
BOOT-TS: A Scalable Bootstrap for
Massive Time-Series Data

Nikolay Laptev∗, Carlo Zaniolo
UCLA

Los Angeles, CA
{nlaptev,zaniolo}@cs.ucla.edu

Tsai-Ching Lu
HRL

Malibu, CA
tlu@hrl.com

Abstract
We propose a scalable method of assessing the quality of machine learning al-
gorithms over sampled time-series data. While bootstrap provides a simple and
powerful means of estimating accuracy, its application to large time-series data
still suffers from scalability issues. As an alternative we introduce BOOT-TS, a
scalable extension of bootstrap for time-series which utilizes the recent advances
in bootstrap and time-series theory to provide a practical implementation for as-
sessing a time-series sample quality using Hadoop. For instance, our new proce-
dure yields a robust and computationally efficient means of assessing the quality
of our Twitter analytics workflow over large, real-world, time-series data.

1 Introduction
A large portion of today’s data is in a time-series format (e.g., Twitter stream, system logs, blog
posts), and time constraints as well as monetary constraints force the user to work on a sample
of the data, for which the quality assessment is required. Furthermore the trend of dataset growth
is accelerating, with ‘big data’ becoming increasingly prevalent. The original bootstrap approach
[11, 2] and its time-series variants [1, 9] provide a simple way of assessing the quality of an estimate,
however in the distributed environment the cost of transferring the data to independent processors
as well as the cost of computing a single resample can be high. This is the source of incessant
problems in the natural life-cycle of advanced analytics development and a major stumbling block
that prevents interactive result exploration that many users desire [6, 7]. Thus we need a scalable
and efficient way of assessing the quality of an estimator for large time-series data samples in a
distributed environment.

In this paper we propose a simple, accurate and scalable technique for assessing the quality of results
computed from samples of the real-world time-series data. This technique allows the average user
or a small business to derive analytics on the data of massive sizes by using sampling. Therefore our
method will go towards allowing everyone to gain access to and benefit from knowledge discovery.

Reliable estimation of the quality obtained from sampled data often leads to sample sizes that are
orders of magnitude smaller than the original dataset thus providing major savings in terms of time
and money [6]. The average user, when debugging her machine learning algorithm locally can work
with a sample of the data while remaining confident in the expected accuracy of her final result.
When the same user deploys her application on the cloud system such as EC21 money and time can
also be saved by only working with a sample of the data and using only the needed resources2.

This paper addresses the scalability issue of error estimation for sampled time-series data. We
build on previous work of bootstrap [6, 5, 4] and time-series theory [1, 9] to provide a scalable
approach for assessing the quality of large time-series data samples. We take advantage of the
trend in computational resources which is shifting towards a multicore and distributed architecture
with cloud services providing thousands processing units3. These new processing units support fast

∗This work was done while the author was at HRL.
1http://aws.amazon.com/ec2/
2The pricing of cloud services is based on (a) storage and (b) processing unit usage.
3The total number of processing units in a cluster is: number of nodes × the number of CPUs per node.

1

Get latest
Twitter TS

stream

Time-Series
quality

assessment on
sample 'X'

All pairs twitter
tag similarity

computation on
'X'

Update
datastructures
dependant on

similarity

(a) A 40,000 ft. view of Twitter hashtag association
computation.

Model computation
(ex: SVM, regression)

.
Error estimation

(ex: Cross Validation)
Assessment of

empirical distribution

bias confidence
intervalstandard

deviation

(b) Details on 2 . Bias, s.d. and variance are among
the many statistical error measures that can be used.

Figure 1: One of our analytics workflows over time-series data.
execution of ‘big data’ applications. Motivated by this trend, we introduce the BOOT-TS system that
integrates recent research in both bootstrap and time-series theory. The core of our approach relies
on the Bag of Little Bootstraps (BLB) [5] for bootstrap scalability, on the Stationary Bootstrap (SB)
[9] for time-series resampling support and on Hadoop4 for computational scalability. BOOT-TS
works by first selecting in parallel a random block b of the original time-series data sample of size
n. Then in parallel r resamples are generated by applying SB to each block b to obtain a resample
of size n. In our implementation, r is not fixed, and each node can converge independently which
was a limitation in [5]. The errors computed on the resamples are then averaged across all nodes to
produce the final accuracy estimate. Thus, in BOOT-TS, the estimator is applied on only a single
block b instead of on the entire time-series sample. In other words, the computational cost incurred
only depends on the size of b and not on the size of the resample n.

The difficulty in supporting fast and accurate estimator assessment based on a sample has long been
recognized as one of the major obstacles in interactive big data processing [5, 3]. The problem is
more complicated when the data are a time-series because bootstrap must be carried out in a way
that captures the dependence structure of the data generation process. As a concrete application of
BOOT-TS we use one of our own Twitter analytics workflows which is composed of four stages: 1
Get latest Twitter data of size W → 2 Estimate error based on a sample n of W → 3 Compute
the similarity between Twitter hashtags5 from |s| → 4 Update internal tag similarity model. Note
that we compute similarity across more than 2 Million Twitter tags which further motivates this
research. Step 2 is computed infrequently, only to estimate the sample size required to achieve a
user defined accuracy. The goal of this workflow is to compute a similarity score of all hashtag pairs
based on a state of the art algorithm called MIC [10]. While all stages of this workflow provide
interesting challenges, this paper is specifically on step 2 . Figure 1 further elucidates this workflow
and emphasizes the focus of this paper.

To the best of our knowledge, this work is the first to provide scalable bootstrap with favorable
statistical guarantees. Our preliminary experiments show a promising trend when applying BOOT-
TS to the analytics workflow shown in Figure 1 and to other ML algorithms such as classification
and regression.

2 Preliminaries
Let {Xi}∞i=−∞ be an Rd-valued stationary process observed from some underlying distribution
P ∈ P with Pn = n−1

∑n
i=1 δXi denoting the corresponding empirical distribution. Let Xn =

{X1, ..., Xn} denote the available observations (usually drawn iid from {Xi}). Based on Xn we
compute an estimator θ̂n of the parameter of interest θ. θ̂n may for example estimate the accuracy
of a classifier. Borrowing notation from [5] we define Qn{P} ∈ Q as the true distribution of θ̂n.
Thus our final goal is to estimate ξ(Qn{P}, P). In our case ξ denotes the coefficient of variation
but it can also denote bias, standard error, confidence region or a quantile. Using bootstrap with
Monte Carlo approximation [2] one can repeatedly resample n points iid. from Pn from which an
empirical distribution Qn is formed and from which ξ(Qn{P}, P) ≈ ξ(Qn) is approximated. For
block bootstrapping, let the expected size of the block be l which is an integer satisfying 1 < l < n.
In this work we concentrate on the Stationary Block bootstrap (SB) [9], which functions as follows:
we let Lni ≡ Li, i ≥ 1 be conditionally iid random variables with parameter p = l−1 ∈ (0, 1).
Also let I1, ..., In be conditionally iid random variables with the discrete uniform distribution on
{1, ..., n}. Then, the SB resample X∗1 , ..., X

∗
n is produced from the first n elements in the array

B(I, L1), ...,B(I, LK) where K ≡ inf{κ ≥ 1 : L1 + ...+Lκ ≥ n} and where the block B(i, κ) =
(Xi, ..., Xi+κ−1), i ≥ 1, κ ≥ 1. The key difference of BOOT-TS from [9] and from [5] is that we
focus on scalability when extending the bootstrap to time-series.

4hadoop.apache.org
5The # symbol, called a hashtag, is used to mark keywords or topics in a Tweet.

2

3 BOOT-TS: The Scalable Time-Series Resampling Algorithm
The Naı̈ve approach: Predicting the quality of an estimate over time-series can be done in an
embarrassingly parallel way using bootstrap variations for time-series [8, 1, 9]. We would send the
time-series data to all nodes on which block sampling is applied. Since we only need to produce a
certain number of resamples, the computation time simply scales down with the number of nodes.
This naı̈ve approach is inefficient because it sends the entire dataset to all machines, which can still
be impractical for large datasets, but authors in [5] address this concern for iid data by splitting the
sample into chunks and processing each chunk in parallel thus avoiding sending the whole dataset
to all nodes. The limitations of the solution proposed in [5] is that (i) it is only applicable to iid
data and (ii) it treats all block samples as equal. In practice however, some nodes may get a bad
block sample, therefore more resamples will be required for convergence, whereas some nodes may
converge quicker due to a good block sample. This means that setting a fixed r, as is done in [5],
may lead to inefficiencies. To solve the above problems, we propose Algorithm 1, below.
BOOT-TS Algorithm: Algorithm 1 presents the BOOT-TS algorithm. The algorithm works by
first selecting a random block b from a set of possible blocks B(I, L1), ...,B(I, LK) observed in the
time-series sample. The stationary bootstrap is then applied to each block by appending the next
point (wrapping around if necessary) in the series to the current block with probability 1 − p, and
appending a random point from bwith probability p. Note that although other time-series approaches
are applicable, we focus on SB due to its popularity and its robustness with respect to block size [9].
Then the error ξ(Qn(P(j)

n,b)) for each block b is estimated by applying the Monte Carlo approximation
(standard bootstrap) via repeatedly resampling the blocks using the SB method and computing the
estimates on each resample. The number of resamples r is locally determined by each node with
O(r) ≈ 100. Local convergence is important because two nodes, having subsamples of different
quality, should not have the same r. Thus by locally determining r for each s, BOOT-TS turns out
to be less sensitive to the quality and to the size of b than SB. More details on local convergence are
given in Section 4. Note that if a local node converged after m resamples, BOOT-TS must append
r −m resample estimates to θ̂∗n which is done by drawing r −m resample estimates iid from θ̂∗m.
Note that s is dependent on b and at convergence can be as low as 1-5 for b = n0.9 or 10-20 for
b = n0.5 which is consistent with results for iid data found in [5]. The r resample estimates then
form an empirical distribution which is used to approximate ξ(Qn(P(j)

n,b)) ≈ ξ(Qn,j). The quality
estimates are then averaged across all the nodes and final error is returned as s−1

∑s
j=1 ξ

∗
n,j .

Algorithm 1: BOOT-TS
Input: Time-series data sample X1, . . . , Xn

θ̂: Estimator of interest
ξ: Estimator quality assessment

b: Selected subsample
s: Number of sampled blocks
r: Maximum number of Monte Carlo iterations

Output: An estimate of ξ(Qn(P))

for j ← 1 to s do
Randomly select a block b from B(I, L1), ...,B(I, LK)
for k ← 1 to r do

while Size of sample ≤ n do
if rgeom(1, p) == 0 then

currentIndex← A random index in b
pick the next item as b[currentIndex] and continue

end
pick the next item in our sample as b[currentIndex++]

end
P∗
n,k ← n−1 ∑b

a=1 naδXia

θ̂∗n,k ← θ̂(P∗
n,k)

check if θ̂∗n,k converged and if so, append (r − k) estimates
to θ̂∗n,k drawn iid from θ̂∗n,k and break

end
Q∗
n,j ← r−1 ∑r

k=1 δθ̂∗n,k

ξ∗n,j ← ξ(Q∗
n,j)

end
return s−1 ∑s

j=1 ξ
∗
n,j

3

0
40

80
12

0

#facebook

Index

Fr
eq

ue
nc

y

Jul 1st Jul 15th Aug 1st Aug 15th sep 1st sep 15th

0
10

0
20

0
30

0 #yosoy132

Index

Fr
eq

ue
nc

y

Jul 1st Jul 15th Aug 1st Aug 15th sep 1st sep 15th

0
10

30
50

@soccerdotcom

Fr
eq

ue
nc

y

Jul 1st Jul 15th Aug 1st Aug 15th sep 1st sep 15th

(a) Sample time-series of sev-
eral hashtags.

2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time Units

R
el

at
iv

e
E

rr
or

Stationary Bootstrap
BOOT_TS (BLK_SIZE=10%)
BOOT_TS (BLK_SIZE=20%)
BOOT_TS (BLK_SIZE=30%)

(b) Convergence rate of BOOT-TS
is quicker than that of SB.

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Block Size (%)

V
ar

ia
nc

e

Stationary Bootstrap
BOOT_TS

(c) BOOT-TS is less dependent on
block size than SB.

Figure 2
4 Implementation and Experiments
Implementation: The performance of the current implementation of BOOT-TS relies on the two
design decisions of adopting: (1) Model-error computation separation and (2) Convergence aware
computation. The first decision proved invaluable for achieving a simple API design that is easy to
understand and test. In model-error computation separation the error computation is performed in
three stages: (a) Model computation (b) Model Validation and (c) Error derivation from empirical
distribution of (b). It is important to realize that a lot of machine learning algorithms fall under this
three-stage model, and the quality assessment of many classic machine learning algorithms (SVM,
regression) can easily be expressed using it. Decision (2) is also important because in providing
block samples, not every block will be of the same ‘quality’, error computation on some nodes may
actually converge faster; therefore in our implementation r in Algorithm 1 is actually used as an
upper-bound, and each node instead uses a threshold for local convergence checking. Note however
that all nodes produce the same number of error estimates because we enlarge |θ̂∗n| to r via iid
resampling if necessary. Our full paper will consist of more detailed experiments and justification
of this dynamic setting of r.
Experimental Results: All experiments were performed on a 7-node cluster with 140 map-slots on
Hadoop 1.0.4. Each node is a 16-core AMD Opteron Processor 6134 @ 2.3GhZ with 132GB RAM.
The Total Twitter Dataset is of size 4.3TB.
In Figure 2a we show the type of time-series BOOT-TS was designed to deal with. Figure 2a shows
only three time-series for three tags over a period of three months. Our experiments in production,
however, were run on two million tags, with the goal of determining similarity measure across all
(n−1)(n)

2 hashtag pairs. Note that some tags may have many random spikes (e.g., #riot), some
tags may be fairly stable (e.g., #youtube) and some may show very little level of activity (e.g.,
#mycatsnameisboris). In Figure 2b we show the convergence rate of BOOT-TS and of Stationary
Bootstrap. BOOT-TS succeeds in converging to a low relative error significantly faster than the
Stationary Bootstrap. Although here we only show convergence results for similarity computation,
we observed similar results for other machine learning tasks such as SVM and linear regression and
we plan on sharing these results in our full paper. In Figure 2c we show the block size dependence
on the estimated variance of the Stationary Bootstrap and of the BOOT-TS. Notice that the variance
of the BOOT-TS is much more stable than that of the Stationary Bootstrap and therefore in practice
the user should be much less concerned with picking the perfect block size.
5 Future Work
We have discussed BOOT-TS and shown that it is a promising approach to scalable time-series
sample quality assessment. We have shown preliminary results of its superiority to the Stationary
Bootstrap and found that using BOOT-TS we were able to discover some interesting patterns in
our dataset, that would otherwise be impossible due to an impractically large dataset. Our work on
BOOT-TS will continue in the direction of providing more rigorous statistical guarantees of BOOT-
TS’ quality assessment. We will also analyze not only the local convergence based on r but also
based on n, or the size of the resample, in order to achieve an even faster convergence rates in a
distributed system.
Acknowledgements: Supported by the Intelligence Advanced Research Projects Activity (IARPA)
via Department of Interior National Business Center (DoI / NBC) contract number D12PC00285.
The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of IARPA, DoI/NBE, or the U.S. Government.

4

References

[1] P. Bhlmann and H. R. Knsch. Block length selection in the bootstrap for time series. Compu-
tational Statistics And Data Analysis, 31(3):295 – 310, 1999.

[2] B. Efron. Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7(1):1–26,
1979.

[3] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox. Twister: a
runtime for iterative mapreduce. HPDC, pages 810–818, 2010.

[4] A. Kleiner, A. Talwalkar, P. Sarkar, and M. Jordan. Bootstrapping big data. NIPS, 2011.
[5] A. Kleiner, A. Talwalkar, P. Sarkar, and M. I. Jordan. A scalable bootstrap for massive data.

Technical report, UC Berkeley, 2012.
[6] N. Laptev, K. Zeng, and C. Zaniolo. Early accurate results for advanced analytics on mapre-

duce. PVLDB, 5(10):1028–1039, 2012.
[7] J. Lin and A. Kolcz. Large-scale machine learning at twitter. SIGMOD, pages 793–804, 2012.
[8] S. U. D. of Statistics, D. Politis, J. Romano, and N. S. F. (U.S.). A Circular Block-resampling

Procedure for Stationary Data. 1991.
[9] D. N. Politis and J. P. Romano. The Stationary Bootstrap. Journal of the American Statistical

Association, 89(428):1303+, Dec. 1994.
[10] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J. Turnbaugh,

E. S. Lander, M. Mitzenmacher, and P. C. Sabeti. Detecting novel associations in large data
sets. Science, 334(6062):1518–1524, 2011.

[11] J. Shao and D. Tu. The jackknife and bootstrap. Springer series in statistics. 1995.

5

