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Abstract There is much current interest in supporting continuous queries on data streams
using generalizations of database query languages, such as SQL. The research
challenges faced by this approach include (i) overcoming the expressive power
limitations of database languages on data stream applications, and (ii) provid-
ing query processing and optimization techniques for the data stream execution
environment that is so different from that of traditional databases. In particu-
lar, SQL must be extended to support sequence queries on time series, and to
overcome the loss of expressive power due to the exclusion of blocking query
operators. Furthermore, the query processing techniques of relational databases
must be replaced with techniques that optimize execution of time-series queries
and the utilization of main memory. The Expressive Stream Language for Time
Series (ESL-TS) and its query optimization techniques solve these problems ef-
ficiently and are part of the data stream management system prototype developed
at UCLA.

1. Introduction

There is much ongoing research work on data streams and continuous queries
[4, 12]. The Tapestry project [6, 32] was the first to focus on the problem
of ‘queries that run continuously over a growing database’. Recent work
in the Telegraph project [9, 21] focuses on efficient support for continuous
queries and the computation of traditional SQL-2 aggregates that combine
streams flowing from a network of nodes. The Tribeca system focuses on net-
work traffic analysis [31] using operators adapted from relational algebra. The
OpenCQ [19] and Niagara Systems [10] support continuous queries to moni-
tor web sites and similar resources over the network, while the Chronicle data
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model uses append-only ordered sets of tuples (chronicles) that are basically
data streams [17].

The Aurora project [8] aims at building data management systems that pro-
vide integrated support for

Data streams applications, that continuously process the most current
data on the state of the environment.

Applications on stored data (as in traditional DBs)

Spanning applications that combine and compare incoming live data
with stored data. This requires balancing real-time requirements with
efficient processing of large amounts of disk-resident data.

The learning curve and complexity of writing spanning applications can be
minimized if SQL is used on both data bases and data streams. This obser-
vation justifies the choice of SQL as query language made by most research
projects on data streams; however, these projects often underestimate the chal-
lenges faced by SQL in this new role. For instance, the design of a general-
purpose data stream language and system is the stated objective of the CQL [3]
project, which introduces several SQL-based constructs with rigorous seman-
tics [3]. Yet, CQL appears to be effective only for simple queries, and lacks
the ability of supporting mining queries, sequence queries, and even some of
the monotonic queries expressible in SQL which are discussed next1.

The expressive power challenge faced by continuous query languages was
elucidated in [2] where it was shown that (i) queries can be expressed by non-
blocking computations iff they are monotonic, and that (ii) relational algebra
(RA) and SQL are not relationally complete on data streams, since some mono-
tonic queries1 of relational algebra can only be expressed by RA or SQL by
their blocking operators (which must be disallowed on data streams). More-
over, the seriousness of SQL problems proven by the theory are surpassed by
those experience in practice, where we find that SQL cannot support many
important classes of applications, including data mining and sequence queries.

The limitations of SQL with time-series queries are well-known, and have
been the focus of many database research projects aiming at supporting time-
series analysis and the search for interesting patterns in stored sequences [16,
23, 29, 30, 28–1]. Informix [16] was the first among commercial DBMSs
to provide special libraries for time-series, that they named datablades; these
libraries consist of functions that can be called in SQL queries. While other
database vendors were quick to embrace it, this procedural-extension approach
lacks expressive power and amenability to query optimization. To solve these
problems, the SEQ and PREDATOR systems introduce a special sublanguage,

1These include temporal queries such as until and coalesce, and queries expressible using monotonic aggre-
gation [2]
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called SEQUIN for queries on sequences [29, 30, 28]. SEQUIN works on se-
quences in combination with SQL working on standard relations; query blocks
from the two languages can be nested inside each other, with the help of direc-
tives for converting data between the blocks. SEQUIN’s special algebra makes
the optimization of sequence queries possible, but optimization between se-
quence queries and set queries is not supported; also its expressive power is
still too limited for many application areas. To address these problems, SRQL
[23] augments relational algebra with a sequential model based on sorted rela-
tions. Thus sequences are expressed in the same framework as sets, enabling
more efficient optimization of queries that involve both [23]. SRQL also ex-
tends SQL with some constructs for querying sequences.

SQL/LPP is a system that adds time-series extensions to SQL [1]. SQL/LPP
models time-series as attributed queues (queues augmented with attributes that
are used to hold aggregate values and are updated upon modifications to the
queue). Each time-series is partitioned into segments that are stored in the
database. The SQL/LPP optimizer uses pattern-length analysis to prune the
search space and deduce properties of composite patterns from properties of
the simple patterns.

SQL-TS [26, 25] introduced simple and yet powerful extensions of SQL for
finding patterns in sequences, along with techniques generalizing the Knuth-
Morris-Pratt (KMP) algorithm [18] to support the optimization of such queries.
The ESL-TS system, discussed next, extends those constructs to work on data
streams, rather than stored data, and uses a novel implementation and optimiza-
tion architecture that exploits the native extensibility of ESL and the Stream
Mill system.

The paper is organized as follows. In the next section, we introduce the
time-series constructs of the ESL-TS language, which is, in Section 3, com-
pared with languages proposed in the past for similar queries. In Section 4, we
discuss the native extensibility mechanisms of ESL that we use in the imple-
mentation of ESL-TS, described in Section 5. In Section 6, we provide a short
overview of the query optimization techniques used in such implementation.

2. The ESL-TS Language

Our Expressive Stream Language for Time Series (ESL-TS) supports sim-
ple SQL-like constructs to specify input data stream and search for complex
sequential patterns on such streams.

Suppose we have a log of the web pages clicked by a user during a session
as follows:

STREAM Sessions(SessNo, ClickTime, PageNo, PageType) ORDER BY ClickTime;
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Here input pages are explicitly sequenced by ClickTime using the ORDER
BY clause. A user entering the home page of a given site starts a new session
that consists of a sequence of pages clicked; for each session number, SessNo,
the log shows the sequence of pages visited—where a page is described by its
timestamp, ClickTime, number, PageNo and type PageType (e.g., a content page,
a product description page, or a page used to purchase the item).

The ideal scenario for advertisers is when users (i) see the advertisement
page for some item in a content page, (ii) jump to the product-description page
with details on the item and its price, and finally (iii) click the ‘purchase this
item’ page. This advertisers’ dream pattern can be expressed by the following
ESL-TS query, where ‘a’, ‘d’, and ‘p’, respectively, denote an ad page, an item
description page, and a purchase page:

Example 1.1 Using the FROM clause to define patterns

SELECT Y.PageNo, Z.ClickTime
FROM Sessions

PARTITION BY SessNO AS (X, Y, Z)
WHERE X.PageType=‘a’

AND Y.PageType=‘d’
AND Z.PageType=‘p’

Thus, ESL-TS is basically identical to SQL, but for the following additions
to the FROM clause .

A PARTITION BY clause specifies that data for the different sessions are
processed separately (i.e., as if they arrived in separate data streams.)
The semantics of this construct is basically the same as the PARTITION
BY construct used in SQL:1999 windows [37], which is also supported
in the languages proposed by many data stream projects [4]. In this
example, the PARTITION BY clause specifies that data for each SessNO are
processed as separate streams. The pattern AS (X, Y, Z) specifies that,
for each SessNO, we seek a sequence of the three tuples X, Y, Z (with
no intervening tuple allowed) that satisfy the conditions stated in the
WHERE clause.

The AS clause, which in SQL is mostly used to assign aliases to the
table names, is here used to specify a sequence of tuple variables from
the specified table. By (X, Y, Z) we mean three tuples that immediately
follow each other.

Tuple variables from this sequence can be used in the WHERE clause to
specify the conditions and in the SELECT clause to specify the output.

In the SELECT clause, we return information from both the Y tuple and the
Z tuple. This information is returned immediately, as soon as the pattern is
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recognized; thus it generates another stream that can be cascaded into another
ESL-TS statement for processing.

Repeating Patterns and Aggregates

A key feature of ESL-TS is its ability to express recurring patterns by using
a star operator. For instance, to determine the number of pages the user has
visited before clicking a product description page (denoted by ‘d’) we simply
write:

Example 1.2 Number of pages visited before the product description page
is clicked, provided that this count is below 20

SELECT SessNo, count(*A)
FROM Sessions

PARTITION BY SessNO
AS (*A, B)

WHERE A.PageType <> ‘d’
AND B.PageType = ‘d’
AND count(*A) < 20

Thus, *A identifies a maximal sequence of clicks to pages other than ‘prod-
uct’ pages. Then, count(*A) tallies up those pages and, after checking that the
count is less than 20, returns SessNo and the associated count to the user. The
maximality of the star construct is important to avoid ambiguity and the possi-
ble explosion of matches. ESL-TS supports a rich set of aggregates, as needed
for time series analysis [20]; aggregates supported includes rollups, running
aggregates, moving-window aggregates, online aggregates, and user-defined
aggregates inherited from the AXL/ATLaS system [33]. Aggregates can only
be applied to sequences defined by stars, and come in two very distinct flavors:

1 final aggregates applicable only after the star computation has com-
pleted, and

2 continuous aggregates that apply during the star computation.

For instance, count(*A) in Example 1.2 is a final aggregate: a sequence of pages
is accepted, until a ‘p’ page terminates the sequence. At that point, the con-
dition count(*A) < 20 is evaluated, and if satisfied the sequence is accepted and
SessNo and count(*A) for that session are returned, otherwise the sequence is
rejected. Example 1.3 illustrates the use of continuous aggregates—i.e., those
that return the current value of the aggregates during the computation, as per
online aggregates [14]. It also illustrates how ESL-TS benefits from its ability
of using standard SQL queries in combination with queries on sequences.

The previous queries were based on examples discussed in [26]. Let us now
consider examples inspired by current data stream testbeds [5]. Assume we
have an incoming stream speed sent by sensors placed on stations along the
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highway, which measures the average speed of cars once every minute. Also
we have a database table stations that has descriptions of the stations, such as
”Close to Exit 111”.

STREAM speed(stationId, speed, speedTime) ORDER BY speedTime;
TABLE stations(stationId, location);

A good way of determining traffic condition is to find out jam locations along
the highway. The jam condition is defined as a series of decreasing speeds,
which leads to a more than 70% speed reduction, from some starting speed
higher than 50 mph, within a time span of at most 6 minutes (we have assumed
one measurement per minute). Example 1.3 uses continuous aggregates to
detect such locations. The aggregate ccount is the online version of count, i.e.,
a continuous count that returns a new value for each new input. Thus, the
condition ccount(X) <=6 is satisfied for the first 6 elements in the sequence
and, upon failing on the 7th element, it brings the star sequence to completion.
In general, continuous aggregates can be returned at various points during the
computation of the sequence, as online aggregates do [14]; thus, they can also
be used in the conditions that determine whether the current tuple must be
added to the star sequence being recognized.

The two different kinds of aggregates are syntactically distinguished by the
fact that, the argument of a final aggregate is prefixed by the star; while there
is no star in the argument of continuous aggregates. This query also uses the
aggregate LAST; this a built-in aggregate that always returns the final value in
the star sequence (thus, in Example 1.3 it is used to return the last value of
speed in the sequence *Y.)

Example 1.3 Find out the jam locations along the highway

SELECT A.location, LAST(Y).speedTime
FROM stations AS A, speed

PARTITION BY stationId AS (X, *Y)
WHERE X.speed > 50

AND Y.speed < Y.previous.speed
AND LAST(*Y).speed < 0.3*X.speed
AND ccount(Y) <= 6
AND X.stationId = A.stationId

Notice that, to retrieve the description of station locations, we use standard
SQL to access database table stations. Also notice that we use the WHERE
clause to specify conditions on both the values of attributes and those of aggre-
gates. This is a simplification of traditional SQL (that would instead require
HAVING for conditions on aggregates). This simplification is very beneficial
for the users, and it has been adopted in more recent query languages such as
XQuery [7].
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The simplification is made possible by the lack of ambiguity associated with
the sequential processing of patterns such as *Y. The processing is as follows:
for each new tuple (i) the current values of attributes and continuous aggre-
gates (i.e., those without the star, such as ccount(Y)) are evaluated and all the
applicable conditions in the WHERE clause are tested, and (ii) if said condi-
tions evaluate to true, then the computation of the star continues with the next
tuple. Otherwise the evaluation of *Y completes and the final aggregates such
as count(*Y) are computed and their values are used to test the applicable con-
ditions in the where clause.

In general, therefore, we treat conditions on starred aggregates like condi-
tions in the HAVING clause of standard SQL. Thus, for Example 1.2, the state-
ment WHERE count(*A) < 20 is treated like HAVING count(A) < 20.

Finally, the meaning of an aggregate such as avg(*A) would become unde-
fined if *A were to contain zero or more elements, and therefore we require
one or more elements in a the star construct. Therefore, ESL-TS wants to
achieve both users’ convenience and rigorous semantics; a formal logic-based
semantics for the language constructs was presented in [24].

As a more sophisticated example, say we want to find out the course of a
traffic accident from the speed stream. We can compute a diff stream from speed

stream with the following schema2:

STREAM diff(stationId, speed diff, speedTime) ORDER BY speedTime;

A tuple in diff specifies speed difference between cars at the current station
and cars at the next station. Under normal traffic, the difference remains un-
der a rather low value. Whenever an accident happens, we will see a sudden
increase of this difference; here, we define it as a more than 2 times increase
within a time span of 6 minutes. After the accident is cleared, the difference
drops back to a range within 10% of the stable condition. In this query, *Y is the
pattern when the sudden speed difference jump happens, and once the increase
stops the pattern *Z starts to match. *Z matching fails when the speed differ-
ence comes back to 10% of previous difference, or 60 minutes have elapsed, at
which point the pattern is returned to the user.

Example 1.4 Detection of traffic accidents

SELECT X.stationId, FIRST(Y).speedTime,
LAST(Z).speedTime, LAST(Z).speed diff
FROM diff
PARTITION BY stationId
AS (X, *Y, *Z)

WHERE X.speed diff <= 15
AND Y.speed diff > Y.previous.speed diff

2The computation can be easily expressed in ESL-TS
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AND LAST(*Y).speed diff > 2*X.speed diff
AND ccount(Y) <= 6
AND Z.speed diff > 1.1*X.speed diff
AND ccount(Z) <= 60

Comparison with other Languages

The following example illustrates a search pattern on streams that has been
previously proposed by other languages on stored sequences.

Example 1.5 Given a stream of events (time, name, type, magnitude) con-
sisting of Earthquake and Volcano events, retrieve Volcano name and Earth-
quake name for volcano eruptions where the last earthquake (before the vol-
cano) was greater than 7.0 in magnitude.

SELECT V.name, LAST(E).name
FROM events AS (*E, V)
WHERE E.type =’Earthquake’ AND V.type = ’Volcano’

AND LAST(E).magnitude >= 7.0

This simple example is easily expressed in all the pattern languages pro-
posed in the past [23, 29, 30, 28–1].

However, as illustrated in [1] most languages have problems with more com-
plex patterns, such as the classical double-bottom queries, where given the
table (name, price, time), for each stock find the W-curve (double-bottom).
W-curve is a period of falling prices, followed by a period of rising prices,
followed by another period of falling prices, followed by yet another period of
rising prices. To make sure it is a “real” pattern we will enforce at least 5 prices
in each period. In SQL/LPP+, this complex query is handled by the definition
of patterns “uptrend” and “downtrend” followed by “doublebottom” as shown
next.

Example 1.6 Double Bottom in SQL/LPP+

CREATE PATTERN uptrend AS
SEGMENT s OF quote WHICH IS FIRST MAXIMAL, NON-OVERLAPPING
ATTRIBUTE name AS first(s, 1).name
ATTRIBUTE b date AS first(s, 1).time
ATTRIBUTE b price AS first(s, 1).price
ATTRIBUTE e date AS last(s, 1).time
ATTRIBUTE e price AS last(s, 1).price

WHERE [ALL e IN s] (e.price >= prev(e, 1).price
AND e.name = prev(e, 1).name)
AND length(s) >= 5

CREATE PATTERN downtrend AS ...
/*this is similar to uptrend and omitted for lack of space*/
CREATE PATTERN double bottom AS

downtrend p1; uptrend p2; downtrend p3; uptrend p4 WHICH IS ALL,
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ATTRIBUTE name IS first(p1).name
ATTRIBUTE b date IS first(p1).time
ATTRIBUTE b price IS first(p1).price
ATTRIBUTE e date IS last(p4).time
ATTRIBUTE e price IS last(p4).price

WHERE p1.name = p2.name AND p2.name = p3.name
AND p3.name = p4.name

SELECT db.b date, db.b price, db.e date, db.e price
FROM double bottom

ESL-TS can express the same pattern in much fewer lines:

Example 1.7 Double Bottom in ESL-TS
SELECT W.name, FIRST(W).time,

FIRST(W).price, LAST(Z).time, LAST(Z).price FROM quote
PARTITION BY name
SEQUENCE BY date
AS (*W, *X, *Y, *Z)

WHERE W.price <= W.previous.price AND count(*W) >= 5
AND X.price >= X.previous.price AND count(*X) >= 5
AND Y.price <= Y.previous.price AND count(*Y) >= 5
AND Z.price >= Z.previous.price AND count(*Z) >= 5

3. ESL and User Defined Aggregates

ESL-TS is implemented as an extension of ESL that is an SQL-based data-
stream language that achieves native extensibility and Turing completeness via
user-defined aggregates (UDAs) defined in SQL itself rather than in an exter-
nal procedural language. In fact, using nonblocking UDAs, ESL overcomes
the expressive power loss from which all data stream languages suffer because
of the exclusion of blocking operators. In [2], it is shown that (i) all (and
only) monotonic queries can be expressed by nonblocking computations, and
(ii) using nonblocking UDAs, ESL can express all the computable monotonic
functions. The practical benefits achieved by ESL’s extraordinary level of the-
oretical power will become clear in the next section, where we will show that
the pattern-searching constructs of ESL-TS can be implemented by mapping
them back into the UDAs of standard ESL.

User Defined Aggregates (UDAs) are important for decision support, stream
queries, and other advanced database applications [34, 4, 14]. ESL adopts
from SQL-3 the idea of specifying a new UDA by an INITIALIZE, an ITER-
ATE, and a TERMINATE computation; however, ESL lets users express these
three computations by a single procedure written in SQL [33]— rather than
by three procedures coded in procedural languages as prescribed by SQL-33.

3Although UDAs have been left out of SQL:1999 specifications, they were part of early SQL-3 proposals,
and supported by some commercial DBMS.
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Example 1.8 defines an aggregate equivalent to the standard AVG aggregate in
SQL. The second line in Example 1.8 declares a local table, state, where the
sum and count of the values processed so far are kept. Furthermore, while in
this particular example, state contains only one tuple, it is in fact a table that
can be queried and updated using SQL statements and can contain any number
of tuples. Thus, INITIALIZE inserts the value taken from the input stream and
sets the count to 1. The ITERATE statement updates the tuple in state by adding
the new input value to the sum and 1 to the count. The TERMINATE statement
returns the ratio between the sum and the count as the final result of the com-
putation by the INSERT INTO RETURN statement4. Thus, the TERMINATE statements
are processed just after all the input tuples have been exhausted.

Example 1.8 Defining the standard aggregate average

AGGREGATE myavg(Next Int) : Real
{ TABLE state(tsum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE : {

UPDATE state
SET tsum=tsum+Next, cnt=cnt+1;

}
TERMINATE : {

INSERT INTO RETURN
SELECT tsum/cnt FROM state;

}
}

Observe that the SQL statements in the INITIALIZE, ITERATE, and TERMINATE

blocks play the same role as the external functions in SQL-3 aggregates. But
here, we have assembled the three functions under one procedure, thus sup-
porting the declaration of their shared tables (the state table in this example).

deallocated just after the TERMINATE statement is completed. This approach
to aggregate definition is very general. For instance, say that we want to sup-
port tumbling windows of 200 tuples [8]. Then we can write the UDA of
Example 1.9, where the RETURN statements appear in ITERATE instead of TER-

MINATE. The UDA tumble avg, so obtained, takes a stream of values as input
and returns a stream of values as output (one every 200 tuples). While each
execution of the RETURN statement produces here only one tuple, in general, a
UDA can produce (a stream of) several tuples. Thus UDAs operate as general
stream transformers. Observe that the UDA in Example 1.8 is blocking, while

4To conform to SQL syntax, RETURN is treated as a virtual table; however, it is not a stored table and
cannot be used in any other role.
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that of Example 1.9 is nonblocking. Thus, nonblocking UDAs are easily ex-
pressed in ESL, and clearly identified by the fact that their TERMINATE clauses
are either empty or absent. The typical default semantics for SQL aggregates
is that the data are first sorted according to the GROUP-BY attributes: thus the
very first operation in the computation is a blocking operation. Instead, ESL
uses a (nonblocking) hash-based implementation for the GROUP-BY calls of the
UDAs. This default operational semantics leads to a stream oriented execution,
whereby the input stream is pipelined through the operations specified in the
INITIALIZE and ITERATE clauses: the only blocking operations (if any) are those
specified in TERMINATE, and these only take place at the end of the computation.

Example 1.9 Average on a Tumbling Window of 200 Tuples
AGGREGATE tumble avg(Next Int) : Real
{ TABLE state(tsum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE : {

UPDATE state
SET tsum=tsum+Next, cnt=cnt+1;

INSERT INTO RETURN
SELECT tsum/cnt FROM state
WHERE cnt % 200 = 0;

UPDATE state SET tsum=0, cnt=0;
WHERE cnt % 200 = 0

}
TERMINATE: { }

}

ESL supports standard SQL, where the UDAs (defined using SQL) are called
in the same way as any other built-in aggregate. As discussed above, both
blocking and non-blocking UDAs can be used on database tables, however
only non-blocking UDAs can be used on streams, as in the next example. For
instance, given an incoming stream which contains bidding data for an online-
auction web site:

STREAM bid(auction id, price, bidder id, bid time) ORDER BY bid time;

Example 1.10 continuously computes the number of unique bidders for auc-
tion with ID 1024 within a time-based sliding window of 30 minutes by apply-
ing a non-blocking UDA bidder wcount on stream bid (which will be define in
the next example). The first two lines in Example 1.10 illustrate stream dec-
laration in ESL. The next two lines of Example 1.10 filter the tuples from the
stream bid using the condition auction id=1024; the tuples that survive the filter
are then pipelined to the UDA bidder wcount.

Example 1.10 UDAs and Streams in ESL
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STREAM bid(auction id, price, bidder id, bid time)
ORDER BY bid time;

SELECT auction id, bidder wcount(bidder id, bid time, 30)
FROM bid WHERE auction id=1024;

In Example 1.11, we define an aggregate bidder wcount that continuously
returns the count of unique bidders within a sliding window of certain number
of minutes, with the window size passed in as a formal parameter. Observe that
the formal parameters of the UDA function are treated as constants in the SQL
statements. Thus, the INSERT statement in INITIALIZE put into the table bidders

with the constant bidder id and bid time. In ITERATE, we first add the bidder into
the table bidders, if it is a new bidder. Then, if it is an existing bidder, we
update the last seen timestamp for that bidder. Next, we delete all bidders last
seen before the sliding window starts. Finally, the RETURN statement in ITERATE

returns the current count of unique bidders within the sliding window.

Example 1.11 Continuous count of unique bidders within a sliding window
of certain number of minutes

AGGREGATE bidder wcount(bidder id, bid time, num min):(bcount)
{ TABLE bidders(b id, btime);

INITIALIZE :{
INSERT INTO bidders VALUES(bidder id, bid time);

}
ITERATE:{

INSERT INTO bidders VALUES(bidder id, bid time)
WHERE bidder id NOT IN (SELECT bId FROM bidders);

UPDATE bidders SET btime = bid time
WHERE bidder id = b id;

DELETE FROM bidders
WHERE bid time > (btime + num min minutes);

INSERT INTO RETURN
SELECT count(b id) FROM bidders

}
TERMINATE : {}

}

Observe that, this UDA has an empty TERMINATE, thus it is non-blocking
and can be used on streams. It maintains a buffer with minimum number of
tuples within the sliding window, those that are needed to ensure all the unique
bidders are counted.

The power and native extensibility produced by UDAs makes them very
useful in a variety of application areas, particularly those, such as data mining,
that are too difficult for current O-R DBMSs [13, 22, 15, 27]. The ability of
UDAs to support complex data mining algorithms was discussed in [35], where
they were used in conjunction with table functions and in-memory tables to
achieve performance comparable to that of procedural algorithms under the
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cache mining approach. For instance in [35], a scalable decision-tree classifier
was expressed in less than 20 statements. In the next section we describe how
UDAs are used to implement SQL-TS.

4. ESL-TS Implementation

The ESL-TS query of Example 1.2 can be recast into the FSM of Figure 1.1,
and implemented using the UDA of Example 1.12.

Figure 1.1. Finite State Machine for Sample Query

We can walk through the code of Example 1.12, as follows:

Lines 2 and 3: we define local table CurrentState that is used to maintain the
current state of the FSM, and the table Memo that holds the last input
tuple.

Line 4: we initialize these tables as the first operation in INITIALIZE.

Line 5 and 6: we check the first tuple to see if it is ’a’. If, and only if, this the
case, the state is advanced to 1 and tuple values updated for state 1,

Line 7: we check if we have the correct input for transitioning to the next state
and, in case of failure, we reset the state back to 0— this corresponds to
the ”Init” state in Figure 1.1. We are now in the ITERATE clause of the
UDA, and this clause will be is executed for each subsequent input tuple.

Line 8: If line 7 did not execute (sqlcode> 0, indicates the failure of the last
statement), then the transition conditions hold, and we advance to the
next state.

Line 9: once we transitioned into the next state (sqlcode =0 indicates that the
last statement succeeded), we need to update the current tuple value for
that state.

Line 10: if we are now in the accepting state (State 3), we simply return the
tuple values.

Line 11 : once the results are returned, we must reset the FSM to its ”Init”
state (State 0).
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Example 1.12 Implementation of Example 1.2
1: Aggregate find pattern(PageNoIn int, ClickTimeIn char(16),

PageTypeIn char(1)): (PageNo int, ClickTime char(16))
2: { TABLE CurrentState(curState int);
3: TABLE Memo(PageNo int, ClickTime char(16), State int);

INITIALIZE: {
4: INSERT INTO CurrentState VALUES(0);

INSERT INTO Memo VALUES ((0, ”, 1), (0, ”, 2), (0, ”, 3));
5: UPDATE Memo SET PageNo = PageNoIn, ClickTime = ClickTime

WHERE PageTypeIn = ’a’ AND State = 1;
6: UPDATE CurrentState SET curState = 1 WHERE sqlcode = 0 }

ITERATE: {
7: UPDATE CurrentState set curState = 0

WHERE (curState = 0 AND pageType <> ’a’)
OR (curState = 1 AND pageType <> ’d’)
OR (curState = 2 AND pageType <> ’p’);

8: UPDATE CurrentState SET curState = curState + 1
WHERE sqlcode > 0 AND ((curState = 0 and pageType = ’a’)
OR (curState = 1 and pageType = ’d’)
OR (curState = 2 and pageType = ’p’));

9: UPDATE Memo SET PageNo = PageNoIn, ClickTime = ClickTimeIn
WHERE Memo.State = (SELECT curState FROM CurrentState)
and sqlcode =0;

10: INSERT INTO return SELECT Y.PageNo, Z. ClickTime
FROM CurrentState AS C, Memo AS X, Memo AS Y, Memo
WHERE C.curState = 3 and Y.st = 2 AND Z.st = 3;

11: UPDATE CurrentState SET curState=0 WHERE sqlcode = 0}
}

Therefore it is clear how our Example 1.12 succeeds in recognizing string
’adp’. However, when our FSM input does not satisfy the patterns, we must
backtrack and resume the search from previous tuples. For instance, say that
our input string is ’aadp.’ Then the process is as follows: we first match the
first ‘a’, and move to State 1. But then we see another ‘a’ in the input string,
and therefore we must restart from the Init state. Now this second ‘a’ brings
us to State 1, and we remain in this state when we see first ‘d and next ‘p’.
Therefore, we need the ability to resend old input tuples to the FSM machine
for consideration (in the worst case we have to resend all the tuples but the
oldest one). This is realized as follows:

1 We use a special UDA (the same for all ESL-TS queries), called the
buffer manager. This UDA passes to find pattern set of tuples, as follows.
The last state of the find pattern UDA is checked, and if this is 0 (de-
noting backtracking) then teh buffer manager calls find pattern with the
“required” old tuples. Otherwise, the buffer manager calls the find pattern
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UDA on the current input tuple (which it also stores in buffer since it
might needed later, after backtracking.

2 The buffer manager first sends some old tuples to find pattern, and then
take more tuples from the input and give them to find pattern with the
expectation that this will resume the computation from the state in which
it had left it. Thus buffer manager is reentrant, and remembers the state in
which it was last executed5.

The implementation of the full ESL-TS also supports the star construct,
and aggregates. The ’*’ construct translates to a self-loop in the FSM, and
the find pattern UDA was easily extended to handle such self-loops. Finally
aggregates are supported, by storing an additional column in the Memo for
each aggregate in the query (the .previous is implemented in a similar fashion).
Optimization is discussed in the next section.

The general approach for implementing different FSMs is the same across
all different FSMs, therefore we can automate this translation. The resulting
UDA and ESL query can be used on both static tables and data streams. Fur-
thermore, native SQL optimizations can be applied to both. Figure 1.1 below
illustrates the corresponding FSM.

5. Optimization

The query optimization problems for continuous queries can be very differ-
ent from the relational-algebra driven approach of traditional databases. Finite
state automata based computation models are often used for streaming XML
data [11], while the generalization of the Knuth, Morris and Pratt (KMP) text
search algorithms [18] was proven very effective to mininimize execution cost
of SQL-TS [26]. In ESL-TS, we are extending the KMP algorithm, to optimize
memory utilization, and the execution of concurrent queries.

The KMP algorithm provides a solution of proven optimality [36] for queries
such as that of Example 1.1, which searches for the sequence of three particular
constant values. The algorithm minimizes execution by predicting failures and
successes in the next search from those in the previous search. The algorithm
takes a sequence pattern of length m, P = p1 . . . pm, and a text sequence of
length n, T = t1 . . . tn, and finds all occurrences of P in T . Using an example
from [18], let abcabcacab be our search pattern, and babcbabcabcaabcabcabcacabc

be our text sequence. The algorithm starts from the left and compares succes-
sive characters until the first mismatch occurs. At each step, the ith element
in the text is compared with the jth element in the pattern (i.e., ti is compared
with pj). We keep increasing i and j until a mismatch occurs.

5”last state” means the value in the CurrentState table of the UDA at the end of the last call to the UDA. If
the CurrentState table is outside of the find pattern UDA then the ”last state” can be retrieved from it.
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j, i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ti a b c b a b c a b c a a b c a b c

pj a b c a b c a c a b

⇑

For the example at hand, the arrow denotes the point where the first mis-
match occurs. At this point, a naive algorithm would reset j to 1 and i to 2, and
restart the search by comparing p1 to t2, and then proceed with the next input
character. But instead, the KMP algorithm avoids backtracking by using the
knowledge acquired from the fact that the first three characters in the text have
been successfully matched with those in the pattern. Indeed, since p1 6= p2,
p1 6= p3, and p1p2p3 = t1t2t3, we can conclude that t2 and t3 can’t be equal
to p1, and we can thus jump to t4. Then, the KMP algorithm resumes by com-
paring p1 with t4; since the comparison fails, we increment i and compare t5
with p1:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ti a b c b a b c a b c a a b c a b c

j 1 2 3 4 5 6 7 8 9 10

pj a b c a b c a c a b

⇑

Now, we have the mismatch when j = 8 and i = 12. Here we know that
p1 . . . p4 = p4 . . . p7 and p4 . . . p7 = t8 . . . t11, p1 6= p2, and p1 6= p3; thus,
we conclude that we can move pj four characters to the right, and resume by
comparing p5 to t12.

In general, let us assume that the search has failed on position j of the pattern
and succeeded before that; it is then possible to compute at compile-time the
following two functions (delivering nonnegative integers):

shift(j): this determines how far the pattern should be advanced in the
input, and

next(j): this determines from which element in the pattern the checking
of conditions should be resumed after the shift.

The result is of this optimization is that less backtracking is required, when
shift(j) > 0, and fewer elements of the pattern need to be checked, when
next(j) > 0. Thus with KMP, the complexity of searching for the first occur-
rence of a pattern of length m on a text of length n is is reduce to O(m + n)—
whereas it would be O(m× n) without this optimization [18]. The Optimized
Pattern Search (OPS) algorithm, proposed in [26] represents a significant gen-
eralization of the KMP algorithm in as far as we support:

general predicates, besides the equality predicates of KMP, and
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SQL-TS patterns defined using the star and aggregates, are also fully
supported.

In terms of execution speed, the OPS algorithm delivers orders of magnitude
improvements over the naive search algorithm, and it therefore is being used
in ESL-TS. But, in addition to this, we are using OPS to minimize memory
usage. For, instance, let us return to our previous example, where we observed
that the first search failed at t4. Before that, we had succeeded at t2, and then
t3; now, those successes are sufficient to assure that we could first discard t2
and then t3. Likewise, by the time we reach t12, all the positions before that
in memory can be discarded. This observation is of great practical value in
the case of the star patterns, since a pattern *X can match an input stream of
considerable length. Since ESL-TS only allows users to retrieve the start, the
end, and aggregates functions on *X, we can drop from memory all the X values
as soon as they are scanned.

A final topic of current research in ESL-TS optimization is the interaction
between multiple concurrent queries. Currently, the OPS algorithm is based
on the logical implications between conditions in different phases of the same
query: we are now investigating how to extend our optimization to exploit
implications across conditions of different queries.

6. Conclusion

Time series queries occur frequently in data stream applications, but they are
not supported well by the SQL-based continuous query languages proposed by
most current data stream management systems. In this paper, we have intro-
duced ESL-TS that can express powerful time series queries by simple exten-
sions of SQL. We have also shown that these extensions can be implemented
on top of the basic ESL language—thus demonstrating the power of ESL on
data stream applications and the the benefits of its native extensibility mecha-
nisms based on UDAs. We also discussed optimization techniques for ESL-TS,
and showed that they can be used to minimize execution time and memory for
intra-query and inter-query optimization.
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