
0 ptimization of Li .near P rograms
Using Counting Methods

Sergio Greco* Carlo Zaniolo
Dip. di Elettr. Informatica Sistem. Computer Science Department

UniversitiL deUa Calabria University of California

87030 Rende, Italy LosAngeles, CA 90024

2lOlgreQicsuniv.bitnet zanioloOcs.edu.ucla

Abstract

We present a general solution to the problem of optimized execution of
logic progmms containing linear recursive rules. Our solution is based on
extension8 of the classical counting method, which ia known to be eficient
but of limited applicability. In fact, the range of applicability of the counting
method, and its variants proposed by previous researchers, sufier from one or
more of the following limitationa: the method can be applied only when (I)
the adorned program contains one recursive rule, (2) the ‘left part’ and the
‘right part’ of the recursive rule do not have any common variable and (3) the
relation associated with the left part of the recursive rule is ‘acyclic’. In this
paper, a simple and unified framework ia presented, where those limitations
are removed, and the counting method thua become applicable to all programs
with linear rules. This framework abo allows a simple treatment of programs
factorizable into segments, which can be computed separately yielding a much
faster ezecution. A simple factorization technique based on argument reduc-
tion in presented that producea optimizationa similar to those defined in the
literature for RLC-linear programs (i.e., programs with right-linear rules, left-
linear rules and a combination of the two).

1 Introduction

In this paper, we address the problem of evaluating queries with bound arguments on
programs containing linear recursive rules. Several techniques, based on the propagation
of bindings, have been defined in the literature to deal with this problem. These include
the magic-set method [3,17,4]+ the counting method [3,17], and factoriration techniques
for special cases, such as those based on the reduction of the program [14] or on the
combination of the propagation of bindings with the successive reduction [13].

While the magic-set method can be applied to all programs, the counting method a.nd
the factorization techniques can only be applied to restricted classes of linear programs-
often yielding an order of magnitude of improvement in efficiency; comparisons between

l Work done while visiting MCC, Austin, Texas, and supported by the project “Sistemi lnformatici e
Calcolo Parallclo” obiettivo “Logidata+” of C.N.R. Italy.

73

the magic-set method and the counting method can be found in [4,11]. Many recursive
programs found in practice are linear, and hence can be optimized by one of the special-
ized methods, Thus, the problem of identifying and processing these special situations
is critical for an efficient implementation of deductive databases [20].

In this paper, we present a unifying framework for the efficient implementation of
linear rules, as follows. We first propose extensions to the counting method, to make it
applicable to all linear programs - even when the the database contains cycles. Further-
more, we show that, once these programs have been rewritten using the new counting
method, the detection of special cases that are treatable by reduction techniques becomes
simpler. Thus, we propose extensions to the optimizatioins defined in the literature [19,14]
for programs containing left-linear and right-linear rules.

To illustrate the intuition underlying the different methods, we can use the following
well-known example:

Example 1 Consider the following same-generation program SG with query sg(a, Y).
The predicates up, down and flat are binary predicates that are non mutually recursive
with sg.

sg(X,Y) t flat(X,Y).
s&J) + up(X, Xi), sg(Xi, Yi), doun(Yi, Y).

The magic-set method first computes the set oftuples (called magic set) that are ‘relevant’
for the predicate sg and then uses the magic set to restrict the set of answers for the
predicate sg. The magic-set method applies the modified goal sg(a, Y) on the following
program:

-da)-
m-sg(X1) c m-sg(X), up(X,Xl).

w(x, Y) + m-sg(X), f lat(X, Y).
f%(X,Y) + m,sg(X), up(X, Xl), sg(X1, Yl), down(Yl,Y).

The counting method adds information on the distance from the initial node to each
tuple belonging to the magic set, thus further constraining the later computation. In
our example, the counting method produces the modified query, sg(a,Y,O), and the
following program:

c-sg(a, 0).
c-sg(x1, I + 1) 6 c-sg(x, I), UP(X, Xi).

sg(x, y, I) + c-sg(X, I), f lat(X, Y).
sg(x, y, I) + c-t&X, I), up(X,Xi), sg(Xi,YZ, I + I), doun(Yl,Y).

This program can be further optimized, by dropping the first argument that is redundant
for the example at hand, yielding query sg(Y ,O), on the the following program:

c-sg(a, 0).
c-sg(x1, I + 1) + C-%(X, I), up(X, Xi).

sgp, I) + c-sg(X, I), fIat(X,Y).
sg(y, I) + sg(Y1, I + I), down(Y1, Y).

74

The index I in c,sg(X, I) denotes the distance of the X from the source node a. The
computation of the tuple of sg at level I uses only the tuples of sg computed at level
I+l, i.e., the tuples computed in the previous step. In contrast, the magic-set method
joins this set with the result of joining m-sg and up.

However, the basic counting method just described is not as general as the magic-set
method, since it can be used only for a restricted class of linear programs and does deal
well with cycles in base relations. Thus, in our example, if the relation up, is ‘cyclic’ the
method generates a counting set with infinite tuples. Two different approaches have been
defined for dealing with the problem of cycles. The first is based on the combination of
the magic-set and the counting method [16], while the second extends the method for
cyclic data [11,9,2]. The two methods, in any case, suffer of the other limitations of the
classical method.

In this paper, we generalize the counting method to avoid the limitations of the
current approaches. Moreover, our approach is conducive to further optimizations that
are possible for more restrictive classes of (left-/right-) linear programs [14,13]. The
paper is organized as follows. The next section introduces the basic definitions used
in the paper. In section 3, an extension of the counting method to handle programs
with acyclic databases is presented. Such a method is extended to programs with cyclic
databases in section 4. In section 5, we present a technique for reduction of programs
rewritten with the extended counting method. Due to space limitations we will omit the
formal proofs of our theorems, which can be found in [8].

2 Basic definitions

We now recall some basic concepts [10,20]. Predicates whose definition consists of only
ground facts are called base predicates while all others predicates are called derived. The
set of facts whose predicate symbol is a base predicate defines the database while the
set of clauses whose head predicates symbols is a derived predicate symbol defines the
program. A query is a pair (G, P) where G is a query-goal and P is a program. The
answer to a query (G, P) is th e set of substitutions for the variables in G such that G is
true with respect to the minimal model of P [lo]. Two queries (Q, P) and (Q’, P’) are
equivalent if they have the same answer for all possible databases.

Two variables X and Y in a rule T are connected if they appear in the same predicate
or if there exists in P a variable 2 such that X is connected to 2 and 2 is connected
to Y. Two predicate PI and PZ appearing in a rule are connected if there exists a
variable appearing in both PI and P2 or if there exist two connected variables appearing
respectively in PI and Pz. A predicate p depends on a predicate q if 1) there exists a
rule such that p appears in the head and q in the body or 2) if there exists a predicate
a such that p depends on s and s depends on q. Two predicates p and q are mutually
recursive if p depends on q and q depends on p.

We assume that the program has been partitioned according to a topological order
< s, P,, >. This means that each predicate appearing in Pi depends only on pred-
icates belonging to Pj such that j 5 i. We assume also that the computation follows
the topological order and that when we compute the component Pi the components
Pl 1 “‘, Pi-1 have been already computed. When we compute the component Pi all the
facts obtained from the computation of the components Pl,...,Pi-1 are basically treated

75

the same as database facts. A rule in a component P; is called exit rule if each predicate
in the body belongs to a component Pj such that j < i. All the other rules are recursive
rules. A recursive rule is said to be linear if the body of the rule contains at most one
predicate that is mutually recursive with the head predicate. A program is linear if each
rule is either an exit rule or a linear recursive rule. A linear recursive rule is of the form
P t L, Q, R where P and Q are mutually recursive predicates while L and R are con-
junctions of predicates not mutually recursive with P. We will denote the conjunctions
L and R as left part and right part respectively.

An ador7& program is a program whose predicate symbols have associated a string a,
defined on the alphabet {b, p}, of length equal to the arity of the predicate. A character
b (resp. ,) in the i-th position of the adornment associated with a predicate p means
that the i-th argument of p is bound (resp. free).

Let P be program and let PC be the rewritten program obtained by applying the
counting method to P. The program P’ contains a new set of predicates called counting
predicates. The set of rules defining the counting predicates are called counting rules,
while the remaining rules are called modified rules.

We assume that exit rules and recursive rules in an adorned program P” have, re-
spectively, the following form: p(X, Y) t E(B), and p(X, Y) t L(A), q(X1, Yl), R(B),
where 1) the variable appearing inside the predicates denote lists of arguments; 2) p and
q are mutually recursive predicates whose first and second arguments denote the lists of
bound and free arguments, 3) E, L and R are (possibly null) conjunctions of predicates
that are not mutually recursive with p and q, 4) the safety conditions Y 2 (A u Y 1 u B)
and (obviously) Xl c (X U A) hold. We assume also that the variables in the head are
distinguished. There is no loss of generality in this assumption because each rule can be
put in such a form by simple rewriting.

We now review the concept of query graph for an adorned program P [16,11]. Given
a query Q = (q(a, Y), P) and a database D we can associate to (Q, D) a graph called
query graph defined as follows. An arc is a triplet (a, a,c) where are a and b are the
source node and the destination node, while c is the label associated with the arc. Given
an arc e = (a, b, c) we say that the node a (resp. b) has in output (resp. input) the arc e.

The graph associated with (Q,D) is defined as follows:

1. there is an arc from z to zl labeled (L, r,c) if there exists a ground rule r :

P(Z, Y) + L(++l, d), R(b) such. that L(a) E D and c is the value for the
variables appearing both in L and R;

2. there is an arc from yl to y labeled (R, T,C) if there exists a ground rule T :
p(z, y) t L(a),q(al, yl), R(b) such that r(b) E D) and c is the value for the
variables appearing both in L and R;

3. there is an arc from z to y marked (E, F) if there exists a ground rule p(z, y) e E(b)
such that E(b) E D.

The query graph G associated with a program can be partitioned into the three subgraphs
GI;, GR and GE containing the arcs whose first argument of the label is L, R and E
respectively.

Consider a graph representation G of a binary relation g. The set of arcs of g can
be partitioned with respect to a node s (called source) into the following four disjoint
classes [18,X]:

76

1. Tree arcs (9,): these are the arcs defining the tree To obtained by the depth-first
search visit of the graph starting from the node s;

2. For&d arcs (gf): these are the arcs that go from a node VI to a node ~2 such
that 01 is an ancestor, but not a parent, of 212 in To.

3. CTOSS arcs (se): these join two nodes that are not in the relation ancestor-descendant
(in TG).

4. Back arcs (gb): these go from a node v2 to a node v1 such that v1 is an ancestor
of v2 in TG.

Tree arcs, forward arcs and cross arcs will be called ahead arcs. Notice that more than
one different partitions are possible.

A node a is said to be single (resp. multiple, recurring) with respect to a source node
a if there is a unique path (resp. a finite number greater than one, an infinite set of
paths) from s to a. A graph is a tree if it contains only tree arcs (or equivalently, if each
node is single), and is acyclic if it does not contain back arcs (or equivalently, if each
node is non-recurring). A cycle is said to be elementary if each node is contained only
once.

Example 2 Consider the graph defined by the relation alyI and the source node a.

arc(a, b) arc(a, c) arc(d,b) arc(c,b)

-(b, c)
-y\

arc(a, d)

[.

bed

9 C

Here, (a,b), (b,c) and (a,d) are tree arcs, (a,c> is a forward arc, (d,b) is a cross
arc and (c,b) is a back arc. The nodes a and d are singles, while the nodes b and c are
recurring. The arcs (b,c) and (c,b) define an elementary cycle. El

3 Acyclic Databases

For now, we leave the problem of cyclic databases to subsequent sections, and concentrate
on the treatment of multiple recursive rules,‘and the situation where the left part and
right part of a rule share variables. For this purpose, we replace the counting indexes
with lists, which, operating as stacks, remember the state of the computation for later
use. After proving the correctness of the method, we introduce a simpler implementation,
where lists are replaced with pointers, to ensure the desired performance level for the
method.

3.1 Multiple Linear Rules

The computation of a program rewritten by using the counting method (as well as each
linear program rewritten by using the magic-set method) is executed in two different
phases: the computation of the counting set and the computation of the answer. The
method can thus be viewed as stack-based because during the first phase it remembers
the number of applications of the (left part of the) recursive rule, and during the second

77

phase it executes (the right part of) the rule an equal number of times. The presence
of more than one recursive rule implies that the exact sequence of rules used need to
be memorized during the computation of the counting set, so that the same sequence of
rules, but in reverse order, can be executed during the second phase. A list, having as
entries the rule numbers, can be used for this purpose. We illustrate this point by means
of an example.

Example 3 Consider the following program containin two recursive rules and the
bf query-goal sg(a,Y), which produces the adornment sg .

rg : sg(X, Y) t flat(X, Y).
rl : w(x, y) + upl(X, Xl), sg(X1, Yl), downl(Yi,Y).
r2 : s&y) + upZ(X, Xl), sg(X1, Yl), domG?(Yl,Y).

The computation of the counting set associates to each element the sequence of rules
applied to reach the element.

CO : cdgbf (a, 0).
Cl : c-sgbf(xl [r1]L]) c c sgbf(X,L), upi(x, Xl).
c2 : c-lrgbf(xl: [r2]L]) + - c13gbf(x L), up2(x, Xl).)

If we have only one recursive rule, then all elements in the lit are the same and it
is sufficient to store the length of the list, as per the classical method. During the
computation of the right part we need to use the reverse of the sequence of rules used to
reach an element during the left part. For example, if we reached element z, starting from
source node a, by the application of the left part of rules ~1, ~1, ~2, rl, in the computation
of the right part we need to apply the rules rl, ~2, ~1, ~1. The rewritten rules, with the
query-goal sg(Y, Cl >, are 85 follows:

ro: sg ;;q;; + c-sgbf (X,L), flat(X,Y).
ri : sg
rl : sgbf(Y: L)

t sgbf (Yl, [rl]L]), dovnl(Y1, Y).
t sgbf (Yl, [r2]L]), down2(Yl, Y).

cl

The use of lists could result in a performance overhead. In [15], a log of previously used
rules was encoded into an integer. We will later propose a more efficient technique using
pointers.

The transformation presented above is applicable to programs with more than one
mutually recursive predicate and, consequently, to programs whose adornment in the
recursive predicate in the body is different from the adornment in the head.

3.2 Shared Variables

The transformation presented in Section 3.1 applies only when the variables appearing
in the right part of the recursive rules do not appear in the left part or among the bound
variables in the head. This restriction permits us to partition the set of arguments of the
recursive predicates into two distinct sets. If a variable in the right part of a recursive

.
78

rule also appears in the left part, or it is bound in the head, then we need to know its
value when computing the answer. This implies that we need to store in the list the
values of such variables. (Recall that the pair value and rule number is also labeling the
arcs of the query graph associated with the program.) We show first the method by an
example and in the next subsection we present the algorithm.

Example 4 Consider the the following example with the query-goal p(a,Y). In the
second rule, the variable w appears both in the left and in the right part. In the third
rule, the variable X is bound in the head and also appears in the right part.

rg : p(X,Y) + flat(X, Z).

rl : p(X,Y) + upl(X, Xl,W), p(X1, Yl), dounl(Yl,Y, W).

=2 : P(X,Y) + up2(X, Xl), p(Xl,Yl), doun2(Yl, Y,X).

Each entry in the list defining the path contains two arguments: the identifier of the rule
and a list containing the variables that are shared between the left and the right part
of the rule. The values of the variables bound in the head appearing also in the right
part of the rule (X in the third rule of our example) are not stored in the list because
they appear also in the counting predicates. The resulting rewritten program (where the
adornment bf have been omitted for brevity) is as follows:

c-p(a1 0)
c&l, [(ri, [WI) P-1)) + ~-F&L), UPiP, Xl,W)-
c-p(X1, [(q, O)ILl)) + c-&&L), WJ&X~).
P(Y,L) + cp(X, L), f=lat(X, Y).

P(Y>L) + p(Yl, [&I, Pl)lLl), c-p(X,L), do=l(Yl,Y,W).
P(Y?L) + p(Y1, [(G O)IL]), c-p(X,L), doun2(Y&Y,X).

The goal c-p(X,L) in the second modified rule is not necessary since it is always true.
Consider thefollowingdatabase{upl(a,b, l),flat(b,c),downl(c,d,2),dounl(c,e,l)},

depicted as follows:

b-c

e

The original program computes the set S = {p(b, c), p(a, e)}. The set of facts com-

puted by the rewritten program is {c-p@, O), c-p@, &I, [ll)l)I~(c, &I, [1])]), P(% 0)).
Moreover the rewritten program with the query’p(Y, Cl) is equivalent to the original one
with respect to the query p(a,Y).

Consider now the database {up2(a, b), f lat(b, c), downl(c, d, b), downl(c, 8, a)}, pic-
tured in the following figure:

b-c

e

The rewritten program computes now the set {cp(a, o), c-p(b, [(r2, o)]), p(c, [(r2, O)]),
p(e, I)}. Also in this case the two program are equivalent with respect to the queries-goal

P(Y, 0) and p(a, Y)- cl

79

3.3 The Extended Counting Algorithm

For a given rule r, L(t) and R(T) denote, respectively, the left part and the right part of
P, C, denotes the list of variables appearing both in L(P) and R(r). 0, denotes the list
of variables bound in the head appearing also in R(r). There are three differences with
respect to the classical method:

1. the index is substituted with a list whose elements are pairs (r,C) where r is the
identifier of a rule and C is a value for C, ;

2. a counting predicate is added in the body of the recursive modified rules (necessary
only if bound variable in the head appears also in the right part of the body);

3. the path argument in a counting (resp. modified) rules is incremented (resp. decre-
mented) only if the program defining the predicate in the head of the original rule
is not right- (resp. left-) linear.’

Algorithm 1 [Eztended Counting Rewriting]
Input: Query (~(a, Y), P) where the rules in P have form:

Ezit rulea: p(X,Y) + e(B),
Recur&e rules: p(X, Y) t u(A), q(X1, Yl), b(B)

Output: rewritten query (q(Y, I), Pee)
begin

% Generate Counting Rules
PC := {cd&z, 0))
for each rec. rule r s.t. (L(T) is not empty or q # p or X # Xl) do

if R(r) is empty and q = p and Y = Yl then
p== := PC= u (c*(Xl, L) + 4X, L), L(A)) e

else
Pee := PC’ u {c-4(-V [(p, G)l4) + c,p(X, L), a(A))

$5 Generate Modified Rules
for each exit rule do

Pee := Pee u cp(Y, L) + c-p(X, L), E(B)
for each rec. rule r s.t. R(r) is not empty or q # p or Y # Yl do

if L(r) is empty and q = p and X = Xl then
Pee := Pee u (p(Y, L) + q(Yl, L), c-P(X* L), b(B))

else

Pee := Pee U b(Y, 5) + a(Yl, [(~,C,)l4),c-p(X, L), b(B))
end.

Observe that the counting predicate cq(X, L) in the body of the modified recursive
rules can be omitted if 0, = 0, i.e., when no bound variable in the head also appear in
the right part of the body.

Theorem 1 Let Q = (G, P) be an adorned query. Let Q’ be the query obtained by
application of algorithm I to Q. If the graph associated with (P, D) is acyclic, then Q
and Q’ are equivalent with respect to a database D. Cl

‘The definition of right and left linear programs are given in the next section

80

3.4 Implementation

The extended counting method adds to each counting predicate an argument denoting
the path to reach the element starting from the initial binding. Such an argument,
hereafter called paih argument, is used to select the rule that must be used during the
computation of the answer. The technique proposed in [15] (see also [S]) encodes such
an information by using a number. Unfortunately this is not practical because the size
of the number grows exponentially with the number of steps (the base of the number is
equal to the number of rules in the rewritten program).

Our idea is to store for each element in the counting set only. the rule used and the
address of the tuple used to compute it. In particular, we assume that each tuple is
associated with a unique identifier. We use an extended syntax to rewrite our programs.
The extended syntax allows to use predicates of the form 0 : P, whose meaning is: “0 is
the identifier (in our case is the address) for the tuple P”.’ For example, if the element
b in the counting set is computed by using the rule F and the tuple a we store the tuple

(h T, [-I, Add+))-
Consider the program of Example 4. The set of counting rules is

c-p(a,qh lJ,nil).
c,p(Xl,ri, [WI, A) + A : c-p(X, -, -, -), upl(X, Xl,W).

c-p(Xh r2, r], A) + A : cp(X, -, -, 4, up2(X, X0

The list associated with an element can be deduced by ‘navigating’ the chain defined
by the last arguments. The set of rewritten rules is the following with the query-goal
p(Y, -,nil) .

=o : P(Y, R, A) + c-P(X, R, -9 A), 9(X, Y).
=I : P(Y,R, A) + ’ p(Y1, ri, B), B : c,p(X,R, [W], A), downl(Y1, Y, W).

=2 : P(Y,R, A) + p(Y1, r2, B), B : cq(X,R, 0, A), down2(Yi,Y, X).

Notice that in this case when we compute the predicate B : cq(...) the variable B is
bound and this corresponds to a direct access to the memory. Under this implementation,
the method is very similar to the Bushy-Depth-First method used in the implementation
of LTDL [21].

If the graph associated with the left part of the recursive rules is acyclic and has n
nodes, then in the worst case the counting set contains n2 tuples. In comparison the set
of tuples in the magic set is equal, in the worst case, to n. We propose next a modification
of the method that reduces the size of the counting set to n. We show this by using the
previous example. First we define the predicate up.

uPOw,[Wl,~I) + UPl(X,Xl,W).
UP(X, Xi, 0, q) + up2(x, Xl).

A set of triplets is associated with each node in the counting set. Each element in the
set contains the identifier of the rule, the set of common variables between the left and
the right part of the rule and the identifier associated with the ‘preceding node’. We use
here the syntax of LVL that allows also set terms [5,12].3 The program computing the
counting set is:

SMany new logic languages support the concept of object ID. Here we use the notation of [22].
3CVC permits, by using grouping rules, to generate set terms.

81

c-da, C(r0, IJnil)~)~

c-p(x1, < (R, v, A) >) 6 A : C-P(X, -), upa@, Xi,V, R),
+Pa(T Xi, -, -), lJ # X, 3C-P(& -))a

The predicate upa denotes the set of tuples of up that are ‘reachables’ from the initial
binding. Because we are assuming that the database is acyclic, upa coincides with the
set of ahead arcs in the query graph. Notice that such a program is not stratified. In the
next section we show that it is ‘weakly stratified’ and that it can be computed efficiently.

4 Cyclic Databases

The counting method is unsafe if the database associated with the left part is cyclic,
because it generates paths of infinite length. Two different techniques have been proposed
for such a class of programs. The first, called magic-counting [16], combines the counting
method and the magic-set method, while the second extends the counting method for
programs with cyclic data [l&9,2].

We next present an extension of the counting method for cyclic database. Our method
differs from those previously defined in the literature because such methods use special-
ized algorithms while our method is based on the simple rewriting of the original program.
The idea is to associate to each vertex in G the acyclic distance from the source node
and to nodes that have a back arc in input the length of the elementary cycles containing
it.

Example 5 Consider the program of example 1. We, first, divide the set of up arcs that
are reachables from the initial binding a (source node) into the two distinct subsets: (1)
the ahead arcs upa and (2) the back arcs upb. Such sets can be computed, in linear
time, by using a variant of the depth first search algorithm [18,1]. We assume that the
partition of the relation associated with the predicate up into the two subsets upa and
upb has been already done. In this case the database associated with the predicate upa
is acyclic and the counting set can be computed as follows:

-da, {(ro, 0, nil))).
c-sg(X1, C (rl, [],A) >) + A : c-w(X, -),upa(X,Xl),

4uPa(U, Xl), U # XV +C-sg(U, -)).

After the computation of the predicate c,sg, a unique identifier is associated with
each node in the counting set and such nodes are linked. We need now to add the links
relative to the back arcs. The following predicate cycle_sg adds such information.

cycle-ag(X1, < (1-1, 0, A) >) + A : sg-sg(X, -), upb(X, Xl).

As shown in the previous section, our technique is to associate to each node in the
right part of the graph a set of identifiers of the nodes in the left part and then to move
in both parts using the same rule. Observe that it is also possible to move in the left
part of the graph using back arcs. The predicate f, defined below, computes for a given
identifier associated with a node in the counting set the set of identifiers of the nodes
preceding it.

82

f(M) + A : c,sg(X, Si), if (cycle-sg(X, 52) then S = Sl U S2 else S = Sl).

The set of modified rules is then

ro : sg(y, s) + A : c-sg(X, -), f(A,S), flat(X,Y).
rl : sg(y, s) + sdYl,T), (ri, [,A) E T, f(V), dow+W).

The program contains only one recursive rule where no variables are shared between the
left part and the right part of the rule. Thus, the arguments denoting the identifier of
the rule and the list of the shared variables can be deleted. The resulting program, with
the query-goal sg(Y, { nil }), is

c-sg(a, {nil}).
c,sg(Xl, < A >) + A : c-sg(X, -1, uPa(X, Xl),

l(uPa(W, Xl), W # X, lc-sg(W, -))- .

cycle,sg(Xl, < A >) + A : c,sg(X, w), upb(X, Xl).

f(V) + A : c,sg(X, Sl), if (cycle,sg(X, S2) then S = Sl U S2 else S = Sl).

TO : sg(y,s) + A : c-sg(X, -), f (A, S), flat(X,Y).
rl : sg(y, s) + sg(Yl,T), A E T, f(A,S), doun(Yl,Y).

Consider now the following database.

up(a, b) do+& d flat(e,f)

up(bt c) dom(g, h)
up(ct d) doun(h, i)

up@, a) doun(i, j)

up(e, f) dom(j,k)
udb, e) down(k, 1)

i

$ f
t f
“t

h

b !

t ;
a

Jt
k
c
1

The counting predicates associate to each value x for the variable X an identifier
and the set of identifiers of elements preceding x through an ahead arc. The set of
tuples for the predicate counting is then { 01 : (a,{nil}), 02 : (b, (01))~ 03 : (c, {OS}),
04 : (d, {~a}), 05 : (e, (02~04)) }. The predicate cycle contains only the tuple (d, (05)).

The predicate f associates to each identifier of tuple in the counting set the identifiers
of the tuples in the counting set ‘preceding’ it. The set of tuples for f is {(oi, {nil}),

(02, W), (03, {o2)), (o4,{ 031 OS)), (05, {02,04))
Now se consider the computation of the tuples of sg. From the exit rule we obtain

the tuple (f,{ 02,04}). Navigating on the relations down and c,sg from f and 02 we
obtain the tuple (g,{oi}) whil e f rom f and 04 we obtain (g,{og, 05)). In the next
step from g and 01 we obtain the tuple (h,{nil}) that is an answer. From g and
03,og we obtain the tuples (h, (02)) and (h, { 02,04}). The following steps compute the

tuples (i, (01))~ (i, @3,o5)), (j, {nil)), (j, b2h (5 {02,04)h (k, -h)), (k, {03,05)),
(L {nilI), (1, {02)), 0, {03,051). cl

83

We next present the algorithm for the extended counting method. We assume that
each recursive rule F of the form p(X, Y) + a(A),q(Xl, Yl),b(B), such that the con-
junction denoted by the predicate a is not empty, has been replaced by the following two
rules: a’(X,Xi, C,, r) t a(A) and p(X,Y) t a’(X,Xl, C,, r), q(Xl,Yl),b(B). Notice
that not all arguments in the predicate a’ are necessary. We assume also that the rela-
tions associated with the predicate a’ has been partitioned, with respect to the binding
in the query-goal, into the two subset a: and a; denoting respectively the sets of ahead
and back arcs.
Notation: L(r) and R(r) d enote the left and the right part of a recursive rule T while C,
denote the set of common variables between L(r) and R(T).

Algorithm 2 [Extended Counting Rewriting]
Input: Query (q(u,Y),P) as in Algorithm 1.
Output: rewritten query (q(Y, {(0,/J, niZ)}), PC’)
begin

% Generate Counting Rules

P == := {c4@, ((to9 ll1n4~)l
for each rec. rule r s.t. L(r) in not empty or q # p or X # Xl do

if R(r) is empty and q = p and Y = Yl then
P 8e := P== u {c-q(Xl, < (l-2, Cz,Id) >) + c-p(X, T), (R, Cr,Id) E T‘ 4(X,X1,-,-), .

-(d(w,n-,-),w # X,=p(W,-)) 1

else
P== := PC= u {c4(X1, < (R, C&Id) >) +- Id : cp(X, -), a;(X, Xl,C,, R),

-(da(W,XL-,-),W # x,-c-P(W,-)) 1
% Generate Cycle Rules
for each rec. rule r s.t. L(r) in not empty or q #p or X # Xl do

if R(r) is empty tind q = p and Y = Yl then
P cc := Pee U {cycZe_q(Xl, < (R,C,, Id) >) + cp(X,T),

(R,G,Id) E T,a;(x,R,C+,Xl))
else

P ce := P”u (cycZe_q(Xl,< (R,C,,Id) >) c Id: c-p(X,-),a:(X,R,C,,Xl)}

% Generate Modified Rules
for each exit rule do

pee := PC’ u (P(K S) + v(X, S), e(B, G), P(Y, S) + wh(X, S), e(B, G) I
for each rec. rule r s.t. R(r) is not empty or q # p or Y # Yl do

if L(r) is empty and q = p and X = Xl then
PC= := Pee u {p(Y, T) + n(Yl,T),,(r,G,M) E T,Id: c-P(X,-),~(B,G))

else
PC’ := PC= u (p(Y, S) + q(Yl,T), (r,G,h-f) E T,f(M,S),Id : w(x,-),b(B,G))

end.

Here, as in Algorithm 1, the counting predicate Id : c-p(X,-) in the body of the
modified recursive rules can be omitted if 0, = 01 i.e., if no bound head variables appear
in the right part of the body.

The following theorem elucidates the correctness of our extended counting method
and the effective computability of the transformed program produced by the method.

Theorem 2 Let Q = (G, P) b e an adorned query, and let Q’ = (G’, P’) be the query
generated by Algorithm 2 applied to Q, Then, the following properties hold

84

1. P’ is weakly stratified.

2, Q and Q’ are equivalent.

3. If P is a Datalog programs, the computation of the fixpoint of P’ terminates. Cl

The rewritten program consists of a set of modified rules plus a set of additional rulea.
The set of modified rules depends on the set of additional rules. The set of additional
rules, in the general case, contains the three distinct sets of rules: (i) counting rules, (ii)
‘cycle’ rules, and (iii) rules defining the predicate f. In order to compute the set of tuples
for the additional rules we need to take the following steps: (1) partition the relation
L(r) into ahead-arcs and back-arcs; (2) compute the facts generated by counting rules;
(3) compute the facts generated by the ‘cycle’ rules; (4) compute the predicate ‘f’.

The computation of the additional rules, 8s described above, presents some ineffi-
ciencies. The partition of the relation associated with the left parts is done by using an
algorithm that is a variation of the depth-first search on a graph. The nodes reached
during the search coincides with the nodes in the counting sets. This means that the
first two steps can be computed together. The information concerning the back arcs can
be ‘added’ to the path argument of the tuples in the counting set. This means that also
the predicate ‘f’ is not necessary. We assume that we use a Bushy-Depth-First fixpoint
[7] that computes the set of additional rules that, with such assumption, consists only
of counting rules. In practice the algorithm put the information given by the predicate
‘f’ into the tuples of the counting set. Under these assumptions, the predicate ‘f’ in the
modified rules is no longer necessary, since the navigation is performed using directly the
predicate counting that now contains information on back arcs.

Consider the program of Example 5. The set of tuples in the counting set is {

01 : (a, {nil)), 9 : (b,{ol)), 03 : (c, {oz}), 04 : (~,{O~,OS)), 05 : (e,{o2,04)) 1.
The modified rules are:

ro : sg(y, 3) + c-sg(X, S), flat(X, Y).
rl : sg(y, s) + sg(Y1, T), A E T, down(Yl,Y).

5 Reduction of Linear Programs

One of the advantages of the counting method is the ability to factorize the program,
that is, to partition the recursive predicates and the rules defining them into two different
recursive cliques. This implies that the new predicates and the rules defining them are
simpler. For some classes of programs it is possible to factorize in a better way than
the counting method do. This is the case of programs containing only ‘left’ and ‘right
linear’ rules and only one recursive predicate. We show that the same optimization can
be obtained by a simple reduction of the rewritten program. Such a reduction is based
on the deletion of the path argument when it is not necessary.

A predicate is of the form p(X, L) w h ere L denotes the path argument and X de-
notes the list of the remaining arguments of p. Given a recursive rule r : p(X, LI) c
“‘, q(Y, Lz), *** where q is the predicate mutually recursive with p, we say that r modifies
the path argument of p if L1 # L2. Given a predicate p we say that the path argument
of p is modified if and only if there exists a recursive rule that modifies it.

85

Algorithm 3 [Program Reduction]
input: A rewritten query Q”
output: A reduced query Q’“”
method: The reduced query Q’“’ is obtained from the original program Q’” by appli-
cation of the following rules:
begin

1. (deletion of argument) the path argument of a set of mutually recursive predicates
S can be deleted if for each predicate p E S no rules exist that modify the path
argument of p;

2. (deletion of predicates) a counting predicate appearing in the body of a modified
rule can be deleted if it is not connected with any predicate in the rule.

end.

Theorem 3 Let Q = (G, P) be an adorned query. Let Q’ be the query obtained by
application of Algorithm 2 to Q, and Q” be the query obtained by application of Algorithm
3 to Q’. Q”,Q’, and Q, are equivalent. Cl

Next we show how programs that contain only left-linear and right-linear rules [19,14]
can be reduced. Similar results are obtained in [13] by first applying the magic-set
transformation and then factoring the rewritten program. Although their technique can
be applied also to classes of non-linear programs, our technique, we believe, is simpler
and can be extended to classes of non-linear programs.

A rule is said to be right-linear (left-&near) with respect to an adornment Q if (1)
the adornment of the recursive predicate in the body is a; (2) each variable in the head
that is free (resp. bound) in o occurs in the same position in the recursive predicate
in the body; (3) each free (resp. bound) variable in a occurs only once in the recursive
predicate. A program is said to be mized linear if it contains only right- and left-linear
recursive rules and only one recursive predicate. A mixed linear program is said to be
right-linear (resp. left-linear) if each rule is right- (resp. left-) linear.

When a program consists of left- and right-linear rules, the extended counting method
and the reduction that follows can be combined. We show this by the use of an example.

Example 6

r9 : p(X,Y) c flat(X,Y).

=i : p(X,Y) + UP(X) Xi), P(X& Y)t
r2 : P(X, Y) + P(X, Y), dom(Yl, Y).

The rewritten program is
c-0 : c-p(a, 0).
c-1 : c-p(xl, L) + e-P(X,L), np(X, Xi).

=0 : P(Y,L) + c,p(X,L), f lat(X, Y).

‘3 : P(YI L) c p(Y1, L), down(Y1, Y).

The reduced program is
c-0 : c-da).
c-1 : c-p(x) + c-P(x), UP(X, Xl).

=0 : P(Y) + c-p(X), flat(X, Y).

=3 : P(Y) + p(Yl), down(Yl,Y). Cl

86

Given a mixed-linear program P, we denote by e&t(P), left(P) and right(P) respec-
tively, the sets of exit, left-linear and right-linear rules in P. Let PT” be the reduced
rewritten program PJee and Pz’ denote the sets of counting rules and the set of modified
rules (P”’ = PJec U Pz’). Given a program P, P denotes the program obtained from
P by projecting out the path argument.

Fact 1 Let P be a mized-linear program. Prce = ezit(Pcc) U Zeft(Pl”“) U right(Pze).

If the program contains only right-linear rules then Prcc = Picc U ezit(Pzc). For
right-linear programs the reduction technique give the same optimired program presented
in [14]. If the program contains only left-linear rules then PTce = ezit(Pl”) U pg’.

Observe that the rewritten program so obtained is similar to that of [14], except that, in
the latter, there is no counting predicate, since the query bindings are pushed directly
into the exit rule (in our example the exit rule is p(Y) + fkrl(a, Y)).

6 Conclusion

In this paper, we introduced extensions of the counting method that makes it applicable
to all programs with linear rules, and to the situations where the database contains cyclic
data. The extended method is amenable to reduction techniques that produce further
optimizations in the case of left-linear rules, right-linear rules and a combination of the
two.

Furthermore, we presented a pointer-based implementation of the method that is com-
putationally efficient. While more extensive measurements and evaluation are planned,
our preliminary experience with the Bushy-Depth-First method in the t’DC prototype [7]
suggests that this approach yields excellent performance.

Aknowledgements
The authors are grateful to Mimmo Sac& for many useful discussions.

References i

[l] A.V. Aho, Hopcroft J.E., and Ullman J.D. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974,

[2] H. Aly and Z.M. Orsoyoglu. Synchronized counting method. In Proceedinga of the
Fifth Intern. Conference on Data Engineering, pages 366-373, 1989.

[3] F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman. Magic sets and other strange
ways to implement logic programs. In Proceedings of the Fifth ACM Symposium on
Principlea of Database Systems, pages 1-15, 1986.

[4] F. Bancilhon and R. Ramakrishnan. Performance evaluation of data intensive logic
programs. In J. Minker, editor, Foundations of Deductive Databases and Logic
Programming, pages 439-518, Morgan-Kaufman, Los Altos, CA, 1988.

[S] C. Beeri, S. Naqvi, R. Ramakrishnan, 0. Shmueli, and S. Tsur. Sets and negation
in a logic database language (LDLl). In Proceedings of the Sizth ACM Symposium
on Principles of Database Systems, pages 21-37, 1987.

[6] C. Beeri and R. Ramakrishnan. On the power of magic. Journal of Logic Progmm-
ming, lO(3 & 4):333-361, 1991.

[7] D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, T. Shalom, and C. Zan-
iolo. The LDL system prototype. In IEEE 13ulnsaction on Knowledge and Data
Engineering, pages 76-90, 1990.

[8] S. Greco and C. Zaniolo. Optimization of Linear Logic Programs Using Counting
Methods. Research Report, MCC, 1991.

[9] R. Haddad and J. Naughton. A counting algorithm for a cyclic binary query. Journal
of Computer and System Science, 43(1):145-169, 1991.

[lo] J. Lloyd. Foundations of Logic Programming. Springer-Verlag, New York, 2nd
edition, 1987.

[ll] A. Marchetti-Spaccamela, A. Pelaggi, and D. Sac&. Comparison of methods for
logic query implementation. Journal of Logic Programming, lO(3 & 4):333-361,
1991.

[12] S. Naqvi and S Tsur. A Logic Language for Data and Knowledge Basea. Computer
Science Press, New York, 1989.

[13] J.F. Naughton, R. Ramakrisnhan, Y. Sagiv, and J.D. Ullman. Argument reduction
by factoring. In Proceedings of the 15th Conference on Very Large Data Bases,
pages 173-182, 1989.

[14] J.F. Naughton, R. Ramakrisnhan, Y. Sagiv, and J.D. Ullman. Efficient evaluation
of right-, left-, and multi-linear rules. In Proceedings of the 1988 ACM SIGMOD
Int. Conf. on Management of Data, pages 235-242, 1989.

[15] D. Sac& and C. Zaniolo. The generalized counting method of recursive logic queries
for databases. Theoretical Computer Science, 187-220, 1988.

[16] D. Sac& and C. Z aniolo. Magic counting methods. In Proceedings of the 1987 ACM
SIGMOD Int. Conf. on Management of Data, pages 49-59, 1987.

[17] D. Sac& and C. Zaniolo. On the implementation of a simple class of logic queries for
databases. In Proceedings of the Fifth ACM Symposium on Principles of Database
Systems, pages 16-23, 1986.

[18] R Tarjan. Depth first search of linear graphs algorithms. SIAM J. Computing,
1(2):146-160, 1972.

[19] J. Uilman. Principles of Data and Knowledge-Base Systems. Volume 2, Computer
Science Press, New York, 1989.

[20] J. Ullman. Principles of Data and Knowledge-Base Syatema. Volume 1, Computer
Science Press, New York, 1988.

[21] C. Zaniolo. Design and implementation of a logic based language for data intensive
applications. In Proc. of ihe Intern. Conf. on Logic Programming, 1988.

[22] C. Zaniolo. Object identity and inheritance in deductive databases: an evoiotionary
approach. In Proc. 1st Int. Conf. on Deductive and Object-OrientedDatabases, 1989.

