across schemas when the schema map-

123

Automating the database schema evolution process 83

Fig. 8 Query Rewriting through ICMO: ENFORCE

ping is defined by DEDs, and (iii) the sanitized, information-
preserving versions of SMOs can be captured using DEDs.

5.2 More expressive query classes

PRISM++ completely automates the rewriting process
through mixed sequences of SMOs and ICMOs, by means
of a chain of invocations of the chase-based rewriting (for
SMOs) or the ICMO rewriting algorithm. The C&B algo-
rithm of [27] was implemented for unions of conjunctive
queries (with no negation). For PRISM++, the C&B algo-
rithm is extended to a larger class of queries, which include
negation and functions (built-in aggregates and user-defined).

In the example of Fig. 8, we show how negation (e.g.,
NOT EXISTS) might appear in the rewritten query as a con-
sequence of ICMO-based evolution steps. This introduces a
new challenge, since even the chase extensions of [26] cannot
deal with this type of negation. To this end, we devised the
Quer y Rewri te algorithm that extends the C&B algorithm.
Even if the input queries and updates come from the class the
C&B can handle, this extension is key to PRISM++, being
needed for rewriting queries that contain the type of negation
introduced by ICMO rewriting.

The key idea behind the Query Rewri te algorithm is to
break the input query Q into its components, which are maxi-
mal query fragments containing no negation or function calls.
Each component is rewritten using the standard C&B algo-
rithm, then the rewritten components are re-assembled, pre-
serving the nesting of negation and function calls.

The soundness of Query Rewri te derives directly from
the fact that we use the chase only on positive (sub)queries
without function calls and that the rewritten components are
reassembled respecting the structure of the original queries.

Note, however, that this algorithm suffers a loss of com-
pleteness that manifests itself as follows: it may be the case
that not all of Q’s components have an equivalent rewriting in
isolation (and therefore none is found by the C&B), yet there
is one for the entire query Q, which therefore will be missed
by Quer y Rewri te. The loss of completeness is unavoidable
due to the undecidability of the rewriting existence problem
in the presence of negation and function calls. Nonetheless,
the Quer y Rewri te algorithm succeeded in all the practi-
cal scenarios from [19] we tested, delivering a significant
improvement with respect to the state-of-the art.

This extension is important not only to cover a larger set
of queries, but also to handle mixed sequences of SMOs and
ICMOs, that, as we will show in the following, can potentially
introduce negation in any input query or update.

5.3 Query rewriting in the presence of ICMOs

What we described so far takes care of all structural but infor-
mation preserving evolution steps. What remain to be dis-
cussed is the handling of ICMO-based evolution steps, which
in turn involve no structural changes occur. When the DBA
tightens the set of existing integrity constraints, by introduc-
ing a new constraint k, the DBMS will enforce in the new
schema S2 a set I C2 = I C1 + k of integrity constraints that
implies the old ones, I C2 |�M ′ I C1. Old queries and updates
can, therefore, be executed as-is under I C2, with no need for
any rewriting.12 Therefore, tightening integrity constraints
(difficult for data migration) becomes trivial for rewriting.

On the contrary, relaxing the integrity constraints, for
example, issuing an ICMO removing a constraint k, requires
a great deal of attention. In fact, queries and updates that
assume k is enforced need to be modified to compensate for
the lack of such constraint in the new schema. This is for-
malized by specifying the enforcement policy of the virtual
ICMO (the inverse) that re-introduce the removed constraints
k—different enforcement policies determine different com-
pensation effects for the missing constraint.

The system provides three policies (selected when speci-
fying the inverse ICMO) that support the most common sce-
narios found in [19]—they correspond to special cases of the
general view-update theory that have great practical appeal:
IGNORE13: the system ignores whether the instance I2

satisfies the integrity constraint k or not. The effect on rewrit-
ing is that of executing the original queries and updates
unmodified on the new schema. Within the view-update liter-
ature, this means allowing side effects [14]. While there are
clear risks associated with this policy, it must be included to
support a very common practice. The system provides appro-
priate feedback and warnings to the DBA. The subsequent
options are stricter and provide stronger guarantees.
CHECK: the rewriting engine checks that the DB instance

I2 satisfies the removed constraint k, for example, in the first
step of Example 1 if we apply the CHECK policy, the system
would verify that the exon table still satisfies the primary
key that has been removed. The original query/update is exe-
cuted if the condition is evaluated positively and an error

12 Note that some of the updates will now fail due to the stricter con-
straints. This is unavoidable to maintain the DB instance I2 consistent
with I C2 and is in general well-accepted consequence of tightening
constraints.
13 This policy is only available for rewriting purposes, that is, for
inverses of ICMOs, since the use for data migration would lead to an
inconsistent DB instance: I2 �|� I C2.

123

84 C. Curino et al.

is returned otherwise—these conditions are implemented as
probe queries, as shown later in Sect. 5.5 for updates. This
policy, as opposed to the previous one, is very conservative
and guarantees that queries and updates will operate under
the exact same assumptions under which they were designed
(i.e., that the constraint k is valid in the DB instance). This
is common in scenarios in which the enforcement of some
integrity constraints is moved to the application level (e.g.,
some of the foreign keys in the CERN physics databases
[19]). The new applications are designed to enforce the con-
straint, while the old applications rely on the DBMS for that.
ENFORCE: the system introduces conditions in theWHERE

clause of queries (and updates) to limit the scope of their
actions to the canonical repair I sat

2 of the DB instance I2

with respect to the removed constraint—no violating tuples
are returned in the query answer (or affected by the update
execution). This policy allows the DB instance to partially
violate the removed constraint k, limiting the access of legacy
queries and updates to the valid portion of the instance (as
defined by our canonical, non-minimal repair discussed in
Sect. 4). Let us demonstrate this, concentrating on the first
operator of Example 1 that relaxes the primary key pk1 of
table exon. The system semi-automatically generates the
inverse ICMO that virtually re-introduces the primary key as
shown in Fig. 8. The DBA is offered to select the enforcement
policy for the inverse ICMO, ENFORCE in Fig. 8. The query
will be answered on the portion of table exon still satisfying
the removed primary key pk1. This is achieved by introduc-
ing an extra condition, that is, the NOT EXISTS clause,
in the WHERE clause to exclude from the query answer all
the tuples violating the primary key. The algorithm embeds
the constraint check in the query. The automatic generation
of such conditions is possible given the knowledge of the
schema and the constraint being edited and is rather fast—
in our implementation takes less than 1ms. This policy has
wide applicability in many evolution steps we investigated,
in which the old applications operate correctly only when
assuming k, while new ones need to violate k.

During the design of the evolution, the DBA, based on
his/her understanding of the application needs, selects one
of these policies for each inverse ICMO, this gives the DBA
completely control on how queries and updates will be rewrit-
ten through each evolution step.

5.4 Update rewriting through SMOs

We introduce update rewriting through SMOs by means of
the example in Fig. 9, which demonstrates update rewriting
through an evolution step decomposing table exon.14 Fig-

14 Note that the evolution is information preserving: (forward)
thanks to the primary key on id, and (inverse) since the system
automatically declares the integrity constraints valid in the output

ure 9 shows that, in order to rewrite SQL updates, the PRISM
system: (i) represents the input SQL update in an internal for-
mat based on queries, a ÒtrickÓ that is crucial in allowing
us to capitalize on query rewriting technology, (ii) rewrites
this internal representation through SMO evolution steps, and
(iii) converts the rewriting of the internal representation back
to a regular SQL update.

The query-based representation of updates completely
characterizes the semantics of the update by stating the equiv-
alence of a query posed on the DB instance before the update
with a query posed on the DB instance after the update. Such
equivalence describes the relationship between the table con-
tents before and after the update.

The before/after equality of Fig. 9 states that a scan of
the table after the execution of the update should produce
the same answer of the union of two subqueries posed on
the table before the update, returning the tuples not affected
by the update as they are, and the tuples being updated with
functions/constants in the target list capturing theSET action
of the update. This kind of representation can be obtained
from any SQL update as shown in Table 3.

The rewriting step (ii) transforms this internal represen-
tation valid on the old schema, to an equivalent one valid
on the new schema, by means of an algorithm we named
U pdateRewri te.

U pdateRewri te rewrites each query in the equivalence
independently, by means of Query Rewri te (the extension
handling negation of our query rewriting algorithm, summa-
rized in Sect. 5.1) and produces a similar representation valid
under the new schema. Algorithm U pdateRewri te assumes
U1 to be expressed as a set of equivalences between queries
on DB instances, and produces an equivalent U2 in the same
format.

The final step (iii) translates this internal representation
back to an SQL update statement. This process consists in
analyzing the target lists, FROM and WHERE clauses of the
queries and reconstruct the corresponding SQL DDL state-

Footnote 14 continued
schema (two primary keys on the id columns, and two cross foreign
keys).

123

Automating the database schema evolution process 85

Fig. 9 Update rewriting through SMO

ment(s) valid on the new schema shown in Fig. 9. For insert
SQL statement, this operation is trivial, since both represen-
tations positively state what should appear in the DB after the
execution of the statement, and the translation is purely syn-
tactical. For delete, there is a mismatch between SQL and the
query-based representation, where in SQL we specify what
to remove, in the mapping-based representation we described
the complement, that is, what to keep. Update shares the same
issues of delete, where tuples are not removed but modified.
Both translations are, therefore, based on inverting the con-
ditions (potentially involving joins with other tables) while
propagating the tables to be removed/updated. The system
completely automates this process as discussed in Sect. 8, for
any insert, update, delete and for any mapping M expressed
via SMOs+ICMOs.

Fig. 10 Update rewriting

The resulting update satisfies the semantics from view-
update literature [14,25]:

Definition 5 Let M denote a mapping between schemas S1

and S2, with inverse M ′. An equivalent rewriting U2 under
schema S2 (with integrity constraints I C2) of the original
update U1 under schema S1 (with integrity constraints I C1)
satisfies the following property: U1(M ′(I2)) = M ′(U2(I2))

Thanks to the invertibility of both M and M ′, this leads to
a constructive definition of the update on S2 as follows:

U2 = M(U1(M−1(I2))).

Based on it, we can make the following claim about algo-
rithm U pdateRewri te (in short, we say that
U pdateRewri te is sound):

Theorem 2 Let M denote a mapping between schemas S1

and S2, with inverse M ′. Then, for every update U1 under
schema S1, a successful execution of U pdateRewri te on
U1, M and M ′ produces an update U2 under S2 such that:
U2 = M ◦ U1 ◦ M ′.

Proof of Theorem 2 We refer to Fig. 10. We start from an
update U1, defined in terms of queries Q1 and Q′

1 as follows:

U1(I) = I ′ ⇐⇒ Q1(I) = Q′
1(I ′).

Table 3
Query-equivalence-based
representation of updates

SQL statement Query before the update Query after

INSERT INTO exon SELECT “1”,“2”,“3”,“4”,“5”

VALUES(1,2,3,4,5) UNION = SELECT *

SELECT id,type,region,start,end FROM exon

FROM exon

INSERT INTO exon SELECT a,b,c,d,e FROM some_table

(SELECT a,b,c,d,e UNION = SELECT *

FROM some_table) SELECT id,type,region,start,end FROM exon

FROM exon

DELETE FROM exon SELECT id,type,region,start,end = SELECT *

WHERE id =1 FROM exon WHERE id !=1 FROM exon

SELECT id,type,region,start,“342”

UPDATE exon FROM exon WHERE id =1 = SELECT *

SET end=“342” UNION FROM exon

WHERE id =1 SELECT id,type,region,start,end

FROM exon WHERE id !=1

123

86 C. Curino et al.

Let Q2, Q′
2 be the rewritings of Q1, Q′

1 via the C&B algo-
rithm. We want to show that the update U2, defined by

U2(I2) = I ′
2 ⇐⇒ Q2(I2) = Q′

2(I ′
2)

is an equivalent rewriting of U1, that is,

U2(I2) = M(U1(M ′(I2))).

Denote U2(I2) = I ′
2, I1 = M ′(I2), and I ′

1 = M ′(I ′
2).

Since M ′ is the inverse of M , we have I2 = M(I1), and
I ′
2 = M(I ′

1).
From Theorem 1, we know that the C&B yields equivalent

rewritings, that is, Q2(I2) = Q1(M ′(I2)), and Q′
2(I ′

2) =
Q′

1(M ′(I ′
2)).

Let

U2(I2) = I ′
2.

By definition of U2, this yields

Q2(I2) = Q′
2(I ′

2)

which by Theorem 1 gives

Q1(M ′(I2)) = Q′
1(M ′(I ′

2))

which, by notation, is equivalent to

Q1(I1) = Q′
1(I ′

1)

which in turn, by definition of U1, holds iff

U1(I1) = I ′
1. (1)

This immediately implies our claim, since

U2(I2) = I ′
2 = M(I ′

1)
(1)= M(U1(I1)) = M(U1(M ′(I2))).

��

5.5 Update rewriting through ICMOs

Once again, tightening of integrity constraints is not chal-
lenging for rewriting (since the DBMS enforces a stricter
set of constraints I C2 = I C1 + k) while relaxing integrity
constraints requires attention—legacy updates need to be
rewritten to operate on a database for which the DBMS
only enforces less restrictive integrity constraints (I C2 =
I C1 − k). Update rewriting through ICMOs is similar to the
rewriting of queries described early in this section. The key
difference is that on top of the conditions checked for queries,
updates require extra conditions to verify the compliance of
the DB instance with the (old) constraints after the statement
is executed. In the following, we refer to I viol

2 as the portion
of the DB instance I2 that violates the (dropped) constraint k.

We discuss here only the extra conditions introduced for
updates for each enforcement policy:
IGNORE: no checks are performed, and the update state-

ment is executed as-is on the new schema, that is, I viol
2 might

Fig. 11 Update rewriting through ICMO: CHECK

be not empty and might be affected by the update. This
implies potential side effects, and the semantic of update exe-
cution is not the original one. Intuitively, this represents the
“natural” extension of the update effect on the new schema.
The DBA is warned and instructed by the system interface on
the effect of this policy. This scenario is common in practice,
where changes to the integrity constraints are not reflected
into changes to updates, and is thus a must-have in our system.
CHECK: PRISM++ checks that the constraint k is satis-

fied by the DB instance also after the update execution, that
is, U2(I2) |� k. This is done by issuing queries before the
update execution that check both conditions, and executing
the update only if both are satisfied. As an example, consider
Fig. 11, where we rewrite an INSERT statement through the
same evolution of Fig. 8, but with the CHECK policy for the
inverse ICMO. The system checks pre- and post-conditions,
automatically derived by analyzing the input statement, to
guarantee that the content of table exon respects the pri-
mary key, both before and after the execution of the update.
ENFORCE: The system checks that the set of tuples vio-

lating the constraints is not change by the execution of the
update. This check is performed issuing Boolean queries gen-
erated by analyzing the input statement, in a fashion similar
to what was discussed above for CHECK. The formal require-
ment verified by the system is that:

I viol
2 = U2(I2)

viol .

Next, we discuss some implementation and optimization
concerns.

6 Implementation and optimization

The PRISM++ system has been implemented in Java and
is loosely based on our prior system [23], but the rewriting
engine has been completely redesigned to handle updates,
integrity constraints, and queries with negation and functions.
The rewriting time performance of our system is a critical
metric for success in practical scenarios. Significant effort has
been devoted to speeding up the rewriting time for updates,
and for schema containing many foreign keys.

PRISM++ computes the rewriting of queries and updates
by applying the combination of algorithms described in this

123

Automating the database schema evolution process 87

paper. While the newly introduced rewriting through ICMOs
is really fast, the rewriting through SMOs of both queries and
updates relies on the chase procedure [26] that even in the
very optimized implementation we use [27] is intrinsically
expensive. Furthermore, PRISM++ makes a more intense use
of the chase, since each query might be transformed into mul-
tiple queries in order to handle negation, and since the explicit
manipulation of integrity constraints requires us to increase
the size of the mapping managed by the chase engine.

The execution time of the chase is dominated by the size of
its input, which includes the integrity constraints from each
schema version and a logical mapping between schemas that
PRISM++ derives automatically from our operators. The two
main avenues to achieve performance are the following: (i)
speeding up the rewriting by containing the size of the chase
input and (ii) caching previously rewritten queries/updates,
thus amortizing the rewriting cost.

Speeding up rewriting To speed up rewriting, we exploit
the following key optimizations: (i) an adaptation of the
mapping compression approach of [23] (exploiting compo-
sition to reduce the size of the chase input), (ii) a mapping
pruning technique, extending the basic principle sketched in
[44], that removes from the input to the chase mappings and
integrity constraints not relevant for the rewriting of a given
query/update.

The first compression works by composing long chains of
logical mappings into a single mapping connecting directly
distant schema versions. This reduces the size of the input of
the C&B procedure leading to a significant speed up. Since
this technique was present in the prior literature, we use it as
our baseline in the experiments in Sect. 8.1.

The second technique is obtained as an extension of the
pruning approach discussed in [44]. We refer to the query
footprint as the portion of the schema required to answer
the query. Pruning operates by analyzing the input query
footprint and removing from the input of the C&B proce-
dure all the logical mappings that are not necessary for the
rewriting (i.e., predicates about portions of the schema not
included in the query footprint). In addition, pruning removes
all the schema versions from a schema history not required
(e.g., prior to the schema version used in the query). The
optimization technique implemented in PRISM++ is a
significant extension of the one sketched in [44]. Our imple-
mentation can, in fact, also operate in the presence of foreign
keys (i.e., by extending the notion of query footprint to all the
tables directly or indirectly reachable via foreign keys from
the initial footprint) and can manage update statements, by
extending the analysis component to deal with update syntax.
It is thus presented as an optimization in the experiments in
Sect. 8.1.

Furthermore, the actual implementation of the algorithms
presented here has been subject to further optimization. In

fact, some of the queries produced by the translation steps (to
represent an update) have identical portions. Whenever pos-
sible, we avoid invocations to the C&B rewriting procedure
by reusing results produced for similar queries (this is also
part of our baseline performance). A more general-purpose
caching technique is presented next.

Caching Observing the workloads from Wikipedia, Ensembl
and the other information systems from Table 1, we noticed
that it is very common for the workload of a system to be
based on a rather limited number of query/update templates,
which are parametrized and reused multiple times (this is nat-
ural, since most queries are issued by applications, in which
they are hard-coded as prepared SQL statements). PRISM++
exploits this fact by employing a caching strategy imple-
mented as follows: (i) given an input statement (query or
update), PRISM++ extracts a template (by parametrizing it,
as for prepared SQL statements), (ii) look-up in an hash-
map structure for a matching input template, (iii) retrieve the
rewritten template if available, and (iv-a) substitute the para-
meters with the original input values. In case of a cache miss
(iv-b), the query/update is rewritten and the system extracts a
template from the rewritten query/update and stores it in the
cache for later use. Testing with the Wikipedia workload, we
also noticed that many templates we extracted only differed
in the name of the DB they were targeting (Wikipedia has
many DB sharing an identical schema). To this purpose, we
adapted the template extraction to be able to cache templates
across multiple DBs sharing the same schema. This simple
feature (that can be turned on or off) proved very effective in
the case of Wikipedia, almost doubling the effectiveness of
the cache, as demonstrated in the experiments in Sect. 8.1.

7 Automating the extraction of SMO

We devote this section to introducing a semi-automatic
approach for extracting SMOs from SQL-based migration
scripts. The tool has been built to ingest the MySQL dialect
of SQL, since most of our dataset examples come from open-
source projects targeting MySQL as backend DBMS. Exten-
sion to other SQL dialects is not conceptually hard, but repre-
sents an engineering challenge outside the scope of this effort.

The approach and tools described here have been evalu-
ated on a large testbed of schema evolution histories [19],
with encouraging results since the vast majority of SMOs
were automatically derived using the methods and tools
described next. This suggests that the set of SMOs we present
can capture typical schema evolution scenarios in a natural
fashion, in addition to achieving important formal proper-
ties, including invertibility properties, and correspondence to
DED-based mappings. Thus, PRISM/PRISM++’s automatic
approach delivers many of the benefits of formal schema
mappings while tackling the usability barrier that stands in

123

88 C. Curino et al.

the way to their practical adoption in support of the schema
evolution process.

It turns out that, from an extraction standpoint, structural
schema changes (i.e., the one captured by SMOs) are the
most challenging to handle, since they are potentially repre-
sented by complex chains of SQL statements. Therefore, our
description here focuses on SMOs; ICMO extraction is part
of an ongoing development effort, not discussed here.

The approach we present takes as input two subsequent
schema versions S1 and S2, and a SQL script P , that is used
to “patch” schema S1 into schema S2. The SQL script P
describes a series of steps that change the schema and migrate
the data across the two schemas. The amount of informa-
tion available here is strictly larger than what is typically
available in schema mapping scenarios: we know that every
table/column that is not mentioned in the migration script
P is an identity mapping across schemas S1 and S2. Fur-
thermore, the patch P captures in an operational form the
entire knowledge of how schema S1 and S2 relate. The goal
of our tool is to extract such knowledge from the patch P , by
deriving a corresponding series of SMOs.

Note that it is reasonable to expect the existence of such
SQL migration script, since developers routinely provide
upgrade mechanisms for their applications, and such mecha-
nisms for the data management subsystem are typically based
on SQL scripts—for example, all of the datasets in our bench-
mark share this characteristic. Furthermore, it is worth noting
that the vast majority of the migration scripts we encountered
in practice operate an in-place migration, that is, they patch
the existing database in situ. An alternative scenario is the
one in which a new DB schema is created and data are copied
into it. Our guess is that the in-place procedure is preferred in
practice for performance reasons, since all unaffected tables
do not impose extra data movements (key for massive data-
bases); however, other operational concerns could come into
play favoring the copy-based approach. While we focus our
discussion on the in-place form of evolution, our methods
naturally apply to the copy-based scenario simply observing
that for all the tables not modified by the evolution step under
consideration, the data transfer from the old database to the
new one is a simple identity mapping, akin to a table rename
where the schema name is used as a prefix for the table name,
or to a copy pattern as discussed below.

Many of the evolution steps described in the SQL script
P (e.g., add a column, create a table) are simple to recog-
nize and translate into corresponding SMOs. However, other
transformations, including joins, decompositions, partitions,
merges, and table copies, are considerably more complex,
and they are therefore processed in three steps, as follows:

1. The SQL statements in P are clustered into independent
groups. This is done by building a dependency graph

among statements and computing its connected compo-
nents.

2. We attempt to match each group of statements produced
in Step 1 with a library of patterns. (Each SMO might be
expressed by more than one pattern of SQL statements.)

3. If (2) fails, we attempt to match the patterns in our library
with every subset of statements in the groups from (1).

Step 1 is required because a typical patch P contains mul-
tiple schema changes (e.g., various tables are independently
evolved). Step 2 exploits a practical observation: the vast
majority of “complex” modifications (e.g., joins, decomposi-
tions, merges, partitions) are typically captured by sequences
of SQL statements, where each statement depends on the pre-
vious one. Step 3, while potentially computationally expen-
sive, is required to handle cases in which an evolution steps
contains multiple SMOs operating on a common set of tables,
in particular when the corresponding SQL statements are
intermingled. A common scenario is the one in which sim-
ple renamings or additions of columns are intertwined with
complex SMOs such as table decomposition or join. Fortu-
nately, the sizes of connected components in our graph were
very small (and we expect this to hold true in many practi-
cal evolution scenarios); furthermore, simple heuristics were
applied to limit the number of subsets considered (e.g., no
subsets with more than K entries if K is the largest pattern
we consider). This allowed us to handle this exponential step
without significant problems. In the rest of this section, we
provide further details on our system and the SQL2SMO
translation tool that is at its core.

7.1 Dependency graph

The idea behind the dependency graph is to represent the
dependencies between SQL statements as data flow depen-
dencies between the tables these statements operate on.
Nodes in the graph represent tables, while directed edges
are used to show the data flow. Edges are labeled with the
operation leading to this data flow.

For each statement read from the input, our SQL2SMO
tool explores its structure and identifies the affected tables,
which are thus entered as the nodes of the dependency graph.
Edges are due to two scenarios: a statement involves several
tables, which will generate dependencies between them, or
alternatively, a statement writes data into a table that another
statement reads from. As an example (detailed below) if an
UPDATE statement sets an attribute of table T using an
attribute from table S as its source, this leads to an edge
between the nodes representing S and T in the dependency
graph.

Once the dependency graph has been created, its con-
nected components (subgraphs) are computed. Each con-
nected component represents a group of statements chained
together by common input and output tables. In the following

123

Automating the database schema evolution process 89

phase, the system tries to match each statement group against
the patterns in the pattern library (described in the next sec-
tion). The following example, extracted from the evolution of
the Ensembl database between revisions 224 and 226, illus-
trates the dependency graph and the connected components.
For the sake of presentation, we show here only four state-
ments manually extracted from a more complex patch. We
will come back to the same example, showing how we han-
dle the entire SQL script in Sect. 7.3 where we tackle the
handling of complex SQL sequences. The sql statements are
as follows:

The dependency graph extracted from this patch contains
nodes gene (from statements (2) and (4)), gene_description
(statements (4) and (5)), and transcript_support_ f eature
(statement (10)). A single edge, gene_description → gene,
is extracted from statement (4) since the description
attribute of table gene is set equal to the value of the
description attribute of table gene_description.

The previous dependency graph contains the two con-
nected components:

– Component 1: gene, gene_description
– Component 2: transcript_supporting_ f eature

The second component has only statement (10) associated
with it and translates immediately into a CREATE TABLE
SMO.

The statements associated with the first component are
statements (2), (4), and (5); these statements are matched
against the pattern library to obtain a possible translation
into more complex SMOs.

7.2 Patterns

A pattern is a sequence of SQL statements performing a com-
mon schema transformation that can be modeled as an SMO.
The purpose of each pattern is to identify a sequence of SQL
commands that is frequently used to implement a specific
schema transformation.

PRISM currently recognizes the following six patterns
which are thus translates into equivalent sequences of SMOs:

1. Join Pattern type 1
2. Join Pattern type 2
3. Decompose Pattern
4. Partition Pattern
5. Merge Pattern
6. Copy Pattern.

While more patterns could be easily added, our evaluation
indicates that this core set of patterns captures the most used
cases in our datasets. Before we enter a more detailed descrip-
tion of these patterns, below, let us briefly discuss how they
are extracted.

The pattern-matching mechanism consists of two steps:
(1) pattern-defined criteria analysis and (2) translation. The
first step consists in testing several syntactic and semantic
conditions (imposed by the pattern) against a sequence of
SQL statements. If all conditions are met, the system gener-
ates the corresponding SMOs. Patterns are matched sequen-
tially against the list of SQL statements, and the first matching
pattern is selected for each subsequence. The design of the
patterns avoids the generation of spurious SMOs.

Join Pattern Type 1

This pattern identifies a common way in which migration
steps that join two tables are implemented in practice.

A Join Pattern 1 is constituted of the following SQL state-
ments:

The user performing this operation creates a new table
ready to host the joined data, selects the desired columns
from the source tables according to the new table’s signa-
ture, and migrates the data from the old tables to the new one.
Optionally, either one or both source tables can be dropped
after the data migration. We have previously discussed how
the pattern-matching mechanism is performed in two sub-
phases. The first phase is further divided into additional two
subphases. The first subphase is quite simple and performs a
correspondence check between the statement labels and the
pattern labels. The second phase is more challenging, and the
long description below illustrates the details of the matching
and the translation that is performed in this second phase.

To verify and confirm the correspondence between the
given set of statements and the Join Pattern Type 1, the system
performs the following checks:

– the INSERT statement must mention more than one table
in the SELECT subclause

– the table in the CREATE and INSERT statements must
be the same

– if a DROP statement is in the sequence, the table dropped
must be one of the tables involved in the join.

123

90 C. Curino et al.

Once the above checks succeed, the system is ready to
translate the statements. The following section explains in
detail some crucial operations performed by the system dur-
ing the translation.

Drop table To match the SMO JOIN semantics, which con-
sumes its input tables, the system verifies whether the tables
being joined are dropped after the data have been migrated,
and it introduces COPY SMOs whenever they are needed to
preserve the input tables.

Columns and table rename The columns from the INSERT
clause and the SELECT clause are compared looking for
any possible renaming needed. If all columns are selected
using the * operator, the check is performed against all the
columns of the table. Each pair of columns is compared and
if the names of the source and destination column differ, a
RENAME SMO is generated. As the join SMO is defined
creating a new table in the schema, the name given to the
newly created table is the name of the table in the CRE-
ATE TABLE statement. The flexibility of the SQL syntax
that allows for implicit/explicit and position or name-based
references to attributes requires lots of care in our system.

Partition analysis The INSERT statement could involve all
the data in the source tables or only a portion of those data.
Selecting a portion of the data by using a WHERE condition
in the SELECT statement corresponds, in terms of SMOs,
to partition the input data. The system handles this situation
looking for any condition inside the WHERE clause involv-
ing a column and a constant, where the condition can be any
of <=, >=, =. Our system then generates a PARTITION
SMO, dividing the partitioned tables in two subtables, one
used for the join, and one discarded. The condition in the
SQL WHERE clause is used to partition the data.

The following example extracted from the evolution of the
Mediawiki database between the revisions 17217 and 17244
helps to understand the Join Pattern Type 1 mechanism.

The goal of this evolution step is to migrate the record
containing redirected page information to the newly created
table redirect. Once it has verified that all the pattern
conditions are satisfied, the system produces the following
SMOs as output:

– As both source tables are still in the schema after this
evolution step, the system performs a copy of those tables,
as follows:

– A PARTITION operation is performed next to delete the
unnecessary rows from the page table:

– A join between the two tables is used next to obtain the
desired redirect table:

– Finally, the unnecessary columns are dropped from the
destination table—via DROP SMOs. As the join between
the page and pagelinks tables results in a table with more
columns than the table redirect, the system drops the
columns that should not be available in the final table.

– Also, for every destination column with a name differ-
ent from the original one, the system will generate a
RENAME SMO.

We will next introduce the remaining patterns, but for the
sake of presentation, we limit the discussion to the basic
SQL pattern, while the full detail of the syntactic checks and
corner-case handling are available in [46].
Join Pattern Type 2

The Join Pattern type 2 covers the need of moving a table
column from a source to a destination table and is denoted
by the following sequential pattern of SQL statements (where
’c’ is the column being moved):

The final result of this operations could also have been
obtained using the join of type 1, which, however, would
require the creation of a new table which is not in the SQL
input code examined—thus a new pattern was added. The
various checks performed on this patter and its final transla-
tion into SMO are, however, similar to those of join of type
1 join, and will not be further discussed here.

The Decompose Pattern

The inverse of the join pattern is the Decompose Pattern,
which is mapped into the SMO DECOMPOSE operator,
manage the decomposition of a table into two subtables. The
pattern is as follows:

In this case, columns c1, c2 and c3 are moved from c
to a, while c1, c4 and c5 are moved to b. Typically, c1 is

123

Automating the database schema evolution process 91

a key, although this is not strictly required. Thus, although
the decomposition operation in textbooks is handled through
relational projection, in the real world, the operators actually
used are insert statements. In some situations, these inserts
are constrained by WHERE clauses whereby only a part of
the original table c is decomposed. In these cases, table c
is first partitioned horizontally, using the above-mentioned
WHERE conditions. Then, the partition of the original c that
can be reconstructed as the join ofa andb is dropped without
loss of information. The partition operation is discussed next.

The Partition Pattern

An SMO PARTITION operator is used to record a sequence
of SQL statements that split the tuples of table between two
tables, as per the following sequence:

Here, the first statement creates the table a that will host
the data moved from the source input table c. Then, the sec-
ond statement moves the selected tuples to the new table,
while the last statement deletes those tuples from c (thus the
same WHERE condition is used). The merge operation
described next actually provides the inverse to this operation.

The Merge Pattern

The SMO MERGE denotes a pattern of SQL statements
which unions tuples of two tables into a target table. In prac-
tice, this often means merging the tuples of one table into the
other one, hence the following SQL pattern:

Here, the source table b and destination table amust have
the same signature. The system also accounts for scenar-
ios in which projection of the two tables is used, and where
only a subset of the columns in the target table is filled from
the input tables. This implies a series of column drops and
padding with null/default values. We omit this for the sake
of presentation, but more details are available in [46].

The Copy Pattern

An SMO COPY operator is used to record a sequence of SQL
statements that clone an existing table. While this is not very
common as a standalone event, it can be used, together with
rename table patterns, to account for copy-based migration,
as mentioned at the beginning of this section.

The pattern of SQL statements is as follow:

Thus, the first statement creates the table c that will host
the data moved from the source input table a. Then, the sec-

ond statement moves the selected tuples to the new table.
Once again projections and partitions might come into play
and are handled similar to the other patterns.

Next, we discuss how multiple patterns can be tangled in
an SQL sequence, and how our system handles that.

7.3 Complex SQL sequences

As previously mentioned, the SQL script that implements an
evolution step might combine and mix the statements related
to multiple SMOs together, thus complicating the pattern
detection process. To handle this scenario, our system con-
siders possible matches on subsets of the connected compo-
nents of each SQL script.

We illustrate this with an example based on the statements
publicly released on the schema history of the Ensembl data-
base between schema revisions 224 and 226. The statements
in the script are as follows (a numeric reference has been
assigned to each statement):

The first operation performed by the system is the com-
putation of the dependencies graph as follows:

– Component 1: gene, gene_description, transcript, xref
– Component 2: transcript_supporting_feature

The second component, as in the previous example, has only
statement (10) associated with it, and this statement can be
easily matched and translated into a CREATE TABLE SMO.
The statements that identify the first component are (1)–(9).
Considering this whole group in its given order, it becomes
difficult to automatically identify the operation undergone by

123

92 C. Curino et al.

the schema. However, by matching patterns against subsets
of this group of statements, the system identifies three fixed
patterns. The first one is composed of the statements (2), (4),
and (5) as follows:

The subset of statements is identified and translated as
a join, by matching the Join pattern of Type 2. The second
pattern identified in the power set is composed of statements
(7) and (8), while the last pattern is composed of the state-
ments (6) and (9). Both sequences are identified and trans-
lated as join pattern of Type 2. From the previous analysis, we
conclude that the statements not involved in any pattern are
statements (1) and (3). These represent independent opera-
tions over the schema, each of which can be translated into an
ADD COLUMN SMO. Notice how the group of statements
has been disentangled into five standard SMOs (of which
three are non-trivial JOINs).

The tool we provide is semi-automatic inasmuch the
resulting translation is always presented to the user for vali-
dation. The system provides a simple interface to curate the
proposed SMOs and to create new ones for the SQL statement
the system could not translate.

8 Experimental evaluation

We present a series of experiments validating the PRISM++
rewriting technology. In Sect. 8.1, we test (i) the scalability
and efficiency of our rewriting technique against both syn-
thetic and Ensembl-based use cases, (ii) the overhead of our
rewriting technique for a practical case based on the latency-
sensitive queries from a Wikipedia workload, and (iii) the
applicability of our caching techniques using traces from the
Wikipedia profiler. In Sect. 8.2, we evaluate the efficiency
and effectiveness of our SQL-to-SMO translation tool, using
several other real-world evolution histories.

8.1 Rewriting technology

In the following, we report an evaluation of the system against
actual evolution histories from [19] and synthetic cases.

The experiments have been conducted on a system with the
HW/SW configuration shown in Table 4. The more powerful
machine has been used to evaluate the overhead of query
rewriting w.r.t. to query execution.

Among the many evolution histories we introduced in
Sect. 2, we selected the two representative test cases of
Wikipedia and Ensembl DB. The choice was due to: (i) their
popularity and ii) the fact that for these two systems, we have

Table 4 Experimental environments

Machine 1

CPUs Quad-Core Xeon 1.6 GHz (x2)

Memory 4 GB

Hard disk 3 TB (500 GB x6), RAID-5

OS distribution Linux Ubuntu server 6.06

OS kernel Linux 2.6.15-54 server

Java Sun Java 1.6.0-b105

Machine 2

CPUs Quad-Core Xeon 2.26 GHz (x2)

Memory 24 GB

Hard disk 6 TB (2 TB x6), HW RAID-5

OS distribution Linux Ubuntu server 9.10

OS kernel Linux 2.6.31-19 server

Java Sun Java 1.6.0_20-b02

the complete database content and traces of execution for the
actual production workloads—a log of 10 % of the access to
the actual Wikipedia website for almost 4 months, and a com-
plete log of the workload generated by hundreds of biologists
against the Ensembl DB [28] for over 2 months.15

To test the practical relevance of our system, we tested a set
of 120 SQL statements (queries and updates) from the actual
workloads of Wikipedia and Ensembl, (i) against each oper-
ator (SMO and ICMO), (ii) through short artificial sequences
of operators, and (iii) through portions of the evolution histo-
ries of Wikipedia and Ensembl. The system found a correct
rewriting, whenever one existed, in all our tests.

Rewriting time for updates. An important measure of perfor-
mance of our system is the rewriting time for updates (which
subsumes that of queries). This has been the target of various
optimization efforts. In Fig. 12a, we present the rewriting
time of a typical set of update statements (a mix of updates,
deletes, and inserts) against a portion of Ensembl evolution
history. The test is performed on the most recent portion of
the history, which contains some of the most relevant evo-
lution steps of a public copy of the database [28] that we
monitored.

The figure depicts (i) a baseline approach (which already
accounts for the compression technique, and the optimized
version of the U pdateRewri te algorithm), (ii) the effect
of our Pruning technique, (iii) the averaged impact of the
template-based cache, and (iv) the results of applying all
of these optimizations. This combination of optimizations
delivers up to 4 orders of magnitude of improvement.

Effect of chains of foreign keys The newly introduced sup-
port for integrity constraints raises a new challenge to the

15 We release the two datasets at: http://db.csail.mit.edu/wikipedia/ and
http://db.csail.mit.edu/ensembldb/.

123

http://db.csail.mit.edu/wikipedia/
http://db.csail.mit.edu/ensembldb/

Automating the database schema evolution process 93

Fig. 12 a Rewriting scalability versus schema connectivity, b Aver-
aged update rewriting time on Ensembl schema evolution

scalability our approach. Schemas containing large numbers
of foreign keys prevent us from pruning aggressively since
larger portions of the schema (those reachable via foreign
keys) might be relevant for the rewriting. This leads to larger
input (constraints+mappings) to the chase.

We set up a synthetic scenario in which we artificially
increase the number of foreign keys, and thus the num-
ber of tables reachable from the query footprint—multiple
schema layouts have been tested as discussed below. Fig-
ure 12b shows how the rewriting time grows for increasing
levels of connectivity of the schema. The chase engine we
use for rewriting is also used to optimize the output query (by
means of a procedure known as back-chase [27]). The goal
is reducing of the rewritten query/update’s execution time.
We show the running time of the system with and without
the optimizer turned on. Both solutions are acceptable for the
typical schemas from [19] (typical average connectivity <5),
while the price of optimization becomes evident for highly
connected schemas.

The results reported in Fig. 12b are based on the follow-
ing experiment. We tested with five simple queries (results
for updates are similar since they rely on the same algo-
rithm) averaging the results for each structural SMOs (ICMO
rewriting is not based on the chase and is thus not affected
by the foreign keys). We first verified that the actual schema
layout is not relevant to the rewriting performance, that is,
having N tables directly reachable with a single-hop from
the query footprint or N tables reachable through a long
chain of foreign keys will lead to the same rewriting perfor-
mance. We then synthetically generated several schemas with
mixed properties (few long chains and few directly reachable
tables) but with increasing numbers of tables reachable from
the query footprint. The number of reachable tables directly
influences the size of the mapping, expressed as DEDs, that
we feed into the chase engine MARS. Rewriting times are
given both for the scenario in which we use back-chase to
improve the output query quality and when no query opti-
mization is performed. Thanks to the nature of the backchase-
based optimizer we utilize [27] it is possible to achieve partial
optimization by using a subsets of the available constraints,
thus achieving a trade-off between output query optimization
and rewriting time.

Table 5 Overhead of rewriting

Statements Execution time (ms) Rewriting time (ms) Overhead (%)

S1 77.37 1 1.29

S2 21.674 1 4.6

S3 48.2 1 2.07

End-to-end validation We assess the practical applicability
of our system and the effectiveness of our caching scheme
on the workload of Wikipedia (using the actual workloads
from the Wikipedia on-line profiler). The system achieves
an average overhead of rewriting of about 1 ms thanks to:
(i) the various optimizations of the rewriting engine, (ii) a
cache hit time of <1 ms, and (iii) an extremely high hit/miss
ratios (> 5 k for updates and > 500 k for queries) due to the
fact that queries/updates are automatically instantiated by the
application from a small number of templates. This allows
the system to amortize the cost of rewriting across many
query/update executions. In order to measure the relative
overhead of our solution with respect to execution time, we
randomly selected 3000 instances of 3 of the most common
queries from the Wikipedia workload, and tested their run-
ning time on a locally installed copy of English Wikipedia—
about 3.6 TB of data.

Table 5 shows that the overhead of rewriting queries is
negligible, and due to longer execution times and compara-
ble rewriting times, the impact on updates is even less signif-
icant (typically <0.1 %). This shows that our system delivers
performance that is usable even for latency-critical systems
such as Wikipedia.

Below, we report the three queries used for testing execu-
tion performance. S1: The query fetching the textual content
of an article:

S2: The query fetching all the metadata of a certain revi-
sion of an article):

S3: The query fetching the current revision of a page and
its metadata given the page title):

123

94 C. Curino et al.

Table 6 Caching the Wikipedia workload

Statement
type

Number of
templates

Avg hit/miss
ratio

Max hit/miss
ratio

Update 142 5,661.21 80,870

Select 1294 248,005.41 88,740,689

Select* 610 526,096.72 88,740,689

* With improved template extraction factorizing DB names

Caching Effectiveness In the following, we present more
details about the queries we ran and the cache effectiveness.

The total number of query and update templates is typi-
cally rather small (less than a thousand for Wikipedia); there-
fore, the cache substitution policy (configurable and LFU
by default) is not central for performance since all of the
templates typically fit in main memory. The cache hit/miss
ratio (shown in Table 6) and cache hit time we measured
(< 1ms) for the Wikipedia dataset are very encouraging.
These results are obtained for the online profiler of Wikipedia
http://tinyurl.com/wikipediaprofiler.

8.2 SMO extraction performance and usability

In this section, we present the evaluation of our SMO
extraction tool against the evolution histories of 13 sys-
tems, among them the one in our benchmark (Table 1).
Our tool can automatically parse the MySQL dialect of
SQL (and the core of standard SQL), hence the exclusion
of two evolution histories leveraging other proprietary SQL
dialects or unsupported constructs. Generalizing our tool to
ingest arbitrary SQL dialects is beyond the scope of this
paper.

We tested with a group of 4 master students using
our operators to model the evolution histories of sev-
eral real-world systems. Within a few hours, the students
were able to learn the SMO-ICMO language and to pre-
cisely model hundreds of evolution steps from real-world
systems.

To evaluate the efficiency and quality of our SMO trans-
lation, we grouped the four grad students (at this point all
familiar with both SQL and SMOs), into two groups, one
manually extracting SMOs directly from SQL scripts and
the other leveraging our SQL to SMO extraction tool—thus Ta

bl
e

7
A

ut
om

at
ic

SM
O

ex
tr

ac
tio

n

A
tu

to
r

C
op

pe
rm

in
e

D
ek

i
E

10
7

E
ns

em
bl

K
T-

D
M

S
M

ed
ia

w
ik

i
N

uc
le

us
Ph

pw
ik

i
T

ik
iw

ik
i

Ty
po

3
X

oo
ps

Z
ab

bi
x

A
ve

ra
ge

E
ff

ec
tiv

e
ev

ol
.s

te
ps

15
6

24
14

14
24

83
14

1
18

8
13

30
4

36
43

#
of

SQ
L

st
at

em
en

ts
11

68
44

12
4

20
17

4
10

74
22

6
23

7
20

53
45

5
31

65
4

32
9

Fu
lly

tr
an

sl
at

ed
11

5
23

10
12

17
66

13
1

12
8

10
25

3
16

34

Pa
rt

ia
lly

tr
an

sl
at

ed
30

1
4

0
7

12
9

6
0

3
4

1
20

7

N
ot

tr
an

sl
at

ed
11

0
0

2
0

5
1

0
0

0
1

0
0

2

G
en

er
at

ed
SM

O
98

4
43

76
17

12
2

91
8

31
9

41
18

40
44

2
30

18
0

24
8

%
Fu

lly
tr

an
s.

st
ep

s
74

%
96

%
71

%
86

%
71

%
80

%
92

%
67

%
10

0
%

77
%

83
%

75
%

44
%

78
%

%
Pa

rt
ia

lly
tr

an
s.

st
ep

s
93

%
10

0
%

10
0

%
86

%
10

0
%

94
%

99
%

10
0

%
10

0
%

10
0

%
97

%
10

0
%

10
0

%
98

%

123

http://tinyurl.com/wikipediaprofiler

Automating the database schema evolution process 95

supervising and curating the SMOs generated by the tool. The
students performed SMO extraction of almost 1,000 evolu-
tions steps (over 4,200 SQL statements) from the evolution
histories of the systems in Table 7. The resulting SMOs were
equivalent, with the exception of a handful of evolution steps
in which the students using the tool correctly identified cer-
tain SMOs that were missed by the control group. The more
significant result was the efficiency boost enjoyed by the stu-
dents using the tool: while our experimental setting was not
rigorous enough to make any strong claim, the self-reported
times to complete the task suggest a 3-5X reduction in the
average time to complete the translation of an evolution
step.

In Table 7, we also report the results of comparing the
SMOs generated by the tool (before the student curation),
with the manually generated ones. The tool is designed to be
very conservative in generating translations, since false posi-
tives are very dangerous. In our tests, the tool had 100 % pre-
cision; hence, all SMOs automatically extracted by the tool
were always correct. However, we cannot provide any formal
guarantees for our heuristics, and therefore we recommend
that in practical scenarios this tool be used as semi-automatic
support for manual evolution.

As for recall, the tool completely automates on average
78 % of the evolution steps of our histories and (at least par-
tially) automates an average of 98 % of the evolution steps.
These results are encouraging, since the user is required to
manually inspect only a small fraction of the evolution steps,
for which he often has a partial translation to start with, as
informally demonstrated by the efficiency boost we observed
in our small user study.

As a further confirmation of the relevance of this extraction
tool, we manually inspected the set of SMOs extracted for
Mediawiki and Ensembl (our richest histories) and found
8.15 and 14.75 % of SMOs, respectively, were derived from
non-trivial operators extracted via patterns.

It is important to note that the patterns we use have been
defined manually before inspecting the evolution histories.
The design of the patterns has been driven by considering
the most straightforward ways to achieve the transformations
captured by SMOs, and using only Ensembl as a guiding
example. The quality of our results on the remaining bench-
marks is comparable to the results we obtained in Ensembl.
Furthermore, the tool allows users to define new patterns to
increase matching performance.

To build this tool, we had to parse SQL (both DML and
DDL), and we thus extended an existing Java SQL parser, to
cover the richer syntax we encountered in our experiments.
The by-product of this work is a parser that covers a signifi-
cant subset of SQL, including (due to other uses, we made of
this parser) the recent Temporal SQL extensions. The parser
is released as an LGPL open-source project at: http://code.
google.com/p/tsqlparser/.

9 Related work

A shorter version of this paper has appeared in [20].
Our work shares its motivation with research on invert-

ing [31,32] and composing [30,40] schema mappings:
inversion is needed to virtually migrate data back from the
current schema to the old one, and composition is needed to
do so over several steps in the evolution history. The main
difficulty in these works stems from the expressive power
of schema mappings, which leads to the non-existence of a
unique migrated database. This requires evaluating queries
under the certain answer semantics over all possible ways to
migrate the database. This evaluation requires materializing
a representative of these possible databases (known as a uni-
versal solution), and thus does not scale to the long evolution
histories in our scenarios. In contrast, our approach forces a
unique way to migrate the database (both forward and back-
ward) by asking the DB administrator at evolution time to
pick a migration/inversion policy. This allows standard query
answering semantics, and better yet, it allows us to evaluate
legacy queries and updates without migrating data back, by
using rewriting instead. [31,32] do not consider updates and
integrity constraints.

Other related research includes mapping adaptation [54,
57] and rewriting under constraints [26,27]. However, these
works do not consider update rewriting or integrity constraint
editing. Different approaches have addressed the schema evo-
lution problem from several vantage points. An incomplete
list includes the methodology of [49], based on the use of
views to decouple multiple logical schemas from an underly-
ing physical schema that has monotonically non-decreasing
information capacity—this is not suitable for our scenario
since it is not compatible with evolution steps where integrity
constraints are tightened nor with changes to the schema aim-
ing at improving performance by reorganizing schema lay-
out; the unified approach for propagating changes from the
applications to the database schema of [35], focusing mainly
on tracing and synchronizing the changes between applica-
tions and database, this methodology requires a significant
commitment from DBAs and developers, which is in con-
trast to the evolution transparency that we seek in our work;
the application-code generation techniques developed in [18]
that, instead of shielding the applications from the evolution
as we do, aim at propagating the changes from the DB to
the application layer in a semi-automatic fashion; the frame-
work for metadata model management [15,41] that exploits
a mapping-like approach to address various metadata-related
problems including schema evolution. Schema evolution
support for historical databases have been studied in [44,45]
with the focus on lossless archival of data history and effi-
cient answering of historical queries against many schema
versions. None of the above addresses updates under schema
and integrity constraints evolution.

123

http://code.google.com/p/tsqlparser/
http://code.google.com/p/tsqlparser/

96 C. Curino et al.

The difficult challenges posed by update rewriting, first
elucidated in classical papers on view-update [14,25], have
recently received renewed attention. In [17], new approaches
were proposed, based on the notion of DB lenses. Recently,
[37] proposed a new approach to support side-effect-free
updating of views. The proposed solution is based on decou-
pling the physical and logical layer of a DBMS. This
approach extends the class of updates that can be supported,
but (i) requires an extension of existing RDBMS and (ii) sup-
port updates not implementable in the target DB. These two
characteristics make it inappropriate to our goals. Our struc-
tural evolution operators (SMOs) can be broadly construed
as views, which is why the notion of equivalent update can
be adopted, but our performance gains are due to exploiting
the actual semantics of SMOs; a reduction to the view-based
treatment of these works would lead to having to solve an
unnecessarily general case, which is notoriously hard. More-
over, none of the above works considers “views” given by
editing integrity constraints, giving no guidance on how to
handle ICMOs.

To handle the cases in which the original data violate target
integrity constraints, classical theory on query answering pre-
scribes to (virtually) migrate the original instance into a set of
possible worlds, each satisfying the additional constraint and
corresponding to a “repair” of the inconsistent original [12].
Repairs are usually defined to be as economical as possible,
by adding/deleting the minimal number of tuples required
to achieve consistency. Queries are then answered under
so-called certain answer semantics, which is an attempt to
completely automate the query answering process, by treat-
ing all minimal repairs as equally desirable and accepting
only those query/update results supported by all repairs.

One of our contributions enabling a pragmatic sys-
tem is the design decision to part with the classical set-
of-repairs/certain answers semantics. For one, viewing all
repairs as equally desirable is not always appropriate in prac-
tice, depending on the application. Moreover, query answer-
ing under certain answer semantics is intractable in most
cases (co-NP-hardness in the size of the database is a fre-
quently occurring lower bound in various flavors of the prob-
lem [10,12,13]). Therefore, PRISM++ allows the database
administrator to pick from a list of pre-defined repair poli-
cies that are preferentially employed in practice. Each policy
yields a single canonical repair. The canonical repair may
not be minimal, but it is prevalent in practice and supports
query answering under standard, tractable semantics. We
show how to solve the query and update rewriting problems
for the canonical repair semantics, for expressive queries and
updates. This required proving new formal results, as existing
work only pertains to the certain answer semantics.

Other interesting approaches to support evolution include
the co-evolution framework presented in [50], where changes
made to the object model are propagate via proper updates

of the mapping and underlying database schema, and [47]
a graph-theoretic approach to support what-if scenarios and
analysis of impact of evolution.

Recently, the notion of SMOs and schema evolution in
general have been studied in the context of column databases
[39], and data stream management systems [51]. With the
increasing attention for schema evolution support, [48] pro-
poses a system called CRIUS that efficiently supports schema
evolution and data migration through a nested data model.

Several administration tools are available today to support
common management tasks, a recent survey appeared in [33].
To the best of our knowledge, none of them supports schema
evolution completely, as we show in the side-by-side com-
parison presented in Table 8, of some of the main systems
available on the market.

The table reports the capabilities of each system to docu-
ment (Doc) changes to the various DB objects (schema, data,
queries, updates, indexes, etc), estimate (Predict) what will
be the impact of an evolution step on them, automatically
adapt (Transform) various DB objects to reflect the evolu-
tion step, invert the evolution process (Reverse), for example,
migrating data back or generating inverse schema transfor-
mations. Question marks indicate feature/system combina-
tions for which we could not find enough evidence on whether
they are supported or not. As shown in the table, the exist-
ing approaches support some of the basic features, but fail
in providing a complete end-to-end support. In particular,
all the existing tools provided by DBMS vendors or open-
source efforts are focused on documenting and supporting
the schema definition and the data migration, but fail short
at supporting queries and updates. The documentation and
data migration capabilities of PRISM++ (not discussed in
this paper) are similar or superior to the one provided by
some of the other tools, while the query and update rewriting
technology is not available in any system we were able to test.

10 Conclusions

Modern information systems need effective methods and
systems that support and automate the complex operations
required by database schema upgrades. These methods and
tools are bound to be successful only to the extent that
they are complete and can automate the database migra-
tion and application rewriting in most real-life situations.
As described in this paper, PRISM++ has tackled the hard-
est technical problem in achieving such completeness: that
is the problem of supporting (i) integrity constraints evolu-
tion and (ii) automating query and update rewriting through
structural schema changes and integrity constraints evolu-
tion. PRISM++ starts with a set of SQL-based operators
called SMOs+ICMOs: although these operators are sim-
ple, they proved be sufficiently expressive to capture long
evolution histories of representative real-life applications

123

Automating the database schema evolution process 97

Table 8 Schema evolution tools comparison

DB2 CM
expert [1]

Oracle
CM
pack [6]

MySQL
work
-bench [5]

IDERA
SQL CM
[3]

Embarcardero
CM [2]

RedGate
[7]

DTM DB
suite [8]

SwisSQL
[9]

Liquibase
[4]

PRISM++

Schema

Doc � ? � � � � ? � � �
Predict � � × � ? ? � × × �
Transform � � � � � � � � � �
Reverse � � � � � � ? � � �
Doc ? ? � × × � ? � � �

Data

Predict � � ? × × ? � × × �
Transform � � � × × � � � � �
Reverse ? ? � × × � ? ? � �

Query

Predict × × × × × × × × × �
Transform × × × × × ? × × × �

Update

Predict × × × × × × × × × �
Transform × × × × × × × × × �

Indexes, Triggers

Predict × × × × × × × × × ×
Store Proc., etc.

Transform × × × × × × × × × ×

(EnsembleDB and Wikipedia). ICMOs are key to this result,
since integrity constraint editing turns out to constitute a
large percentage of the evolution steps in these applica-
tions. The PRISM++ operators provide the DB administrator
with a fine-grained evolution control mechanism; moreover,
they provided us with the controlled settings we needed to
solve the update rewriting problem. Thus, a very significant
result presented in this paper is that, by using a divide-and-
conquer approach in this controlled environment, we can
avoid the notoriously intractable general cases of the view-
update problem studied in the literature. The soundness and
effectiveness of the new approach was then validated by (i)
the development of a robust and efficient prototype [21] and
(ii) its testing on a large schema evolution testbed [19].

The construction of the schema evolution testbed [19] was
originally motivated by the need to validate the practical com-
pleteness of PRISM++ in supporting most, if not all, real-life
examples of schema upgrades. While it has served this pur-
pose, the testbed [19] is now growing into a large curated
collection of schema histories which is conducive to many
applications. One such application is to devise a good doc-
umentation for database schema histories. For instance, his-
torical extensions of the current DBMS information schemas
[24] can be enhanced with the SMOs describing the mappings
between successive versions. The resulting meta-database
can be invaluable for the DBAs, and it is also needed to

explain the provenance of the data migrated from old ver-
sions to new ones. In this paper, we have discussed the tools
used to derive the interesting evolution histories in our test-
bed. However, once PRISM is deployed in support of a given
IS, it will provide this documentation automatically.

Many information systems require the archival of histor-
ical (transaction-time) data, which for archival quality must
be preserved under the schema for which they were origi-
nally generated. Then, the preservation of the schema his-
tory and of the SMO+ICMO mappings between versions
becomes essential to (i) map back queries expressed on cur-
rent schemas to equivalent queries on the old schema and
(ii) organize the results returned to users in ways that are
consistent with their current schemas.

In conclusion, by supporting integrity constraints and
updates, PRISM++ has removed a major obstacle toward
the complete automation of DB schema upgrades. This will
ensure major reductions in downtimes and efforts by DBAs
and programmers. But in addition to providing these benefits,
the PRISM++ project is contributing with (i) better support
for schema history and data provenance, (ii) database archival
and historical queries, and (iii) a comprehensive testbed of
significant schema histories. While work on (ii) has already
reached its main research goals [44], work is still in progress
on objectives (i) and (iii), and will be documented in future
reports.

123

98 C. Curino et al.

Acknowledgments The authors would like to thank Fabrizio Moroni,
MyungWon Ham for their help in developing the tool, and Letizia Tanca
for the great feedback and support.

References

1. http://publib.boulder.ibm.com/infocenter/mptoolic/v1r0/index.
jsp?topic=/com.ibm.db2tools.chx.doc.ug/chxucoview01.htm

2. http://www.embarcadero.com/products/db-change-manager
3. http://www.idera.com/SQL-Server/
4. http://www.liquibase.org/
5. http://www.mysql.com/products/workbench/
6. http://www.oracle.com/us/products/enterprise-manager/change-

management-pack-11g-ds-068451.pdf
7. http://www.red-gate.com/
8. http://www.sqledit.com/index.html
9. http://www.swissql.com/

10. Abiteboul, S., Duschka, O.M.: Complexity of answering queries
using materialized views. In: PODS, pp. 254–263 (1998)

11. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addi-
son Wesley, Reading (1995)

12. Afrati, F.N., Kolaitis, P.G.: Repair checking in inconsistent data-
bases: Algorithms and complexity. In: ICDT, pp. 31–41 (2009)

13. Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers
in inconsistent databases. In: PODS, pp. 68–79 (1999)

14. Bancilhon, F., Spyratos, N.: Update semantics of relational views.
ACM Trans. Database Syst. 6(4), 557–575 (1981)

15. Bernstein, P.A.: Applying model management to classical meta
data problems. In: CIDR (2003)

16. Bernstein, P.A., Green, T.J., Melnik, S., Nash, A.: Implementing
mapping composition. VLDB J. 17(2), 333–353 (2008)

17. Bohannon, A., Pierce, B.C., Vaughan, J.A.: Relational lenses: A
language for updatable views. In: PODS, pp. 338–347 (2006)

18. Cleve A., Hainaut, J.-L.: Co-transformations in database applica-
tions evolution. In: GTTSE, pp. 409–421 (2006)

19. Curino, C., Ham, M., Moroni, F., Zaniolo, C.: Pantha rei data set.
http://data.schemaevolution.org/ (2009)

20. Curino, C., Moon, H.J., Deutsch, A., Zaniolo, C.: Update rewriting
and integrity constraint maintenance in a schema evolution support
system: Prism++. PVLDB 4(2), 117–128 (2010)

21. Curino, C., Moon, H.J., Ham, M., Zaniolo, C.: The prism work-
bench: Database schema evolution without tears. In: ICDE (2009)

22. Curino, C., Moon, H.J., Tanca, L., Zaniolo, C.: Schema evolution
in Wikipedia: Toward a web information system benchmark. ICEIS
(2008)

23. Curino, C., Moon, H.J., Zaniolo, C.: Graceful database schema
evolution: The prism workbench. PVLDB 1(1), 761–772 (2008)

24. Curino, C., Moon, H.J.: C. Zaniolo. Managing the history of meta-
data in support for db archiving and schema evolution. In: ECDM
(2008)

25. Dayal, U., Bernstein, P.A.: On the correct translation of update
operations on relational views. ACM Trans. Database Syst. 7(3),
381–416 (1982)

26. Deutsch, A., Nash, A., Remmel, J.: The chase revisited. In: PODS,
pp. 149–158 (2008)

27. Deutsch, A., Tannen, V.: Mars: A system for publishing xml from
mixed and redundant storage. In: VLDB, pp. 201–212 (2003)

28. Ensembl development team. Ensembl Genetic DB http://www.
ensembl.org, 2009 (Online)

29. Fagin, R.: Inverting schema mappings. ACM Trans. Database Syst.
32(4), 25:1–25:51 (2007)

30. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.-C.: Composing schema
mappings: Second-order dependencies to the rescue. ACM Trans.
Database Syst. 30(4), 994–1055 (2005)

31. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.-C.: Quasi-inverses of
schema mappings. In: PODS, pp. 123–132 (2007)

32. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W. C.: Reverse data
exchange: Coping with nulls. In: PODS, pp. 23–32 (2009)

33. Hartung, M., Terwilliger, J.F., Rahm, E.: Recent advances in
schema and ontology evolution. In: Schema Matching and Map-
ping, pp. 149–190 (2011)

34. Hernández, M.A., Miller, R.J., Haas, L.M.: Clio: A semi-automatic
tool for schema mapping. In: SIGMOD, p. 607 (2001)

35. Hick, J.-M., Hainaut, J.-L.: Database application evolution: A
transformational approach. Data Knowl. Eng. 59(3), 534–558
(2006)

36. Hull, R.: Non-finite specifiability of projections of functional
dependency families. Theor. Comput. Sci. 39, 239–265 (1985)

37. Kotidis, Y., Srivastava, D., Velegrakis, Y.: Updates through views:
A new hope. In: ICDE, p. 2 (2006)

38. Lenzerini, M.: Data integration: A theoretical perspective. In:
PODS, pp. 233–246 (2002)

39. Liu, Z., He, B., Hsiao, H.-I., Chen, Y.: Efficient and scalable data
evolution with column oriented databases. In: EDBT (2011)

40. Madhavan, J., Halevy, A.Y.: Composing mappings among data
sources. In: VLDB, pp. 572–583 (2003)

41. Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: A programming
platform for generic model management. In: SIGMOD (2003)

42. Miller, R.J., Ioannidis, Y.E., Ramakrishnan, R.: The use of infor-
mation capacity in schema integration and translation. In: VLDB,
pp. 120–133 (1993)

43. Miller, R.J., Ioannidis, Y.E., Ramakrishnan, R.: Schema equiva-
lence in heterogeneous systems: Bridging theory and practice. Inf.
Syst. 19(1), 3–31 (1994)

44. Moon, H.J., Curino, C., Deutsch, A., Hou, C.-Y., Zaniolo, C.: Man-
aging and querying transaction-time databases under schema evo-
lution. PVLDB 1(1), 882–895 (2008)

45. Moon, H.J., Curino, C., Zaniolo, C.: Scalable architecture and
query optimization for transaction-time dbs with evolving schemas.
In: SIGMOD Conference, pp. 207–218 (2010)

46. Moroni, F.: Schema Evolution Toolsuite: Analysis and Interpreta-
tion of Relational Schema Changes. Master’s thesis, Politecnico di
Milano—Dipartimento di Elettronica e Informazione (2009)

47. Papastefanatos, G., Vassiliadis, P., Simitsis, A., Vassiliou, Y.:
Hecataeus: Regulating schema evolution. In: ICDE, pp. 1181–
1184, March (2010)

48. Qian, L., LeFevre, K., Jagadish, H.V.: Crius: User-friendly database
design. PVLDB 4(2), 81–92 (2010)

49. Ra, Y.-G.: Relational schema evolution for program independency.
In: Proceedings of the 7th international conference on Intelligent
Information Technology, pp 273–281, Springer, Heidelberg (2004).
doi:10.1007/978-3-540-30561-3_29

50. Terwilliger, J.F., Bernstein, P.A., Unnithan, A.: Worry-free data-
base upgrades: Automated model-driven evolution of schemas and
complex mappings. In: SIGMOD Conference (2010)

51. Terwilliger, J.F., Fernández-Moctezuma, R., Delcambre, L.M.L.,
Maier, D.: Support for schema evolution in data stream manage-
ment systems. J. UCS 16(20), 3073–3101 (2010)

52. Ullman, J.: Principles of Database System. Computer Science
Press, Rockville (1982)

53. Ullman, J.D.: Information integration using logical views. Theor.
Comput. Sci. 239(2), 189–210 (2000)

54. Velegrakis, Y., Miller, R.J., Popa, L.: Mapping adaptation under
evolving schemas. In: VLDB, pp. 584–595 (2003)

55. Wikimedia Foundation. Wikipedia, the free encyclopedia http://en.
wikipedia.org/, 2007 (Online)

56. Wikimedia Foundation. The mediawiki http://www.mediawiki.
org, 2008

57. Yu, C., Popa, L.: Semantic adaptation of schema mappings when
schemas evolve. In: VLDB, pp. 1006–1017 (2005)

123

http://publib.boulder.ibm.com/infocenter/mptoolic/v1r0/index.jsp?topic=/com.ibm.db2tools.chx.doc.ug/chxucoview01.htm
http://publib.boulder.ibm.com/infocenter/mptoolic/v1r0/index.jsp?topic=/com.ibm.db2tools.chx.doc.ug/chxucoview01.htm
http://www.embarcadero.com/products/db-change-manager
http://www.idera.com/SQL-Server/
http://www.liquibase.org/
http://www.mysql.com/products/workbench/
http://www.oracle.com/us/products/enterprise-manager/change-management-pack-11g-ds-068451.pdf
http://www.oracle.com/us/products/enterprise-manager/change-management-pack-11g-ds-068451.pdf
http://www.red-gate.com/
http://www.sqledit.com/index.html
http://www.swissql.com/
http://data.schemaevolution.org/
http://www.ensembl.org
http://www.ensembl.org
http://dx.doi.org/10.1007/978-3-540-30561-3_29
http://en.wikipedia.org/
http://en.wikipedia.org/
http://www.mediawiki.org
http://www.mediawiki.org

	Automating the database schema evolution process
	Abstract
	1 Introduction
	2 Automatic evolution analysis and motivation
	2.1 Running example: a genetic DB

	3 A schema evolution language
	3.1 Schema modification operators
	3.2 Integrity constraint modification operators
	3.3 Impact of SMO on integrity constraints
	3.4 Forcing information preservation for SMOs

	4 Data migration
	5 A new rewriting technology
	5.1 Query rewriting through SMOs
	5.2 More expressive query classes
	5.3 Query rewriting in the presence of ICMOs
	5.4 Update rewriting through SMOs
	5.5 Update rewriting through ICMOs

	6 Implementation and optimization
	7 Automating the extraction of SMO
	7.1 Dependency graph
	7.2 Patterns
	7.3 Complex SQL sequences

	8 Experimental evaluation
	8.1 Rewriting technology
	8.2 SMO extraction performance and usability

	9 Related work
	10 Conclusions
	Acknowledgments
	References

