DESIGN AND IMPLEMENTATION OF A LOGIC BASED
LANGUAGE FOR DATA INTENSIVE APPLICATIONS

Carlo Zaniolo

Microelectronics and Computer Technology Corporation
Austin, Texas, USA

Abstract

Ongoing research on the Logic Data Language (LDL) pursues a new appli-
cation focus and a new implementation technology for Logic Program-
ming. In LDL, the functionality of Prolog is enhanced with full database
capabilities, such as, schema facilities for extensional information, transac-
tion management and recovery. The implementation technology of LDL
is, however, very different from that of Prolog, since it is based on
mechanisms suitable for secondary storage, such as matching and least
fixpoint computations, rather than on SLD-resolution and unification.
This paper describes the main research challenges tackled and the solution
approaches taken in designing and building two experimental LDL sys-
tems. Thus, the following topics are discussed: (a) the design of non-Horn
constructs (such as negation, sets and updates) and the definition of a for-
mal semantics for them, (b) the compilation methods that map rules and
queries with mode declarations into efficient execution plans based on
matching and fixpoint operators, (¢} the optimization and safety tech-
niques used to relieve the user from the responsibility of specifying an exe-
cution order for clauses and goals in the program and (d) the new style of
deductive programming that emerges from writing applications in LDL.

1. Background

The research on the Logic Data Language (LDL) is motivated by the con-
viction that data intensive applications represent a natural application
domain with great growth potential for Logic Programming. This
motivation is not unique to the LDL work, since it can be seen as the
rationale behind several systems designed for coupling Prolog with rela-
tional database systems [Boc, CeGW, KuYo, Li, JaCV).

LDL is, however, unique in its technical approach that is based on
the tenet that a truly effective logic based language for data intensive
applications cannot be built by coupling existing Prolog systems with

1667

database systems, rather, new language concepts and a new implementa-
tion technology are needed. This tenet has led to the design of a novel
language based on Horn clause logic —with its distinctive style of appli-
cation development— and to a novel repertoire of techniques for efficient
implementation of logic based languages. This paper provides a reasoned
history of the evolution of LDL, an overview of the research challenges
encountered and of the solutions developed in the design and implemen-
tations of two experimental LDL systems.

The basic LDL idea, conceived in 1984, envisions a system that com-
bines the expressive power of Prolog with the functionality and facilities
of Data Base Management Systems (DBMSs) —i.e., support for transac-
tions, recovery, and schema based integrity and efficient management of
secondary storage. Therefore, the LDL system offers a user all the benefits
of a database language [BaBu] including the elimination of the "impedance
mismatch” between the programming language and the database query
language [{CoMza], which is besetting the development of data intensive
applications. Moreover, LDL represents an important way-station toward
future Knowledge Management Systems which will have to combine
efficient inference mechanisms from Logic with efficient and secure
management of large information banks from Database Systems.

It soon became clear that arduous research challenges stood in the
way of realizing the LDL concept. The first issue that came into focus was
that of users’ responsibility of execution control. In the *70s and early
'80s, the database field had witnessed a dramatic evolution from naviga-
tional systems into relational ones. In navigational systems, such as
Codasyl compliant DBMSs, the programmer must explicitly navigate
through the maze of database records, paying careful attention to the
sequential order in which these records are visited —the key to efficiency.
In relational DBMSs, instead, the user is only responsible for the formula~
tion of a correct query (using logic-based languages of limited expressive
power, such as SQL or QUEL [Ull]}. A special system module, called the
query optimizer, then compiles each query into an efficient execution plan.
By contrast, in Prolog, the programmer must order carefully rules and
goals to ensure efficient execution and termination. This basic mismatch,
from which all systems coupling Prolog with relational DBMSs suffer, also
challenged LDL’s quest for a harmonious integration, leaving two alterna-
tive paths open [Zanl]. One consisted in adding navigational database
facilities to a Prolog-like language; the other in rejecting the navigational
(procedural) semantics of Prolog, in favor of a purely declarative one,
whereby the order of goals and rules in 2 program becomes immaterial. In
the fall of 1984, the critical decision was taken to pursue the second solu-
tion, with the expectation that it will deliver better usability and poten-
tial for massive parallelism and lead to more exciting research problems
and technology break-throughs. As it is described next, this early decision

1668

had profound repercussions on both the design of the language and its
implementation.

A Prolog programmer must be keenly aware of its sequential execu-
tion model (SLD-resolution where the leftmost goal and the first rule is
selected [vEKo,Llo]), not only because the termination and performance of
the program will depend on it, but also because the very semantics of the
many non-Horn constructs —primarily cuts, and updates, but also nega-
tion and "set-of" predicates— are based on such execution model. These
non-Horn constructs were introduced in Prolog to obtain the expressive
power needed for application development. Having decided to divorce exe-
cution from the order of rules and goals in the program, the first technical
challenge facing LDL research was to provide a clean design and a formal
declarative semantics for the non-Horn constructs that were needed in the
language for reasons of expressive power. The result is a language that is
different from Prolog in terms of the constructs and programming style it
entails. Section 2 of this paper focuses on the language design issues.
Section 4 describes the optimization techniques used to derive safe and
efficient execution schemes for LDL programs.

The major design choices regarding the LDL implementation
approach, crystalized in the Spring of 1985. These choices reflect the
emphasis placed on eflicient support for data intensive applications. The
need to update a large fact base frequently and efficiently dictated that a
sharp separation be drawn between the data and the program. Thus, in
LDL, the fact base is described through a database schema definition facil-
ity, and can be changed without requiring program interpretation or
recompilation. Furthermore, it was decided that, to obtain maximum per-
formance on secondary storage resident data, the execution model should
avoid SLD-resolution and unification. This led to the definition of a
simpler execution model that is based upon the operations of matching
and the computation of least fixpoints. An immediate benefit of this
approach is that matching operators on sets of facts can be implemented
using simple extensions to the Relational Algebra (Zan2, Zan3|, which is a
target language of proven effectiveness in accessing databases on secon-
dary storage [UlL].

Having chosen a simpler target language, the LDL designers were
faced with the challenge of designing a more sophisticated compiler to
support the full functionality of the source language. The solution
approach chosen is built on two pillars:

{i) the use of a global analysis to infer the bindings induced by a specific
query in rules and goals, and

(ii) the compilation methods which rewrite recursive programs, that, as
such, are not efficient or safe to implement by fixpoint computations,
into equivalent programs that are.

1669

Sections 3 and 5 of this paper, respectively, describe the compilation tech-
niques used and the overall architectures of two experimental LDL systems
(one for a highly parallel database machine, the other for a Unix worksta-
tion). The final section describes the new style of programming with
Logic that emerges from the declarative nature of LDL and our injtial
experience in developing applications in the language.

2. Language Design: the Importance of a Clean Semantics.

The LDL language design reflects s desire for clarity in syntactic
constructs and formality in the semantic definition. For instance, in
current Prolog systems, it is not immediately clear whether variables in
negated literals are existentially or universally quantified, and the answer
may change with the order of goals. LDL’s syntax removes any room for
ambiguity by simply assuming that all variables are universally
quantified.

Sets are supported in LDL by a first class repertoire of declarative
constructs. A set can be described by listing its elements within braces
—set enumeration construct. For instance, the following two facts state
that Mark likes Mary, Janet and Erica, while Tom likes Mary and Janet.

likes (mark, {mary, janet , erica}).
likes (tom, {mary, janet}).

Obviously, neither boy shows any preference among the girls he likes,
inasmuch as these are not lists, but true sets where the order of elements
is immaterial.

The set grouping construct is available to collect into a set all ele-
ments satisfying a certain property. For instance, to define a relation
where for each girl there is the set of boys liking her, we can write:

is-liked(<Boy >, Girl) +
likes(Boy, Girl_Set), member(Girl, Girl_Set).

Thus the query,
tis-liked(Boys, mary)

will return Boys = {mark, tom}. Thus, set grouping is denoted by a pair
of pointed parentheses, <>, in the head of the rule —no such construct
is allowed in the body of a rule.

The meaning of programs with set constructs and negation is defined
by a formal semantics that extends the model theoretical and fixpoint-
based semantics of Horn Clauses [VEKo, Llo]. This extension is based on
the notion of stratification, [ApBW, Nag, Prz] which is best explained by
a simple example. The following program (this word is here used as a
synonym of a set of rules) defines, for each person X, all the persons that
are not his/her ancestors:

1670

unanc(X, Y) +— person(X), person(Y), not(anc(X, Y).
anc(X, Z) + anc(X, Y), parent(Y, Z}.
anc(X, X) + person(X).

Figure 1. Ancestors and Non-Ancestors

The dependency graph for the progra.fn of Figure 1 is given in Figure 2.

J person parent

Figure 2. Dependency graph Jor the program of Figure 1.

Thus a dependency graph for a program P has as nodes the predi-
cate symbols of P, and, for each goal in P, it contains an arc from the
goal predicate symbol to the head predicate symbols. If the goal is
negated, then the edge is labelled. The maximal strong components of the
dependency graph identify the recursive predicate symbols in the program;
we will refer to them as recursive eligues. For instance, the recursive clique
of Figure 2, contains only one node, thus it defines a simple recursive
predicate; recursive cliques with two or more nodes define mutually recur-
sive predicates. A rule defining a recursive predicate is called a recursive
rule if its body contains some recursive predicate from the same recursive
clique as the head predicate, and it is called an exit rule otherwise, The
notion of recursive elique is important both from a semantic viewpoint
and an implementation viewpoint.

A program in which there are no labelled arcs in any recursive clique
is called stratified. Stratified programs can be partitioned into layers such
that each (negated) predicate in the body falls in a layer that is (strictly)
lower than that of the predicate in the head. This layering induces a
unique standard choice among alternative minimal models, known as per-
Ject model [Prz]. Perfect models capture the intuitive semantics of pro-
grams, and can be computed by a succession of least fixpoint operations.
For instance, the program of Figure 1 is stratified since its only cycle con-
tains no labelled arcs. Its perfect model can be derived by computing first
the lower layer containing ane, and then the higher one containing unanc
—bottom-up computation. Programs which are not stratified often nei-
ther have a formal semantics nor a clear intuitive meaning. Thus, in LDL,
the only admissible programs are the stratified ones.

The definition of the formal semantics for sets is given in [Betl].
The notion of stratification is also important in this context; it is

1671

employed to disallow the use of the set grouping operator in the definition
of recursive cliques, since this could lead to various paradoxes [Betl,

ShNaJ.

A particularly challenging problem in the design of LDL was the
definition of updates. These are designed to modify the fact base, not the
rule base, and offer full support for the notions of transaction and
recovery. A first solution to the update problem, proposed by French
researchers [deSi| use the head of a rule to describe the update action —as
if it were a production rule. A second approach, favored by Australian
researchers, limits the use of updates to the main query conjunct [Reta,
NaTR]. Both approaches were discarded for LDL, since they do not sup-
port the passing of run time values to generic update procedures. To over-
come this limitation, LDL allows updates in the bodies of rules. For
instance a rule t:

happy(Dept, Raise, Name) +—
emp{Name, Dept, Sal), Newsal == Sal+Raise,
-emp(Name, Dept, _), +emp(Name, Dept, Newsal).

combined with
?happy(software, 1000, Name).

will give a $1,000 raise to all employees in the software department and
return the names of those happy employees. The query above is regarded
as an indivisible transaction; thus, if any of the specified updates cannot
be completed, then the whole transaction is aborted and the database is
returned to the original state. This situation will, for instance, occur when
some integrity constraint is violated, or another run time error occurs in
the computation of the rule, (e.g., if 2 non-numeric Sal value stored for
some employee in the Software department makes it impossible to per-
form the addition "Sal 4 Raise”).

Update actions are formally defined using dynamic logic [Har], where
each update goal is modeled by a [before:after] pair [Nal{r]. For goals
other than updated goals, the before and after states are the same, and
the old semantics is recovered [NaKr]. The meaning of rules with several
updates goals, however, can depend on the order in which these appear in
the rule. For the rule above, for instance, the goal -emp(Name, Deps, _)
must be executed before the +emp(Name, Dept, Newsal) goal (switching
the order of the two will result in the firing of all employees from the
software department).

1 An expression, such as "Newsal = Sal+Raise”, is used in LDL both to instantiate
Newsal to the value resulting from the evaluation of the right hand side expression and
to verify the equality of such value with a Newsal value instantiated by other goals.

1672

Therefore, some interesting lessons have emerged from the LDIL,
search for a formal declarative seman ties for various non-Horn logic con-
structs. While the model theoretic semantics of Horn clauses has been
successfully generalized, the resulting formal semantics takes a procedural
flavor when updates are present, since it models a sequence of computa~
tion steps that is based on the explicit order of rule goals. This can be
contrasted with the implicit ordering of computation imposed by the
notion of stratification used for negation and set-grouping. These two
alternatives, i.e., the implicit versus the explicit sequencing of computation
steps, can also be found in more recent proposals aiming at extending the
power of logic programming by allowing a more liberal use of negation in
recursive predicates. Thus, an explicit control through a rule algebra is
proposed in (ImNa| as the means to overcome the ambiguities caused by
negation in unstratified programs. Implicit control via index counters, is
instead proposed in [SaZ5] as the means to achieve computable perfect
models for a wider class of recursive programs with negation. While a lot
of attention has been given to the issue of allowing more liberal use of
negation in recursion {Prz, KoPa], the problem of relaxing stratification
for set grouping seems less pressing, perhaps because some key theoretical
issues on the expressive power of these programs are not yet resolved
[ShNa).

Finally, LDL offers an if-then-else construct of clean declarative
semantics, for the clear expression and efficient implementation of mutu-
ally disjunctive rules [Okee]. In addition, it offers a non-procedural choice
predicate, for situations where any answer will do [KrNa). This useful
declarative device, which eliminates any residual need for having a cut
construct in LDL, is discussed in Section 5. The choice predicate can also
be used to obtain a single answer response, rather than the all-answer
solution that represents the default response for LDL queries.

3. Compilation: a Discourse on Methods

A first task of the LDL compiler is to parse the rule base and to gen-
erate a Predicate Connection Graph (PCG) representing these rules
[KeOT). The compilation proper begins when a query form is given, ie, a
query with mode declarations specifying the arguments that will be given
(ground) at actual query time. Then the constant migration step for non-
recursive predicates is performed. For instance, consider the query form

?grandma($X,Y).

(where $X denotes that a value is to be supplied at actual query time) and
the following set of rules:

1674

implementation. A considerable amount of research has been devoted to
this key problem [HeNa, BMSU, GaDe, Kilo, Vie, SaZl]; the reader is
referred to [BaRa)] for an overview of these techniques. The LDL compiler
uses the magic set method [BMSU, SaZ2] and the generalized counting
method [SaZ3), which are expressible by rule rewriting scripts and lead to
efficient implementations using fixpoint computations. In a nutshell, these
methods take a recursive clique that, for the given query, cannot be sup-
ported well by means of a fixpoint computation and recast it into a pair
of connected recursive cliques, each amenable to efficient fixpoint imple-
mentation.

This transformation can be illustrated by the example where people
of the same generation as Marc are sought. One alternative way to find
these people consists in

(i) deriving the ancestors of Marc and counting the levels as we go up
{Mare being a zero level ancestor of himself).

(ii) once an ancestor of Mare, say X, is found, then the descendants of X
are computed, while levels are counted down. Descendants for which
the level counter is zero are of the same generation as Mare.

We can express the previous computations as follows {J+1 and J-1 denote
the respective successor and predecessor of the integer J):

sg.up(0, mare).

sg-up(J+1, XP) «- parent(X, XP), sg.up(J, X).
sg.down(J, X} « sg.up(J, X).

sg.down(J-1,X} + sg.down(J, YP), parent{Y, YP).
sg.down(0,X).

Thus the initial recursive clique has been reformulated into a pair of
recursive cliques connected via the index J. Each recursive clique can now
be implemented efficiently and safely using a fixpoint computation (indeed
each is basically a transitive closure operation).

The equivalence preserving transformation that we have just intro-
duced using the intuitive semantics of ancestry, can be performed with
full generality on a purely syntactic basis. Indeed, observe that in a suc-
cession of recursive Prolog calls generated by the goal sg(mare, X), X and
XP are bound and Y, YP are not. Thus, the recursive sg.down rule is
basically constructed by dropping the bound arguments and retaining the
others, while a new argument is added to perform the count-down. The
recursive rule for up.sg is instead built by retaining the bound arguments
and then exchanging the recursive predicate in the head with that in the
tail of the rule (indeed, we want to simulate a top-down computation by a
bottom-up one), and then adding the count-up indexes. Also observe that
the original exit rule is used to glue together the up and down computa-
tions. Finally, the bound part of the query goal becomes the new exit rule

1675

for up.sg, while the unbound part becomes the new query goal. The gen-
eralized and formal expression of these rule rewriting techniques, known as
the generalized counting method are given in [SaZ3).

The counting method is very efficient for acyclic databases, but will
loop forever, as Prolog does, for cyclic databases, e.g., for the same-
generation example above, if parent has cycles. The magic set method
solves this problem by first computing all the ancestors of Mare and then
using these to restrict the computation of the original rules. Thus, for the
previous example, the magic set method will produce:

m.sg(marc}).

m.sg(YP} +— parent(X, XP), m.sg(X).

sg'(X.X) <+ msg(X).

5g'(X,Y) + m.sg(X), parent(X, XP), sg'(XP, YP}, parent(Y, YP).
?sg’(mare, X).

Observe that the computation has again been broken down into a pair of
recursive cliques. The computation of Marc's ancestors expressed by m.sg
will terminate even if the graph corresponding to the relation parent is
cyclic. Moreover, the addition of the new goal to the original rules make
them safe and more efficient to execute; e.g., the X values in exit rule for
sg’ now range over the ancestors of Mare, and not over the whole Her-
brand universe. In passing, we also mention the magic counting method
[SaZ4] that combines the advantages of two methods just discussed. Since
the computation of the first fixpoint of the magic set method is very simi-
lar to that of the counting method, there is no need to commit to one
method at compile time. Rather, it is possible to switch to the magic set
method at run time when the presence of a cycle is detected, or simply
suspected [SaZ4]. '

In many situations of practical import, two fixpoint computations
are not necessary and it is possible to rewrite the rules in such a way that
one will do. For instance, the query

fanc(mare, Z).
can be supported by specializing the anc rules of Figure 1 into,

anc{mare, Z) +— anc{mare, Y), parent(Y, Z).
anc(mare, marc) +— person{marc).

and then dropping the constant argument to yield:
anc’(Z) «+ anc’(Y), parent(Y, Z).
anc’(marc} +— person{marc).

A fixpoint computation implements this transitive closure operation very
efficiently, since the original query condition is now applied directly to
the datum parent relation and not the derived anc relation (ie., selection

1676

has been pushed inside recursion}. More complex rewriting is required for
the query,

fanc(X, brian).

where, before the specialization approach can be applied, the recursive rule
must be rewritten in its right-linear form, as follows:

anc"(X, Z) + parent(X,Y), anc"(X, Z).

The LDL compiler is capable of recogaizing this and many other simple
but important cases where some transformation of the original program
will reduce it to one implementable efficiently via a single fixpoint compu-
tation. In general however, the problem of recognizing when such a
transformation exists is known to be undecidable [Bet2]. '

While no function symbols were present in the previous examples, all
the compilation techniques just described apply when these are present.
Take for instance, a fast list reverse cormputation,

revzap(fa,b], {], X).
revzap(|X| L), L2, L3) « revzap(L, [X|L2], L3).
revzap([], L, L).

This will be rewritten and implemented as follows:

revzap’([a,b], []).
revzap’(L, [X|L2]) «- revzap’([X| 1], L2).
Prevzap’([], X).

In summary, the recursive compilation methods just discussed reduce the
problem of supporting recursive cliques to that of computing least
fixpoints efficiently. However, the standard fixpoint algorithm is, as such,
inefficient since it does redundant work. For instance in the ancestor
example, the j-th step of the fixpoint iteration applies the immediate
consequence operator, Tp [Llo, to all ancestors computed so far, ie., to
ancestors of every level between zero and 7, although only the j-th level
ancestors are needed to compute those at leve! J+1. An improvement of
the fixpoint algorithm known as semi-naive fixpoint can be used to solve
this problem [Ban, BaR|. This improvement is based on symbolic finite
differentiation techniques. While some formulations propose rather
cumbersome differentiation on the relational algebra equivalent of Tp
[ULl], the differential fixpoint method described in [SaZ5] operates directly
as a rule rewriting method.

Another area of considerable innovation in the LDL compiler is the
support for set terms. Set terms are treated as complex terms having the
commutativity and idempotence property. These properties are supported
via compile time rule transformation techniques, that use sorting and vari-
ous optimization techniques to eliminate blind run time searches for

1677

commutative and idempotent matches [ShTZ).

4. The Optimizer: Exercising Self-Control

The issue of control has received considerable attention in the past.
One research direction has focused on giving the programmer more
options and explicit control. In terms of automatic control, most of the
previous research concentrates on exercising run time control. For
instance, a common approach to safety consists in freezing the execution
of unsafe goals uatil enough arguments are instantiated [AiNs, Col,Nai.
Reasoning at the metalevel is suggested in [SmGe] as the means for decid-
ing which goal to expand next. LDL’s integrated approach to safety and
optimization is instead a compile-time approach that builds upon the suc-
cessful experience gained with relational database systems. This experience
led to the characterization of the optimizer in terms of:

(i} An ezecution model, whereby the execution of a query can be
described by an abstract execution graph, such as an operator tree.
The set of (logically) equivalent execution graphs for a query defines
the search space for the optimization,

(i) The cost functions, whereby a cost estimate is associated with each
point in the search space, and

(iii) The search strategy, to determine the minimum cost execution in the
given space,

The predicate connection graph for the query after constant migra-
tion supplies the basis for the execution model. This graph is then reduced
to an AND/OR tree by (1) contracting the recursive cliques into a single
node and (2) transforming the resulting DAG into a tree. The resulting
AND/OR tree can then be viewed as a relational algebra expression since
the disjuncts map into union operations, while the conjuncts map into
join operations (except for negated goals that define set difference opera-
tors). The order in which joins are performed is of the greatest impor-
tance, while the order in which unions are computed is considered of little
importance. Thus the search space for the optimizer includes all possible
permutations of goal orders in the rules. Furthermore, there are basically
two ways to perform a join. One is to materialize all operands first and
then to perform the join. The other is to materialize only the left operand,
or possibly its next tuple, and then to find the matching values in the
right operand —thus realizing what is known as a Sideways Information
Passing (SIP) strategy [BeRa|. Furthermore, if the right operand is defined
as the union or join of lower operands, we need not materialize it; rather
the the SIP can be applied to these lower operands. Repeated applications
of this strategy lead to an execution strategy similar to the nested loop
joins of Prolog. Thus, the optimizer will evaluate, for each join, whether
to use a materialized or a SIP strategy. The optimizer will also have to

1678

select a strategy for the processing of each recursive clique. The order of
joins and their execution strategy (SIP or materialized) determine the
bound arguments in the recursive goals. Thus, the optimizer will expand
the corresponding recursive clique, determine the safety of applicable com-
pilation methods, and then choose from the safe methods on the basis of
their cost.

As part of the challenge of building an optimizer for LDL, cost func-
tions had to be provided for heuristically eflective cost estimates for arbi-
trary AND/OR. trees and recursive cliques. Of particular interest are the
issues of determining the termination of a method used for a recursive
clique and of estimating the cost of the resulting fixpoint computations.
The comprehensive heuristics used by LDL in dealing with the undecid-
able problem of safety are described in {KrRS]. Executions that are unsafe
(i.e., do not terminate) are assigned an extremely high cost, to ensure that
they will be discarded by the search strategy.

The simplifications used in deriving simple formulae and criteria for
cost estimates and safety are frequently crude. However, similar approxi-
mate estimates based on database statistics have been effective in rela-
tional databases, their coarseness mnot withstanding. Indeed, the
effectiveness of an optimizer is not to be measured by its ability to find
the actual optimum, but rather by its ability to consistently devise execu-
tion strategies of acceptable performance. This consideration is also
relevant in evaluating the search algorithms discussed next.

Relational systems optimizers are based on an exhaﬁstivg search,
improved with dynamic programming techniques that reduce the search
from factorial to exponential [Seta]. This approach becomes prohibitively
expensive for large LDI, programs. Therefore, two alternative methods are
currently under evaluation. One is a quadratic time algorithm that
delivers optimal ordering for acyclic queries and semi-linear cost functions
[KrBZ], and it is also heuristically effective for the general case [vil].
Encouraging results were also obtained with a stochastic algorithm based
on Simulated Annealing [[oWo, KrZa).

5. Experimenta._] Systems: David and Goliath

The biblical simile underscores the difference in size of the two exper-
imental implementations of LDL currently being undertaken. The large
system is based on a massively parallel multiprocessor system that
manages large databases residing in secondary store. The main responsi-
bility for the LDL compiler/optimizer is to map LDL code into a relational
algebra based language called FAD [DaKV]. The responsibility for eflicient
paralle]l execution is up to the FAD compiler. The LDL system consists of
the following modules:

1679

1) the user interface,

2) the schema manager,

3) the rule manager,

4) the query form manager,
5) . the optimizer, and

6) the query manager.

The rule manager and the query form manager perform the actual compi-
lation of LDL into FAD. The query manager handles the precompiled
object modules and selects the proper module for executmn by matching
the actual query with the precompiled query forms.

The small system is a complete implementation of LDL for a Unix
workstation. This experiment is motivated. by the desire of having (i} &
more portable demonstration vehicle for LDL and (ii) a test-bed to quan-
tify the performance gains resulting from the sophisticated compilation
techniques developed for the LDL compiler. Thus, while the
compiler/optimizer for the new machine is similar to that of the larger
system (the main changes pertaining to the code generator) the execution
model and target language for the new machine are very different. The
separation between data and program is still present, as reflected by the
two ‘main components of the run time system being an Abstract Machine
{AM) and a Fact Manager (FM). However, the set-at-a-time execution of
relational algebra is replaced by a tuple-at-a-time execution, since the data
is assumed to be accessible in main memory. The extensive compile time
analysis entails a more static memory management and improved perfor-
mance I.

6. Deductive Programming in LDI,

While LDI’s theory builds upon the formal work on deductive data-
bases [GMN, Rei], its pratical focus on application development and
efficient implementation aligns it with the main stream of the Logic Pro-
gramming paradigm. Therefore, it is of interest to compare LDL with
Prolog from a programmer’s viewpoint. The experience of programming in
LDL is still limited, but a reasonable understanding is emerging on the
programming style it entails, as illustrated by the recent textbook on
LDL [NaTs]. For simple examples, programming in LDL is very similar to
programming in Prolog —-so much so that the first chapters of any
current logic programming textbook can be used as a primer on LDL. But
the gap becomes wider as the sophistication of the application grows. The
first important difference comes with recursion. A procedure, to generate

t The author jokingly refers to the resulting abstract machine, which is much simpler
than that in [War], as "a FORTRAN Technology Theorem Prover”.

1680

all integers between zero and a given integer K, can be expressed as fol-
lows ir LDL;:

int(K,0) «K>=o.
int(K, J) + int(K, I), I<K, J— I+1.

This represents a very natural rendering of Peano’s inductive definition of
integers, augmented with a condition on K in the second rule to ensure
termination, and one in the first rule to ensure that no answer js returned
for a negative K. The fixpoint implementation of this recursive procedure
by the LDL compiler is moreover very eflicient since it only uses a basic
iteration. A second formulation is also possible in LDL, as follows:

int(K,J) +—K>0, K1 = K-1, int(K1,).
in{K,K) « K>=o.

This is a less clear and intuitive definition, but it is the only one that can
be handled by Prolog (the equal signs would also be replaced by "is"),

A second interesting example is supplied by the computation of
Fibonacei numbers.

fib(0,1).
fib(2,1).
fib(I+1, N1+N2) + fib(I, N1), ib(L-1, N2),

This program also illustrates the little sugaring of the syntax that, in LDL
as in other systems [Col], allows arithmetic expressions in predicate argu-
ments. This program, presented with a query Mib(I,N) will compute all
Fibonacci numbers, A more practical version of this is the following one
that computes all Fibonacei numbers up to an certain given integer I{:

fibn(K,0,1) + K>=0.
fbn{K,1,1) « K>=1. _
fibn(K, I+1, NI+N2) + I<K, fib(K, I, N1), ib(K, I-1, N2).

A query
"ibn(10, J, N).

will be supported correctly in both LDL and Prolog (modulo some syntac-
tic de-sugaring). However, LDL will do that efficiently, by a single
fixpoint loop with no duplicate work, while Prolog will be hopelessly
inefficient sinece it recomputes the same Fibonacei numbers over and over
again. Rewriting fibn, to ensure efficient execution in Prolog, is not a
trivial matter. An even more dramatic example of the advantages of LDL
in handling recursive predicates is offered by the non-linear ancestor exam-

ple,

1681

anc(X,Z) <+ anc(X,Y), anc(Y,Z).
ance(X,Y} « parent(X,Y).

which, in Prolog, will never terminate, irrespective of the set of bindings
used, while it is always safe to execute in LDL. {Also remember that the
linear version of the ancestor of Figure 1 will not terminate in Prolog if
the relation parent contains cycles, while it is safe in LDL. Moreover, while
our examples emphasize database retrievals the fixpoint based computa-
tion of recursion works equally well when function symbols are present, as
shown by the revzap example in Section 4.) In summary, LDL offers
several advantages over Prolog with respect to recursive predicates. On
the other hand, techniques such as appending lists through difference lists
are not available in LDL, since solutions are always returned as (ground)
data.

The banning of cuts from LDL yields significant differences with
respect to Prolog. In most cases of common usage, the cut is simply
replaced by the if-then-else construct available in LDL, producing pro-
grams that are easy to understand and efficient to implement [Okee]. In
certain situations, however, the cut is used in Prolog to eliminate a com-
putation that is unecessary because logical considerations lead to a single
solution. Take, for instance the situation where the Prolog programmer is
dealing with an existential goal, such as’in the rule

9(X) == x(Y),!, p(X).
Since the value of Y is unimportant, provided that it exists, the cut elim-
inates unecessary search for alternatives. As a second example, take the
situation where the programmer is aware of constraints which will
expedite the search. For instance to find the manager of an employee, the
Prolog programmer can write

mg(Name, DpMgName) :-
emp(Name, Dept), dept{Dept, DpMgName), ! .

Here the programmer is taking advantage of the logical constraints that
an employee can only work in one department, and each department only
has one manager, thus creating the following functional dependency:
Name — DpMgName.

To deal with these situations, LDL has introduced a choice predicate
{KrNa}, which from a semantic viewpoint can be viewed as selecting an
arbitrary element from a set of values in the minimal model; from an
implementation viewpoint only one such value needs to be computed.
Thus, for the existential situation, the LDL programmer will write

4(X) + p(X), 1{Y), choice((}, Y).

The meaning of “choice((), Y}" is that, out of all possible Y-values in the

1682

program’s minimal model, any will do. Also observe that, because of the
declarative semantics of choice [IKRNa), the order of goals is unimpor-
tant*. The rule for finding the manager of an employee will be expressed
by the LDL programmer as follows:

mg(Name, DpMgName) +
emp(Name, Dept), dept(Dept, DpMgName),
choice{(Name), (DpMgName)).

The syntax
choice((X), (Y))

denotes that the functional dependency X — Y can be assumed to hold.
LDL will use this information to aveid computing several Y values for a
given X value. Thus the answer returned from the rule above will only list
one manager for each employee name. The benefits gained by the fact that
choice is a declarative construct are illustrated by the following queries:

mg(X, Y).
?mg(X, joe_boss).

While the LDL program remains valid and amenable to efficient imple-
mentation via re-compilation, the old Prolog program is no longer good
for these new queries and the programs will have to be rewritten.

The next program contrasts the use of the if-then-else predicate with
that of the choice construct, and illustrates a typical computation of set
aggregates in LDL. The following procedure finds the sum X of all ele-
ments of a non-empty set S:

sum(S, X} + if S={Y} then X=7 else
partition(3, S1, S2), choice((S), (S1, 82},
sum(81, X1), sum(S2,X2), X= X1 + X2.

The sum of the elements of a set S can be computed by partitioning it
into two non-empty subsets and then adding the sum of the two. Because
of the associativity and commutativity of sets, there is no point in consid-
ering all the possible dichotomies of 3, since any pair will do —thus the
use of the choice predicate.

The differences between programming in Prolog and LDL are not
limited to those discussed here pertaining to recursive predicates and
choice predicates. For instance, the powerful update and set constructs of
LDL result in rather terse and eXpressive programs using these constructs
[NaTs|. On the other hand, there are no metalevel facilities in LDL,
although this issue’is currently being pursued [KrNa).

* In this particular case, there is no need for the user to add a choice goal, since the
LDL compiler is smart enough to add it automatically to the rule [RaBK],

1683

Acknowledgments

LDL is the result of the shared efforts by many dedicated colleagues whom
1 am bound to by gratitude and friendship. In particular, I would like to
recognize the contribution and dedication of the following persons:
Frangois Bancilhon, Catriel Beeri, Danette Chimenti, Ruben Gamboa,
Charles Kellog, Paris Kanellakis, Ravi Krishnamurthy, Tony O’Hare,
Kayliang Ong, Arshad Matin, Raghu Ramakrishnan, Shamim Nagvi,
Domenico Saccd, Oded Shmueli, Leona Slepetis, Peter Song, Millie Villa-
real, Shalom Tsur, Carolyn West. I am also grateful to Manuel Hermene-
gildo and Roger Nasr for many stimulating technical discussions and com-
ments on this paper.

References

[ARU]] Aho A. V. and J. Ullmap, " Universality of Data Retrieval
Languages,” Proc. POPL Conference, San Antonio Tx, 1979,

[AiNa] Ait-Kaci H. and R. Nasr, "Le Fun: Logic, Equations, and Fune-
tions" Procs. of IEEE Symposium on Logic Programming, pp.17-
23, 1987.)

[ApBW] Apt, K., H. Blair, A. Walker, "Towards a Theory of Declarative
Knowledge,” in Foundations of Deductive Databases and Logic
Programming, (Minker, J. ed.), Morgan Kaufman, Los Altos,
1987, .

[BaBu] Bancilhon, F. and P. Buneman {eds.), "Workshop on Database
Programming Languages,” Roscoff, Finistere, France, Sept. 87.

[Ban] Bancilkon, F., "Naive Evaluation of Recursively defined Rela-
tions", On Knowledge Base Management Systems, (M. Brodie and
J. Mylopoulos, eds.), Springer-Verlag, 1985,

[BaR] Balbin, I., K. Ramamohanarao, "A Diflerential Approach to
Query Optimization in Recursive Deductive Databases”, Journal
of Logic Programming, Vol. 4, No. 2, pp. 259-262, Sept 1987.

{BaRa] Bancilhon, F., and R. Ramakrishnan, "An Amateur’s Introduc-
tion to Recursive Query Processing Strategies," Proc. ACM SIG-
MOD Int. Conference on Management of Data, Washington,
D.C., May 1986.

[BeRa] Beeri, C. and R. Ramakrishnan, "On the Power of Magic," Proc.
6th ACM SIGMOD-SIGACT Symp. on Principles of Database
Systems, 1987.

[Betl}] Beeri, et al, "Sets and Negation in a Logic Data Language
(LDL1)", Proc. 6th ACM SIGMOD-SIGACT Symp. on Principles
of Database Systems, pp. 269-283, 1087,

.[Bet2] Beeri, et al, "Bound on the Propagation of Selection in Logic
Programs", Proc. 6th ACM SIGMOD-SIGACT Symp. on Princi-
ples of Database Systems, 1987.

[BKBR]

[BMSU]

{Boc]

[CeGW]

[Ceta]

[Col]

[CoMa]

[DaKV]

[deSi]

{GaDe]

[GMN]

[Har

[HeNa)

[ImNa]

{loWo

1684

Beeri, C., P. Kanellakis, F. Bancilhon, R. Ramakrishnan, "Bound
on the Propagation of Selection into Logic Programs”, Proc. 6th
ACM SIGMOD-SIGACT Symp. on Principles of Database Sys-
tems, 1987,

Bancilhon, F., D. Maier, Y. Sagiv, J. Ullman, "Magic sets and
other strange ways to implement logic programs”, Proc. 5th ACM
SIGMOD-SIGACT Symp. on Principles of Database Systems,
1986.

Boceca, J., "On the Evaluation Strategy of Educe," Proc. 1986

ACM-SIGMOD Conference on Management of Data, pp. 368-378,
1988.

Ceri, 8., G. Gottlob and G. Wiederhold, "Interfacing Relational
Databases and Prolog Efficiently," Eapert Database Systems, L.
Kerschberg (ed.), Benjamin/Cummings, 1987.

Chimenti D. et al., "An Overview of the LDL System,” Database
Engineering Bulletin, Vol. 10, No. 4, pp. 52-62, 1987,

Colmerauer, "Equations and Inequations in Finite and Infinite
Trees,” Proc. Int. Conf. on Fifth Generation Computer Systems,
pp. 85-69, ICOT, Tokyo, Japan, 1984,

Copeland, G. and Maier D., "Making SMALLTALK a Database
System," Proc. ACM SIG]\/!OD Int. Conf. on Management of
Data, pp. 316-325, 1985,

Danforth, S.,S. Khoshafian and P. Valduriez, "FAD- A Database
Programming Language. Rev 2", Submitted for publication.
deMandreville C. and E. Simon, "Modelling Queries and Updates
in Deductive Databases” Proc. 1988 VLDB Conference, Los
Angeles, California, August 1988.

Gardarin, G. and C. deMandreville, "Evaluation of Database
Recursive Logic Programs as Recursive Function Series," Proc.
ACM SIGMOD [nt. Conference on Management of Data, Wash-
ington, D.C., May 1986.

Gallaire, H.,J. Minker and J.M. Nicolas,"Logic and Databases: a
Deductive Approach,” Computer Surveys, Vol. 16, No. 2, 1984.
Harel, D., "First-Order Dynamic Logic,” Lecture Notes in Com-
puter Science, (G. Goos and J. Hartmanis, eds.), Springer Verlag,
1979.

Henschen, L.J., Nagvi, S. A., "On compiling queries in recursive
first-order databases", JAC‘Mr 31, 1, 1984, pp. 47-85.

Imielinski, T. and S. Naqvi, "Explicit Control of Logic Programs
Through Rule Algebra," Proc. 7th ACM SIGMOD-SIGACT
Symp. on Principles of Database Systems, pp. 103-116, 1988.
Ioannidis, Y. E. and E. Wong, "Query Optimization by Simu-
lated Proc. ACM SIGMOD Int. Conf. on Management of Data,
1987,

1685

[JaCV]

[KeOT]

[KiLo]

[KoPa]

[KuYo

[KrBZ]

[KrN1]

[KrNg)

[KrRS]

[KrZa]

ILi
[Llo]
[Metal
[Nai]

[NaKr]

Jarke, M., J. Clifford and Y. Vassiliou, "An Optimizing Prolog
Front End to a Relational Query System,” Proc. 198§ ACM-
SIGMOD Conference on Management of Data, pp. 296-306, 1986.

Kellog, C., A. O'Hare and L. Travis, "Optimizing the Rule Data
Interface in a KMS," Proc. 12th VLDRB Conference, Tokyo,
Japan, 1986,

Kifer, M. and Lozinskii, E.L., "Filtering Data Flow in Deductive
Databases,” JCDT'86, Rome, Sept. 8-10, 1986.

Kolaitis G. P. and C.H. Papadimitriou, "Why Not Negation by
Fixpoint?", Proc. 7th ACM SIGMOD-SIGACT Symp. on Princi-
ples of Database Systems, pp. 31-239, 1988.

Kunifji 8., H. Yokota, "Prolog and Relational Databases for 5th
Generation Computer Systems,"” in Advances in Logic and Data-
bases, Vol. 2 (Gallaire, Minker and Nicolas eds.), Plenum, New
York, 1984. '

Krishnamurthy, R., H. Boral and C. Zaniolo, "Optimization of
Non-Recursive Queries,” Proc. 12th VLDB, Kyoto, Japan, 1986,
Krishnamurthy and S. Naqvi, "Non-Deterministic Choice in
Datalog,” Proc. 8rd Int. Conf. on Data and Knowledge Bases,
June 27-30, Jerusalem, Israel.

Krishnamurthy and 8. Naqvi, "Towards a Real Horn Clause
Language,” Proc. 1988 VLDB Conference, Los Angeles, Califor-
nia, August 1988, .

Krishnamurthy, R. R. Ramakrishnan and O. Shmueli, "A Frame-
work for Testing Safety and Effective Computability,” Proc.
ACM SIGMOD Int. Conf. on Management of Data, pp. 154-163,
1988,

Krishnamurthy, R. and C. Zaniolo, "Optimization in a Logic
Based language for Knowledge and Data Intensive Applications,”
in Advances in Database Technology, EDBT’88, {Schmidt, Ceri
and Misssikoff, Eds), pp. 16-33, Springer-Verlag 1088,

Li, D. "A Prolog Database System," Research Institute Press,
Letchworth, Hertfordshire, U.I{ , 1984

Lloyd, J. W., Foundations of Logic Programming, Springer Ver-
lag, (2nd Edition}, 1987.

Morris, K. et al. "YAWN! (Yet Another Window on Naill), Data
Engineering, Vol.10, No. 4, pp. 28-44, Dec. 1987.

Naish, L., "Negation and Control in Prolog", Lecture Notes in
Computer Science 238, Springer Verlag 1986.

Nagvi, 8. and R. Krishnamurthy, "Semantics of Updates in logic
Programming”, Proc. 7th ACM SIGMOD-SIGACT Symp. on
Principles of Database Systems, pp. 251-261, 1988.

[Naq]

[NaTR]

[N aTs]

[Okee}

[Prz]

[RaBK]

[Rei]

[Reta)

[RLK]

[SaZl]

[SaZz2]

[SaZ3]
[SaZ4]

[SaZ5]

[Seta)

1686

Nagvi, 8. "A Logic for Negation in Database Systems," in Foun-
dations of Deductive Databases and Logic Programming, {Minker,
J. ed.), Morgan Kaufman, Los Altos, 1987.

Naish, J. A., A. Thom and K. Ramamohanarao, "Concurrent
Database Updates in Prolog," Proc. Fourth Int. Conference on
Logic Programming, Melbourne, Australia, 1987. pp. 178-195,
1987.

Nagqvi, 8. and §. Tsur, "A Logic Language for Data and
Knowledge Bases," MCC Technical Report, 1988.

O’keefe, R.A., "On the Treatment of Cuts in Prolog Source Level
Tools," Proc. Symposium on Logic Pragramming, pp. 68-73, 1985.

Przymusinski, T., "On the Semantics of Stratified Deductive
Databases and Logic Programs", in Foundations of Deductive
Databases and Logic Programming, (Minker, J. ed.), Morgan
Kaufman, Los Altos, 1987.

Ramakrishnan, R., C. Beeri and Krishnamurthy, "Optimizing
Existential Datalog Queries,” Proc. 7th ACM SIGMOD-SIGACT
Symp. on Principles of Database Systems, pp. 89-102, 1988.

Reiter, R., "On closed world databases", in Logic and Databases
{(Gallaire, H., Minker, J., eds), Plenum, New York, 1978, pPp. 55-
76.

Ramamohanarao, K. et al. "The NU-Prolog Deductive Database
System" Database Engineering Bulletin, Vol. 10, No. 4, pp. 10-19,
1987.

Robhmer, I, R. Lescouer and J.M. Kerisit,"The Alexander Method
— A technique for the Processing of Recursive Axioms in Deduc-
tive Databases” New Generation Computing, Vol. 4, No. 3, pp.
273-287, 1986.

Saced, D., Zaniolo, C., "On the implementation of & simple class
of logic queries for databases”, Proc. S5th ACM SIGMOD-
SIGACT Symp. on Principles of Database Systems, 1986.

Saccd, D., Zaniolo, C., “Implementation of Recursive Queries for
a Data Language based oz Pure Horn Logic," Proc. Fourth Int.
Conference on Logic Programming, Melbou rne, Australia, 1987,
Saccd, D., Zaniolo, C., "The Generalized Counting Method for
Recursive Logic Queries," JT'C, to appear, (also Proc. ICDT '86).
Saccd, D., Zaniolo, C., "Magic Counting Methods,” Proc. ACM
SIGMOD Int. Conf. on Management of Data, 1987,

Saccd, D., Zaniolo, C., "Differential Fixpoint Methods and
Stratification of Logic Programs," Proc, 8rd Int. Conf. on Data
and Knowledge Bases, June 27-30, Jerusalem, Israel.

Selinger, P.G. et al. "Access Path Selection in a Relational Data-
base Management System," Proc. ACM SIGMOD Int. Conf. on
Menagement of Data, 1979.

1687

[ShNa}

[ShTZ]

[SmGe|

[TsZa]

o)

[VEKo]

[Vie]

[vil]

[War]

[Zan1]

[Zan2)

[Zan3]

Shmueli, O. and S. Naqgvi, "Set Grouping and Layering in Horn
Clause Programs," Proc. of {th Int. Conf. on Logic Programming,
pp. 152-177, 1987.

Shmueli, O., S. Tsur and C. Zaniolo, "Rewriting of Rules Con-
taining Set Terms in a Logic Data Language (LDL)," Proc. 7th
ACM SIGMOD-SIGACT Symp. on Principles of Database Sys-
tems, pp. 15-28, 1988,

Smith, D.E. and MR. Genesereth, "Ordering Conjunctive
Queries,” Artificial Intelligence, 26, pp. 171-185, 1985,

Tsur, S. and C. Zaniolo, "LDL: A Logic-Based Data Language,"
Proc. of 12th VLDB, Tokyo, Japan, 1985.

Ullman, J.D., Database and Knowledge-Based Systems, Com-
puter Science Press, Rockville, Md., 1988.

van Emden, MH., Kowalski, R., “The semantics of Predicate
Logic as a Programming Language", JACM 29, 4, 1976, pp. 733-
742,

Vieille, L. "Recursive Axioms in Deductive Databases: the
Query-Subquery Approack,” Proe. First Int. Conference on
Ezpert Database Systems, Charleston, S.C., 1986.

Villareal, E., "Evaluation of an O(N**2) Method for Query
Optimization," MS Thesis, Department of Computer Science,
University of Texas at Austin, 1987.

Warren, D.HD., "An Abstract Prolog Instruction Set,” Tech.
Note 309, Al Center, Computer Science and Technology Div.,
SRI, 1983. .
Zaniolo, C. "Prolog: a database query language for all seasons,"
in Ezpert Database Systems, Proc. of the First Int. Workshap L.
Kerschberg (ed.), Benjamin/Cummings, 1986.

Zaniolo, C. "The Representation and Deductive Retrieval of
Complex Objects,” Proc. 11-th VLDB, pp. 459-469, 1985,

Zaniolo, C. "Safety and Compilation of Non-Recursive Horn
Clauses,” Proc. First Int. Conference on Ezpert Database Systems,
L. Kerschberg (ed.), Benjamin/Cummings, 1986.

