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Abstract. In this paper, we study the problem of mining for frequent
trajectories, which is crucial in many application scenarios, such as
vehicle traffic management, hand-off in cellular networks, supply chain
management. We approach this problem as that of mining for frequent
sequential patterns. Our approach consists of a partitioning strategy
for incoming streams of trajectories in order to reduce the trajectory
size and represent trajectories as strings. We mine frequent trajectories
using a sliding windows approach combined with a counting algorithm
that allows us to promptly update the frequency of patterns. In order
to make counting really efficient, we represent frequent trajectories by
prime numbers, whereby the Chinese reminder theorem can then be used
to expedite the computation.

1 Introduction

In this paper, we address the problem of extracting frequent patterns from tra-
jectory data streams. Due to its many applications and technical challenges, the
problem of extracting frequent patterns has received a great deal of attention
since the time it was originally introduced for transactional data [1,12] and later
adressed for dynamic datasets in [3,13,23]. For trajectory data the problem was
studied in [9,11,26]. Trajectories are data logs recording the time and the posi-
tion of moving objects (or groups of objects) that are generated by a wide variety
of applications. Examples include GPS systems [9], supply chain management
[10], vessel classification by satellite images [20]. For instance, consider mov-
ing vehicles, such as cars or trucks where personal or vehicular mobile devices
produce a digital traces that are collected via a wireless network infrastructures.
Merchants and services can benefit from the availability of information about fre-
quent routes crossed by such vehicles. Indeed, a very peculiar type of trajectory
is represented by stock market. In this case, space information can be assumed
as a linear sequence of points whose actual values has to be evaluated w.r.t. pre-
ceding points in he sequence in order to estimate future fluctuations. Such a wide
spectrum of pervasive and ubiquitous sources and uses guarantee an increasing
availability of large amounts of data on individual trajectories, that could be
mined for crucial information. Therefore, due to the large amount of trajectory
streams generated every day, there is a need for analyzing them efficiently in
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order to extract useful information. The challenge posed by data stream systems
and data stream mining is that, in many applications, data must be processed
continuously, either because of real time requirements or simply because the
stream is too massive for a store-now & process-later approach. However, min-
ing of data streams brings many challenges not encountered in database mining,
because of the real-time response requirement and the presence of bursty arrivals
and concept shifts (i.e., changes in the statistical properties of data). In order
to cope with such challenges, the continuous stream is often divided into win-
dows, thus reducing the size of the data that need to be stored and mined. This
allows detecting concept drifts/shifts by monitoring changes between subsequent
windows. Even so, frequent pattern mining over such large windows remains a
computationally challenging problem requiring algorithms that are faster and
lighter than those used on stored data. Thus, algorithms that make multiple
scans of the data should be avoided in favor of single-scan, incremental algo-
rithms. In particular, the technique of partitioning large windows into slides
(a.k.a. panes) to support incremental computations has proved very valuable
in DSMS [24] and will be exploited in our approach. We will also make use
of the following key observation: in real world applications there is an obvious
difference between the problem of (i) finding new association rules, and (ii) ver-
ifying the continuous validity of existing rules. In order to tame the size curse of
point-based trajectory representation, we propose to partition trajectories using
a suitable regioning strategy. Indeed, since trajectory data carry information
with a detail not often necessary in many application scenarios, we can split the
search space in regions having the suitable granularity and represent them as
simple strings. The sequence of regions (strings) define the trajectory traveled
by a given object. Regioning is a common assumption in trajectory data mining
[9,20] and in our case it is even more suitable since our goal is to extract typical
routes for moving objects as needed to answer queries such as: which are the
most used routes between Los Angeles and San Diego? thus extracting a pattern
showing every point in a single route is useless.

The partitioning step allow us to represent a trajectory as string where each
substring encodes a region, thus, our proposal for incremental mining of frequent
trajectories is based on an efficient algorithm for frequent string mining. As a
matter of fact, the extracted patterns can be profitably used in systems devoted
to traffic management, human mobility analysis and so on. Although a real-
time introduction of new association rules is neither sensible nor feasible, the
on-line verification of old rules is highly desirable for two reasons. The first
is that we need to determine immediately when old rules no longer holds to
stop them from pestering users with improper recommendations. The second is
that every window can be divided in small panes on which the search for new
frequent patters execute fast. Every pattern so discovered can then be verified
quickly. Therefore, in this paper we propose a fast algorithm, called verifier
henceforth, for verifying the frequency of previously frequent trajectories over
newly arriving windows. To this end, we use sliding windows, whereby a large
window is partitioned into smaller panes [24] and a response is returned promptly



Trajectory Data Pattern Mining 53

at the end of each slide (rather than at the end of each large window). This also
leads to a more efficient computation since the frequency of the trajectories in
the whole window can be computed incrementally by counting trajectories in
the new incoming (and old expiring) panes.

Our approach in a nutshell. As trajectories flow we partition the incoming stream
in windows, each window being partitioned in slides. In order to reduce the size
of the input trajectories we pre-process each incoming trajectory in order to
obtain a smaller representation of it as a sequence of regions. We point out that
this operation is well suited in our framework since we are not interested in
point-level movements but in trajectory shapes instead. The regioning strategy
we exploit uses PCA to better identify directions along which we should perform
a more accurate partition disregarding regions not on the principal directions.
The rationale for this assumption is that we search for frequent trajectories so
it is unlikely that regions far away from principal directions will contribute to
frequent patterns (in the following we will use frequent patterns and frequent tra-
jectories as synonym). The sequence of regions so far obtained can be represented
as a string for which we can exploit a suitable version of well known frequent
string mining algorithms that works efficiently both in terms of space and time
consumption. We initially mine the first window and store the frequent trajec-
tories mined using a tree structure. As windows flow (and thus slides for each
window) we continuously update frequency of existing patterns while searching
for new ones. This step requires an efficient method for counting (a.k.a verifica-
tion). Since trajectory data are ordered we need to take into account this feature.
We implement a novel verifier that exploits prime numbers properties in order
to encode trajectories as numbers and keeping order information, this will allow
a very fast verification since searching for the presence of a trajectory will result
in simple (inexpensive) mathematical operations.

Remark. In this paper we exploit techniques that were initially introduced in
some earlier works [27–29]. We point out that in this work we improved those
approaches in order to make them suitable for sequential pattern mining. More-
over, validity of data mining approaches rely on their experimental assessment.
In this respect the experiments we performed confirmed the validity of the pro-
posed approach.

2 Related Work

Mining trajectory data is an active research area and many interesting propos-
als exist in the literature. In [32] an algorithm for sequential pattern mining is
introduced. The algorithm TrajPattern mines patterns by a process that identi-
fies the top-k most important patterns with respect to a suitable measure called
NM. The algorithm exploits a min-max property since the well known Apriori
property no longer holds for that measure. A general formal statement for the
trajectory pattern mining is provided in [9] where trajectory pattern are char-
acterized in terms of both space (introducing the concept of regions of interest)
and time (considering the duration of movements).
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Trajectory mining has been deeply investigated in recent years. In [21] tra-
jectory clustering has been explored. Clustering is performed using a two-phase
algorithm that first partitions the trajectory using the MDL principle and then
clusters the trajectory segments using a line-segment clustering algorithm. In
[25] a technique for defining and maintaining micro clusters of moving objects.
In [14] a filter-refinement approach has been used for discovering convoys in tra-
jectory databases. In particular various trajectory simplification techniques are
studied along with different query processing strategies.

In [22] a partition end detect framework is presented for trajectory outlier
detection. In particular a hybrid approach distance-based and density-based is
exploited to identify anomalies.

Also, in this paper we have borrowed many techniques from traditional fre-
quent pattern mining, both for stored and streaming data. Many algorithms
have been proposed for mining of frequent itemsets [1,15,33], but due to space
limitations we will only discuss those that are most relevant to this paper.

For instance, Pei et al. [30] and Zaki et al. [33], present efficient algorithms,
Closet and Charm, respectively, to mine closed frequent itemsets; an itemset is
closed if none of its proper supersets has the same support as it has.

Han et al. [31], introduced an efficient data structure, called fp-tree, for com-
pactly storing transactions given a minimum support threshold. Then they pro-
posed an efficient algorithm (called FP-growth) for mining an fp-tree [31].

We borrow the double-conditionalization technique from Mozafari et al. [29]
which used the so-called fp-tree data structure and the original conditionalization
idea from [31]. This situation has motivated a considerable amount of research
interest in online frequent itemsets mining as well [2,4,7]. Lee et al. [18] propose
generating k-candidate sets from (k-1)-candidate sets, i.e., without verifying their
frequency. This avoids extra passes over the data and, according to the authors,
does not result in too many additional candidate sets. Chi et al. [7] propose the
Moment algorithm for maintaining closed frequent itemsets, whereas Cats Tree
[2] and CanTree [4] support the incremental mining of frequent itemsets.

There has been also a significant amount of work on counting itemsets (rather
than finding the frequent ones). Hash-based counting methods, originally pro-
posed in Park et al. [5], are in fact used by many of the above-mentioned frequent
itemsets algorithms [1,5,33], whereas Brin et al. [6], proposed a dynamic algo-
rithm, called DIC, for efficiently counting itemsets’ frequencies.

3 Trajectory Size Reduction

For transactional data a tuple is a collection of features. Instead, a trajectory
is an ordered set (i.e., a sequence) of timestamped points. We assume a stan-
dard format for input trajectories, as defined next. Let P and T denote the
set of all possible (spatial) positions and all timestamps, respectively. A tra-
jectory Tr of length n is defined as a finite sequence s1, · · · , sn, where n ≥ 1
and each si is a pair (pi, ti) where pi ∈ P , ti ∈ T and ti < ti+1. We assume
that P and T are discrete domains; however this assumption does not affect
the validity of our approach. In order to deal with these intrinsically redundant
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data, a viable approach is to partition the space into regions in order to map
the initial locations into discrete regions labeled with a timestamped symbol.
The problem of finding a suitable partitioning for both the search space and
the actual trajectory is a core problem when dealing with spatial data. Every
technique proposed so far somehow deals with regioning and several approaches
have been proposed such as partitioning of the search space in several regions
of interest (RoI) [9] and trajectory partitioning (e.g., [21]) by using polylines.
In this section, we describe the application of Principal Component Analysis
(PCA) [16] in order to obtain a better partitioning. Indeed, PCA finds pre-
ferred directions for data being analyzed. We denote as preferred directions the
(possibly imaginary) axes where the majority of the trajectories lie. Once we
detect the preferred directions we perform a partitioning of the search space
along these directions. Many tools have been implemented for computing PCA
vectors such as [16], in our framework due to the streaming nature of data we
exploited an incremental PCA (IPCA) algorithm proposed in [16]. method based
on the idea of a singular value decomposition (SVD) updating algorithm, namely
an SVD updating-based IPCA (SVDU-IPCA) algorithm. For this SVDU-IPCA
algorithm, it has been mathematically proved that the approximation error is
bounded. The latter is a relevant feature since the quality of regioning heavily
relies on the quality of IPCA results. Due to space limitations, instead of giving a
detailed description of the mathematical steps implemented in our prototype, we
will present an illustrating (real life) example, that will show the main features
of the approach.

Example 1. Consider the set of trajectories depicted in Fig. 1(a) regarding bus
movements in the Athens metropolitan area. There are several trajectories close
to the origin of the axes so it is difficult to identify the most interesting areas
for analysis.

In order to properly assign regions we need to set a suitable level of granular-
ity by defining the initial size s of each region, i.e., its diameter. We assume for the
sake of simplicity squared regions and store the center of each region. The initial
size s (i.e. the size of regions along principal directions) of each region should
be set according to the domain being analyzed. In order to keep an intuitive
semantics for regions of interest we partition the search space into square regions
along the directions set by the eigenvalues returned by IPCA. Since the region

(a) Original Data (b) Regions defined by exploiting IPCA

Fig. 1. Trajectory Pre-Elaboration steps
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granularity will affect further analysis being performed the choice of region size
s is guided by DBScan an unsupervised density based clustering algorithm. The
output of the regioning step is depicted in Fig. 1(b).

Definition 1 (Dense Regions). Let T be a set of trajectories, and XI and YI

the axes defined by IPCA, C = {C1, C2, · · · , Cn} a set of regions obtained with
density based algorithm (DBScan) laying on XI and YI , the regions defined by
Ci’s boundaries are Dense.

More in detail, we denote as dense regions the one that both lay on the prin-
cipal and belongs to a dense cluster, thus the region size is the cluster diameter.

4 Frequent Trajectories Mining

The regioning schema presented in previous section allows a compact represen-
tation of trajectories by the sequences of regions crossed by each trajectory, i.e.,
as a set of strings, where each substring encodes a region. It is straightforward to
see that this representation transforms the problem of searching frequent infor-
mation in a (huge) set of multidimensional points into the problem of searching
frequent (sub)strings in a set of strings representing trajectories. We point out
that our goal is to mine frequent trajectories tackling the “where is” problem,
i.e., we are interested in movements made by objects disregarding time infor-
mation (such as velocity). Moreover, since the number of trajectories that could
be monitored in real-life scenarios is really huge we need to work on successive
portions of the incoming stream of data called windows. Let T = {T1, · · · , Tn}
be the set of regioned trajectories to be mined belonging to the current window;
T contains several trajectories where each trajectory is a sequence of regions.
Let S = {S1, · · · , Sn} denotes the set of all possible (sub)trajectories of T . The
frequency of a (sub)trajectory Si is the number of trajectories in T that contain
Si, and is denoted as Count(Si, T ). The support of Si, sup(Si, T ), is defined
as its frequency divided by the total number of trajectories in T . Therefore,
0 ≤ sup(Si, T ) ≤ 1 for each Si. The goal of frequent trajectories mining is to
find all such Si whose support is at least some given minimum support threshold
α. The set of frequent trajectories in T is denoted as Fα(T ). We consider in this
paper frequent trajectories mining over a data stream, thus T is defined as a
sliding window W over the continuous stream. Each window either contains the
same number of trajectories (count based or physical window), or contains all
trajectories arrived in the same period of time (time-based or logical window).
T moves forward by a certain amount by adding the new slide (δ+) and drop-
ping the expired one (δ−). Therefore, the successive instances of T are shown as
W1,W2, · · · . The number of trajectories that are added to (and removed from)
each window is called its slide size. In this paper, for the purpose of simplicity,
we assume that all slides have the same size, and also each window consists of
the same number of slides. Thus, n = |W |/|S| is the number of slides (a.k.a.
panes) in each window, where |W | denotes the window size and |S| denotes the
size of the slides.
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Mining Trajectories in W. As we obtain the string representation of trajec-
tories, we focus on the string mining problem. In particular, given a set of input
strings, we want to extract the (unknown) strings that obey certain frequency
constraints. The frequent string mining problem can be formalized as follows.
Given a set T of input strings and a given frequency threshold α, find the set
SF s.t. ∀s ∈ SF , count(s, T ) > α.

Many proposals have been made to tackle this problem [8,17]. We exploit in
this paper the approach presented in [17]. The algorithm works by searching for
frequent strings in different databases of strings. In our paper we do not have
different databases, we have different windows instead. We first briefly recall the
basic notions needed for the algorithm. More details can be found in [8,17].

The suffix array SA of a string s is an array of integers in the range [1..n],
which describes the lexicographic order of the n suffixes of s. The suffix array
can be computed in linear time [17]. In addition to the suffix array, we define the
inverse suffix array SA−1, which is defined forall1 ≤ i ≤ n by SA−1[SA[i]] = i.
The LCP table is an array of integers which is defined relative to the suffix
array of a string s. It stores the length of the longest common prefix of two
adjacent suffixes in the lexicographically ordered list of suffixes. The LCP table
can be calculated in O(n) from the suffix array and the inverse suffix array. The
ω-interval is the longest common prefix of the suffixes of s. The algorithm is
reported in Fig. 2 and its features can be summarized as follows.

Function extractStrings arranges the input strings in the window Wi in
a string Saux consisting of the concatenation of the strings in Wi, using #
as a separation symbol and $ as termination symbol. Functions buildSuffixes
and buildPrefixes compute respectively the suffixes and prefixes of Saux and
store them using SA and LCP variables. Function computeRelevantStrings first
computes the number of times that a string s occurs in Wi and then subtracts so
called correction terms which take care of multiple occurrences within the same
string of Wi as defined in [17]. The output frequent strings are arranged in a
tree structure that will be exploited for incremental mining purposes as will be
explained in the next section.

Method: MineFrequentStrings
Input: A window slide S of the input trajectories;
Output: A set of frequent strings SF .
Vars:
A string Saux;
A suffix array SA;
A prefix array LCP .
1: Saux = extractStrings(S);
2: SA = buildSuffixes(Saux);
3: LCP = buildPrefixes(Saux);
4: SF = computeRelevantStings(W0, SA,LCP )
5: return SF ;

Fig. 2. The frequent string mining algorithm
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Incremental Mining of Frequent Trajectories. As the trajectory stream
flows we need to incrementally update the frequent trajectories pattern so far
computed (that are inserted in a Trajectory Tree (TT )). Our algorithm always
maintains a union of the frequent trajectories of all slides in the current window
W in TT , which is guaranteed to be a superset of the frequent pattern over W .
Upon arrival of a new slide and expiration of an old one, we update the true
count of each pattern in TT , by considering its frequency in both the expired
slide and the new slide. To assure that TT contains all patterns that are frequent
in at least one of the slides of the current window, we must also mine the new
slide and add its frequent patterns to TT . The difficulty is that when a new
pattern is added to TT for the first time, its true frequency in the whole window
is not known, since this pattern was not frequent in the previous n−1 slides. To
address this problem, we uses an auxiliary array (aux) for each new pattern in
the new slide. The aux array stores the frequency of a pattern in each window
starting at a particular slide in the current window. The key point is that this
counting can either be done eagerly (i.e., immediately) or lazily. Under the laziest
approach, we wait until a slide expires and then compute the frequency of such
new patterns over this slide and update the aux arrays accordingly. This saves
many additional passes through the window. The pseudo code for the algorithm
is given in Fig. 3. At the end of each slide, it outputs all patterns in TT whose
frequency at that time is ≥ αṅ|̇S|. However we may miss a few patterns due to
lack of knowledge at the time of output, but we will report them as delayed when

Method: IncrementalMaintenance
Input: A trajectory stream T .
Output: A trajectory pattern tree TT .
Vars:
A window slide S of the input trajectories;
An auxiliary array aux;
A trajectory tree TT
1: For Each New Slide Snew

2: updateFrequencies(TT, S);
3: TT = MineFrequentStrings(Snew);
4: For Each trajectory t ∈ TT ∩ TT
5: annotateLast(Snew, t);
6: For Each trajectory t ∈ TT \ TT
7: update(TT, t);
8: annotateF irst(Snew, t, t.aux);
9: For Each Expiring Slide Sexp

10: For Each trajectory t ∈ TT
11: conditionalUpdateFrequencies(Sexp, t);
12: conditionalUpdate(t.aux);
13: if t has existed since arrival of S
14: delete(t.aux);
15: if t no longer frequent in any of the current slides
16: delete(t);

Fig. 3. The incremental miner algorithm
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other slides expire. The algorithm starts when the first slide has been mined and
its frequent trajectories are stored in TT .

Herein, function updateFrequencies updates the frequencies of each pattern
in TT if it is present in S. As the new frequent patterns are mined (and stored
in TT ′), we need to annotate the current slide for each pattern as follows: if a
given pattern t already existed in TT we annotate S as the last slide in which
t is frequent, otherwise (t is a new pattern) we annotate S as the first slide in
which t is frequent and create an auxiliary array for t and start monitoring it.
When a slide expires (denote it Sexp) we need to update the frequencies and
the auxiliary arrays of patterns belonging to TT if they were present in Sexp.
Finally, we delete auxiliary array if pattern t has existed since arrival of S and
delete t, if t is no longer frequent in any of the current slides.

A very fast verifier for trajectories. In the following, we first define the verifier
notion and propose our novel verifier for trajectories data.

Definition 2. Let T be a trajectories database, P a given set of arbitrary pat-
terns, and minfreq a given minimum frequency. A function f is called a verifier
if it takes T , P and minfreq as input and for each pattern p ∈ P returns one
of the following results: (a) p’s true frequency in T if it has occurred at least
minfreq times or otherwise; (b) reports that it has occurred less than minfreq

times (frequency not required in this case).

It is important to notice the subtle difference between verification and simple
counting. In the special case of minfreq = 0 a verifier simply counts the frequency
of all p ∈ P , but in general if minfreq > 0, the verifier can skip any pattern
whose frequency will be less than minfreq. This early pruning can be done
by the Apriori property or by visiting more than |T | − minfreq trajectories.
Also, note that verification is different (and weaker) from mining. In mining
the goal is to find all those patterns whose frequency is at least minfreq, but
verification simply verifies counts for a given set of patterns, i.e., verification does
not discover additional patterns. The challenge is to find a verification algorithm,
which is faster than both mining and counting algorithms, since the algorithm
for extracting frequent trajectories will benefit from this efficiency. In our case
the verifier needs to take into account the sequential nature of trajectories so
we need to count really fast while keeping the right order for the regions being
verified. To this end we exploit an encoding scheme for regioned trajectories
based on some peculiar features of prime numbers.

5 Encoding Paths for Efficient Counting and Querying

A great problem with trajectory sequential pattern mining is to control the expo-
nential explosion of candidate trajectory paths to be modeled because keeping
information about ordering is crucial. Indeed, our regioning step heavily reduces
the dataset size that we have to deal with. Since our approach is stream oriented
we also need to be fast while counting trajectories and (sub)paths. To this end,
prime numbers exhibit really nice features that for our goal can be summarized
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in the following two theorems. They have also been exploited for similar pur-
poses for RFID tag encodings [19], but in that work the authors did not provide
a solution for paths containing cycles as we do in our framework.

Theorem 1 (The Unique Factorization Theorem). Any natural number
greater than 1 is uniquely expressed by the product of prime numbers.

As an example consider the trajectory T1 = ABC crossing three regions
A,B,C. We can assign to regions A, B and C respectively the prime numbers
3,5,7 and the position of A will be the first (pos(A) = 1), the position of B will be
the second (pos(B) = 2), and the position of C will be the third (pos(C) = 3).
Thus the resulting value for T1 (in the following we refer to it as P1) is the
product of the three prime numbers, P1 = 3 ∗ 5 ∗ 7 = 105 that has the property
that does not exist the product of any other three prime numbers that gives as
results 105.

As it is easy to see this solution allows to easily manage trajectories since
containment and frequency count can be done efficiently by simple mathematical
operations. Anyway, this solution does not allow to distinguish among ABC,
ACB, BAC, BCA, CAB, CBA, since the trajectory number (i.e., the product
result) for these trajectories is always 105. To this end we can exploit another
fundamental theorem of arithmetics.

Theorem 2 (Chinese Remainder Theorem). Suppose that n1, n2, · · · , nk

are pairwise relatively prime numbers. Then, there exists W (we refer to it as
witness) between 0 and N = n1 · n2 · · · nk solving the system of simultaneous
congruences: W%n1 = a1, W%n2 = a2, . . . , W%nk = ak

1.

Then, by Theorem 2, there exists W1 between 0 and P1 = 3∗5∗7 = 105. In our
example, the witness W1 is 52 since 52%3 = 1 = pos(A) and 52%5 = 2 = pos(B)
and 52%7 = 3 = pos(C). We can compute W1 efficiently using the extended
Euclidean algorithm. From the above properties it follows that in order to fully
encode a trajectory (i.e., keeping the region sequence) it suffices to store two
numbers, its prime number product (which we refer to as its trajectory number)
and its witness. In order to assure that no problem will arise in the encoding
phase and witness computation we assume that the first prime number we choose
for encoding is greater than the trajectory size. So for example if the trajectory
length is 3 we encode it using prime numbers 5,7,11. A devil’s advocate may
argue that multiple occurrences of the same region leading to cycles violates
the injectivity of the encoding function. To this end the following example will
clarify our strategy.

Dealing with Cycles. Consider the following trajectory T2 = ABCAD, we
have a problem while encoding region A since it appears twice, in the first and
fourth position. We need to assure that the encoding value of A is such that we
can say that both pos(A) = 1 and pos(A) = 4 hold (we do not want two separate
encoding value since the region is the same and we are interested in the order
difference). Assume that A is encoded as (41)5 (i.e., 41 on base 5, we use 5 base
1 The % is the classical modulo operation that computes the remainder of the division.
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since the trajectory length is 5) this means that A occurs in positions 1 and 4.
The decimal number associated to it is A = 21, and we chose as the encoding
for A = 23 that is the first prime number greater than 21. Now we encode the
trajectory using A = 23, B = 7, C = 11, D = 13 thus obtaining P2 = 23023
and W2 = 2137 (since the remainder we need for A is 21). As it easy to see we
are still able to properly encode even trajectories containing cycles. As a final
notice we point out that the above calculation is made really fast by exploiting
a parallel algorithm for multiplication. We do not report here the pseudo code
for the encoding step explained above due to space limitations. Finally, one may
argue that the size of prime numbers could be large, however in our case it is
bounded since the number of regions is small as confirmed by several empirical
studies [14] (always less than a hundred of regions for real life applications we
investigated).

Definition 3 (Region Encoding). Given a set R = {R1, R2, · · · , Rn} of
regions, a function enc from R to P (the positive prime numbers domain) is
a region encoding function for R.

Definition 4 (Trajectory Encoding). Let Ti = R1, R2 · · · Rn be a regioned
trajectory. A trajectory encoding (E(Ti)) is a function that associates Ti with
a pair of integer numbers 〈Pi,Wi〉 where Pi =

∏
1..n enc(Ri) is the trajectory

number and Wi is the witness for Pi.

Once we encode each trajectory as a pair E(T ) we can store trajectories in
a binary search tree making the search, update and verification operations quite
efficient since at each node we store the E(T ) pair. It could happen that there
exists more than one trajectory encoded with the same value P but different
witnesses. In this case, we store once the P value and the list of witnesses saving
space for pointers and for the duplicate P values. Consider the following set of
trajectories along with their encoding values (we used region encoding values:
A = 5, B = 7, C = 11, D = 13, E = 15): (ABC, 〈385, 366〉), (ACB, 〈385, 101〉),
(BCDE, 〈15015, 3214〉), (DEC, 〈2145, 872〉). ABC and ACB will have the same
P value (385) but their witnesses are W1 = 366 and W2 = 101, so we are still
able to distinguish them.

6 Experimental Results

In this section we will show the experimental results for our algorithms. We used
the GPS dataset [34] (this dataset being part of GeoLifeproject). It records a
broad range of users outdoor movements, thus, the dataset allows a severe test
for our frequent sequential pattern mining. In order to compare the effectiveness
of our approach we compared it with the T-Patterns system described in [9]. In
particular since T-Patterns does not offer streaming functionalities we compare
our system using a single large window and compare the extracted patterns w.r.t.
the regioning performed. More in detail we compare our results w.r.t. the Static
and Dynamic regioning offered by T-Patterns on window sizes of 10,000, 20,000,
50,000, 100,000.
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Comparison Against Static RoI. In the following, we compare our algo-
rithm against T-Patterns with static RoI by measuring the execution times, the
number of extracted regions and the number of extracted patterns for a given
support value. Table 2(a) and (b) summarize respectively the resultsobtained on
sets of 10,000 up to 100,000 trajectories extracted for the GPS dataset with 0.5 %
and 1 % as min support value. Table 2(a) shows that when the number of input
trajectories increases the execution times linearly increases and our execution
time is lower than T-Patterns. This can be easily understood since we exploit
a really fast frequent miner. A more interesting result is the one on number of
extracted regions. As explained in previous sections, we exploit PCA and we
focus on regions along principal directions, this allow us to obtain less regions.
As a consequence having a smaller number of regions allows more patterns to be
extracted as confirmed in Table 1. The intuition behind this result is that when
considering a smaller number of regions this imply a greater number of trajec-
tories crossing those regions. The above features are confirmed by the results
reported in Table 2 for 1 % minimum support value (obviously it will change the
execution times and number of patterns while the number of extracted regions is
the same as in the to previous table). Interestingly enough, the execution times
for our algorithm slightly decrease as the min support value increases and this
is due to the advantage we get from the verification strategy.

Comparison Against Dynamic RoI. In the following, we compare our algo-
rithm against T-Patterns with dynamic RoI by measuring the execution times,
the number of extracted regions and the number of extracted patterns for a given
support value. Tables below summarize respectively the results obtained on sets
of 10,000 up to 100,000 trajectories extracted for the GPS dataset with 0.5 %
and 1 % as min support value. Also for this comparison, Table 3 shows, for 0.5 %

Table 1. Performances comparison with min support value 0.5 % against static ROI

Our Algorithm T-Patterns
Times # regions # patterns Times # regions # patterns

1.412 94 62 4.175 102 54
2.115 98 71 6.778 107 61
3.876 96 77 14.206 108 67
7.221 104 82 30.004 111 73

Table 2. Performances comparison with min support value 1 % against static ROI

Our Algorithm T-Patterns
Times # regions # patterns Times # regions # patterns

1.205 94 41 4.175 102 37
2.003 98 50 6.778 107 43
3.442 96 59 14.206 108 49
6.159 104 65 30.004 111 58
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Table 3. Performances comparison with min support value 0.5 % against dynamic RoI

Our Algorithm T-Patterns
Times # regions # patterns Times # regions # patterns

1.412 94 62 4.881 106 56
2.115 98 71 7.104 111 66
3.876 96 77 15.306 112 69
7.221 104 82 302.441 115 75

Table 4. Performances comparison with min support value 1 % against dynamic RoI

Our Algorithm T-Patterns
Times # regions # patterns Times # regions # patterns

1.205 94 41 5.002 105 40
2.003 98 50 7.423 108 46
3.442 96 59 15.974 113 53
6.159 104 65 32.558 116 60

minimum support value, that when the number of input trajectories increases
the execution times linearly increases and our execution time is better than T-
Patterns. The other improvements obtained with our algorithm have the same
rationale explained above. These features are confirmed by the results reported
in Table 4 for 1 % minimum support value.

Mining Algorithm Performances. In this section we report the results we ran
to test the performances of the proposed incremental mining algorithm for large
sliding windows. At the best of our knowledge our algorithm is the first proposal
for dealing with frequent pattern mining on trajectory streams so we do not
have a “gold” standard to compare with, however the results obtained are really
satisfactory since the running times are almost insensitive to the window size.
Indeed, some of the approaches discussed in previous section pursue the same
goal such as [3,11,13,23], so we decided to compare our results with the approach
presented in [3] (referred in the following as IMFP). We recall that the algorithm
goal is maintaining frequent trajectories over large sliding windows. Indeed, the
results shown in Table 5(a) show that the delta-maintenance based approach
presented here is scalable with respect to the window size. Finally, we report
the total number of frequent pattern as windows flow (the results shown in
Table 5(b)). They are computed using a window size of 10,000 trajectories) for a
minimum support value of 0,1 %. Indeed we report the total number of patterns
that have been frequent wether they are still frequent or not, this information
is provided to take into account the concept shift for data being monitored.
The results in Table 5(b) shows that after 200 windows being monitored the
number of patterns that resulted frequent in some window is more than doubled
this means that the users habits heavily changed during the two years period.
The results reported in Table 5(a) and (b) confirm that our performances are
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Table 5. Mining algorithm results

Our Times IMFP Times Windows size
773 1,154 10,000
891 1,322 25,000

1,032 1,651 50,000
1,211 1,913 100,000
1,304 2,466 500,000
2,165 2,871 1,000,000

# Window # Our Patterns # IMFP Patterns
1 85 67
10 106 92
20 125 104
50 156 121
100 189 143
200 204 158

(a) (b)

better than the ones obtained by running IMFP both in terms of running times
and patterns quality expressed as number of frequent patterns found.

7 Conclusion

In this paper we tackled the problem of frequent pattern extraction from trajec-
tory data by introducing a very fast algorithm to verify the frequency of a given
set of sequential patterns. The fast verifier has been exploited in order to solve
the sequential pattern mining problem under the realistic assumption that we
are mostly interested in the new/expiring patterns. This delta-maintenance app-
roach effectively mines very large windows with slides, which was not possible
before. In summary we have proposed an approach highly efficient, flexible, and
scalable to solve the frequent pattern mining problem on data streams with very
large windows. Our work is subject to further improvements in particular we will
investigate: (1) further improvements to the regioning strategy; (2) refining the
incremental maintenance to deal with maximum tolerance for delays between
slides.
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