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ABSTRA CT 

This paper treats the problem of implementing efficiently recursive Horn Clauses 
queries, including those with function symbols. In particular, the situation is stu- 
died where the initial bindings of the arguments in the recursive query goal can be 
used in the top-down (as in backward chaining) execution phase to improve the 
efficiency and, often, to guarantee the termination, of the forward chaining exe- 
cution phase that implements the fixpoint computation for the recursive query. A 
general method is given for solving these queries; the method performs an analysis 
of the binding passing behavior of the query, and then reschedules the overall exe- 
cution as two fixpoint computations derived as results of this analysis. The first 
such computation emulates the propagation of bindings in the top-down phase; the 
second generates the desired answer by proving the goals left unsolved during the 
previous step. Finally, sufficient conditions for safety are derived, to ensure that 
the fixpoint computations are completed in a finite number of steps. 

1. I n t r o d u c t i o n  

This work is motivated by the belief that an integration of technologies of Logic 
Programming and Databases is highly desirable, and will supply a corner stone of 
future Knowledge Based Systems [P, U2]. Prolog represents a powerful query 
language for database systems, and can also be used as a general-purpose 
language for application development, particularly in the symbolic manipulation 
and expert system areas [Z1]. However, Prolog's sequential execution model and 
the spurious non-logical constructs thus grafted on the language constitute seri- 

ous drawbacks for database applications, since 

t Part of this work was done while this author was visiting at MCC. 
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i) they imply a one-tuple-at-the-time, nested-loop join strategy which is not 

well-suited for parallel processing, and tends to be inefficient when the fact 

base is stored on disk, and 

ii) the programmer must guarantee the performance and the termination of the 
program by carefully ordering rules and goals-- a policy that limits the 
ease-of-use of the language and the data independence of applications writ- 
ten in it. 

Thus, we should move beyond Prolog, to a pure Logic-based language amenable 
to secondary storage and parallel implementation, where the system assumes 
responsibility for efficient execution of correct programs - -  an evolution similar to 
that of databases from early navigational systems to relational ones. Towards 
this ambitions objective, we take the approach of compiling the intentional infor- 
mation expressed as Horn clauses and queries into set-oriented processing primi- 
tives, such as relational algebra, to be executed on the extensional database (fact 
base). This is a simple process for Horn Clauses containing only non-recursive 
predicates with simple variables, inasmuch as these rules basically correspond to 
the derived join-select-project views of relational databases [U1]. Horn clauses, 

however, contain two powerful constructs not found in the Relational calculus: 
one is recursion, that, e.g., entails the computation of closures, the other is gen- 
eral unification that, via the use of function symbols, can be used to support 
complex and flexible structures (not just flat tuples as is relational databases). 
The efficient implementation of these two powerful constructs poses some 
interesting problems [HN, MS, CH, U2, L, BMSU1, SZl, Z2, GD, Vg, Vil. For 
instance, the technique of using the query constants to search the database 
efficiently (pushing selection) is frequently inapplicable to recursive predicates 
[AhUl]. Moreover, the issue of safety, which in relational databases is solved by 
simple syntactic conditions on the query language, here requires a complex 
analysis on the bindings passed upon unification [UV,Z3]. 

This paper studies the problem of implementing safely and efficiently recursive 
Horn clauses in the presence of query constants and thus it introduces a powerful 
technique, called the generalized counting method, that is more effective in deal- 
ing with recursive predicates with function symbols than those previously known 
[HN, U2, BMSU1, BMSU2, SZ1]. 

2. F i x p o i n t  E v a l u a t i o n  of  Recurs ive  Queries  

Take the recursive rule of Figure 1, 
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to: se(x ,y):-  P(y,y,) 
Se(x,x):-  H(x). 

Fig. 1. The same-generation example. 

where P (x ,x 1) is a database predicate describing that  x 1 is the parent of x ,  and 

H (x) is a database predicate describing all humans 1. Then, a query such as: 

GI: SG (x ,y )? 

defines all persons that  are of the same generation. The answer to this query can 
be computed as the least fixpoint of the following function over relations: 

f (SG)= ~r,,1g UTr,,s((P~o=~Sa )E><34=2P )) 

Our function f is defined by a relational algebra expression having as operands 

the constants H and P and the variable SG( H and P denote the database 
relations with respective function symbols H and P and respective arities one 

and two - -  whereas SG is an unknown relation with arity two). Therefore, the 

computation of the least fixpoint can proceed by setting the initial value of SG 
to the empty set and computing f (SG). Then f (SG) becomes the new value 

for SG and this iterative step is repeated until no more tuples can be added to 

SG, which then becomes the answer to the query. Since all goals in a Horn 
clause are positive, the corresponding relational expression is monotonic, w.r.t. 

the ordering on relations defined by set containment. Thus, there exists a unique 

least fixpoint iT1]. The fixpoint computation approach, refined with the 
differential techniques, such as those described in [B, BGK], supplies an efficient 

algorithm for implementing queries with no bound argument. This approach, 
however, becomes inefficient for common queries, such as G 2 below, where argu- 

ments are either constant or otherwise bound to a small set of elements: 

G2: SG (john ,y )7 

This query retrieves all humans of the same generation as "john".  A naive appli- 

cation of the fixpoint approach here implies generating all possible pairs of 
humans in the same generation, to discard then all but those having "john" as 
their first component. Much more efficient strategies are possible; Prolog's back- 

ward chaining, for instance, propagates all the bindings downwards, during the 
top-down phase (from the goal to database), then, during the bottom-up phase, 
performs a fixpoint computation using only those database facts that  were found 

1 A predicate that only unifies with facts will be called a database predicate. By data- 
base relation we mean a set of facts with the same predicate symbol and number of argu- 
ments. 
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relevant in the previous phase. (For the example at hand, the only relevant facts 

are those describing ancestors of "john".) In traditional databases this top-down 

binding propagation strategy corresponds to the well-known optimization tech- 
nique of pushing selection inside the relational algebra expressions. We need here 

to extend and generalize this technique to the case of recursive predicates. The 

importance of the problem considered is underscored by the safety issue for 
"computational" predicates, such as the merge example of Figure 2, which are 
normally defined using both recursion and function symbols. 

r0: MG (x *y ,x :*y l,x *w ):- M a  (y ,x :*y l,w ), x ~_x : 
rl: M G ( x o y , x : . y l , x l o w ) : -  M G ( x e y , y l , w ) ,  x < x :  

r2: MG (nil ,x ,x ) 

r3: MG (x ,nil ,x ) 

Fig. 2. Merging two sorted lists. 

The problem of supporting non-recursive Horn clauses with function symbols was 
studied in [Z2]. Since predicates have structured arguments (for instance the first 

argument in the the head of r 1 in Figure 2 has x and y as subarguments),  an 

Extended Relational Algebra (ERA) was proposed in [Z2l to deal with them. A 
first operator, called extended select-project, entails the selection of subcom- 
ponents in complex arguments (in this particular case where the dot is our (infix) 
function symbol, this operator performs "car" and "cdr" operations on dotted 
lists). The second operator, called a combine, allows one to build complex argu- 
ments from simpler ones (on a dotted list, this corresponds to the "cons" opera- 
tor). Non-recursive Horn clauses can be implemented as ERA expressions [Z2, 
Z3]. Moreover, since functions defined using ERA expressions are still monotonic, 
the basic fixpoint computation approach (bottom-up execution) remains applica- 
ble to predicates with function symbols. 

However, there are safety issues which limit the applicability of the fixpoint 
approach, since Herbrand's universe is infinite when function symbols are 

involved. For instance, the relations representing all possible sets of values for x 
and x I in our rules of Figure 2, are infinite; furthermore even if we restrict these 

variables to a finite set, rules r I and r 2 would generate longer and longer lists at 
each step of the fixpoint computation, which therefore becomes a non-terminating 

one. 

In reality, the potential safety problem previously described are avoided because 
a procedure, such as that  of Figure 2, is only invoked as a goal with certain 
arguments bound, to derive the the unbound ones. Typically for instance, the 

first two arguments are given to derive the third one (or perhaps, the third argu- 
ment is given to generate all the pairs of lists that  merge into this one, or some 
combination of these two situations). This observation also extends to predicates 
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without function symbols; for instance, the same-generation example might be 

written without, the H(x)  goal in the second rule of Figure 1, because of an 

implicit assumption that SG will only be called with some arguments bound - -  

an assumption that better be verified before an relational algebra equivalent can 
be generated for the SG rules. 

In conclusion, an effective usage of the binding information available during the 
top-down phase is vital for performance reasons and to avoid the non-termination 
pitfall. The purpose of this paper is to propose a general framework and efficient 
algorithms to deal with this problem. The basic approach consists of the follow- 

ing steps: 

i) a symbolic analysis of the binding propagation behavior during the top-down 
phase, and using the results of this analysis, 

ii) the computation of special sets (i.e., the counting sets and the supplemen- 
tary counting sets) that actually implement the top-down propagation of 

bound values, 

iii) a modified bottom-up computation that generates the values satisfied by the 
queries. 

The method presented here, is more powerful than methods previously proposed 
in the literature with respect to the treatment of recursive predicates with func- 
tion symbols. For instance, the queries on the MG example of Figure 2, can not 
be handled with the methods proposed in [U2] that  doe not allow for function 
symbols on the right side of rules. 

3. Binding Passing Property. 

In a logic program LP,  a predicate P is said to imply a predicate Q ,  writ- 
ten P ~ Q ,  if there is a rule in LP with predicate Q as the head and predicate 
P in the body, or the exists a P~ where P-+P~ and p t  .._~Q (transitivity). 
Then any predicate P ,  such that P -*P  will be called recursive. Two predicates 

P ,  and Q are called mutually recursive if P---~Q and Q---~P. Then the sets of 
all predicates in LP can be divided into recursive predicates and non-recursive 
ones (such as database predicates). The implication relationship can then be used 

to partition the recursive predicates into disjoint subclasses of mutually recursive 
predicates, which we will call recursive cliques, with their graph representation in 
mind. All predicates in the same recursive clique must be solved together - -  can- 

not be solved one at a time. 

For the LP of Figure 1, SG is the recursive predicate (a singleton recursive 
clique), and H and P are database predicates. However, in the discussion which 
follows, H and P could be any predicate that can be solved independently of 
SG ; thus they could be derived predicates - -  even recursive ones- -  as long that 
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they are not mutually recursive with SG.  Finally, it should be clear that  "john" 

is here used as a placeholder for any constant; thus the method here proposed 

can be used to support any goal with the same binding pattern. 

Formally, therefore, we will s tudy the problem of implementing a query Q that  

can be modeled as triplet < G ,LP ,D > ,  where: 

LP is a set of Horn clauses, with head predicates all belonging to one recursive 

clique, say, C.  

G is the goal, consisting of a predicate in C with some bound arguments. 

D denotes the remaining predicates, in the bodies of the LP-rules, which are 

either non-recursive or belong to recursive cliques other than C.  

The predicates in C will be called the constructed predicates (c-predicates for 

short) and those in D the datum predicates. For instance, if our goal is 

G 2 : S G ( j o h n , x ) ?  on the LP of Figure 1, then SG is our c-predicate (a single- 

ton recursive clique) and P and H are our datum predicates. 

In general, datum predicates are those that  can be solved independently of the c- 

predicates; therefore, besides database predicates they could also include predi- 

cates derived from these, including recursive predicates not in the same recursive 

clique as the head predicates. Take for instance the LP of Figure 2, with goal 

MG (L 1,L2,y )? 

where L 1 and L2 denote arbitrary given lists. Here MG is our c-predicate and 

the comparison predicates ~_ and < are our datums. The < predicate could, for 

instance, s tand for a database predicate (e.g., if there is a finite set of characters 
and their lexicographical order is explicitly stored: a < b, b < c ,  - - • ) or it could 
stand for a built-in predicate that  evaluates to false or true when invoked as a 

goal with both arguments bound, or, with integers defined using Peano's axioms, 

it could be the recursive predicate of Figure 3, 

r0: z < s  (x) .  
r l :  x < s ( y ) : -  x <y. 
Fig. 3. The "less-than" relationship for integers represented using 

the successor notation. 

Exit rules and recursive rules: 

A rule with a recursive predicate R as its head will be called reeursive if its 

body contains some predicate from the same recursive clique as R ;  it will be 

called an exit rule, otherwise. 

For notational convenience, we will always index the recursive rules starting from 

zero, r0, • • • ,rm_l; thus, the total number of recursive rules under consideration 

is always m .  For instance, in Figure 2, r 0 and r I are the recursive rules, while 
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r 2 and r 3 are the exit rules. 

3 .1 .  B i n d i n g  P r o p a g a t i o n  

Da tum predicates  propagate  bindings from the bound arguments  in the heads of 

the rules to a rguments  of the c-predicate occurrences in their  bodies. Let  us, for 

now, say tha t  our  only  da tums  are database  and comparison predicates;  then  the 

binding propagat ion  in a rule r i can be defined as follows. Say tha t  B is a set of 

(bound) variables of ri. Then  the set of variables bound in r i by B will be 

denoted  B +'' (or B + when r i is unders tood)  and is recursively defined as follows: 

i) (basis) 
E ve r y  variable appearing in B is also in B + 

ii) ( induct ion)  

database predicates: If some variable in da tabase  predicate  is bound then  all 

the o ther  variables are bound.  

comparison predicates: If we have an equali ty,  such as x=express ion  or 

expression = x ,  and all the variables in expressions are bound,  then x is 

bound as well. 

Let  P be a predicate  in the body of r i .  Then,  an argument of P will be said to 

be bound when all its variables are bound.  

Say tha t  S denotes  the bound arguments  in the head predicate  of r i and B the 

(bound) variables in these arguments ,  moreover ,  say  tha t  T denotes the set of 

a rguments  bound  by  B in a c-predicate occurrence P ;  then we will say  tha t  r i 

maps the set of bound arguments S of its head, into the set of bound arguments T 

of P .  

Solved Predicates : 
A da tum  predicate  of r i will be said to be solved when all its variables  are 

bound.  

Say for instance tha t  the first a rgument  of SG is bound in Figure 1. Th en  x is 

bound and so is x 1 (via the database predicate P ) .  Thus  in r 0 of Figure  1, the 

bindings propaga te  from SG l to SG t. Thus  P (x ,x l) is a solved predicate  in to,  

whereas P ( y  ,Yl) is not.  H ( x )  is solved in r 1. 

3.2. B inding  Graph  of  a Query 

The  binding graph of a query is a directed graph having nodes of the form p S 

where P is a c-predicate symbol  and S denotes its bound arguments ,  and whose 

arcs are labeled by the pair [r i ,v ], where r i is the index to a recursive rule, and 

v is a zero-base index to c-predicate occurrences in the body of this rule, i.e, 0 

is the index to  the first c-predicate occurrence,  1 to the second one, etc.  ( the zero 
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base is chosen to simplify the counting operations). 

query Q ~ ( G ,LP ,D ~ is constructed as follows: 

i) 

The binding graph MQ for a 

If S is the non-empty set of bound arguments in G,  then G s is the source 

node of MQ, 

ii) If there e x i s t s a n o d e R S  inMQ and there i s a r u l e r  i i n L P  that maps the 

bound arguments of R into the bound arguments T of the v- th  c-predicate 
occurrence and this has symbol P ,  then P T is also node of MQ, and there 
is an arc labeled [rl ,v ] from R s to P r 

Figure 4 shows a binding graph for a query SG 1,2 on the rules of Figure 1, and 
Figure 5 shows the graph for a query MG 1,2 on the rules of Figure 2. 

Let r i be a rule and S be the set of the bound arguments in the head of r i. 
Then we say that  r i is solved by S if all its variables are bound by the variables 

in B s [,.JB¢, where: 

• B s are the bound variables in the head (i.e., those contained in the S-  
arguments), and 

B c are the variables of c-predicates in the body of r i . 

We can now enunciate our key property. 

Binding passing property: 

A query Q will be said to have the binding passing property when the following 
properties hold for each node R s of its binding graph: 

(a) S is not empty, and 

(b) each rule r i such that  the predicate symbol of its head is R ,  is solved by S .  

Thus our examples in Figures 1 and 2, with binding graphs of Figure 4 and 5, 
have the binding passing property. This property guarantees that (a) bindings 
can be passed down to any level of recursion, and that  (b) all predicates in the 
recursive rules can be solved either in the top-down or in the bottom-up execu- 

tion phase. Our binding graph is similar to the rule/goal graph described in [U2] 
and is an extension of the query binding graph presented in [SZl]. 

We point out that  we assume that  the binding is propagated through an 
argument of a c-predicate only if the whole argument is bound. A more detailed 
analysis could consider that  the binding can be also passed through partially 
bound arguments of c-predicates. The binding passing property needs to be 
checked only once for any given binding pattern in the query (e.g., at compile 
time), moreover the following proposition guarantees that  binding graphs can be 

constructed efficiently [SZ3]. 
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PROPOSITION 1. Let Q = <  G ,LP ,D > be a query such that there is a bound 
on the arity of the predicates in LP,  then 

a) The binding graph of Q can be constructed in time polynomial in the size of 
LP. 

b) The binding passing property of Q can be tested in time polynomial in the 

size of LP. 

4. The Generalized Counting Method. 

We now present a method to implement logic queries which have the binding 
passing property defined in the previous section. This method, called the general- 
ized counting method, is an extension of the counting method described in [SZ1] 
for solving a particular class of logic queries without function symbols and 
without comparison predicates. An informal description of the counting method 
was first given in [BMSU1]. 

The generalized counting method recasts a query that is inefficient or unsafe 
to compute in a single fixpoint computation, into a pair of safe and efficient 
fixpoint computations. While this pair could be expressed directly in terms of 
relational algebra [SZ1], reasons of simplicity, expressivity and independence from 
the target implementation language suggest to represent it by recursive rules. 
Thus the generalized counting method can be viewed as a rule rewriting system 
that maps a query Q = <  G ,LP ,D > into an equivalent query 
Q ~ < G ,LP ,D > that can be computed safely and efficiently using the fixpoint 
approach described in Section 2. In LP we find two new sets of rules, called 
counting rules and supplementary counting rules, that  perform the top-down pro- 
pagation of bound values; in addition, we find every rule of LP transformed into 
one or more rules (modified rules) that perform the bottom-up computation of 
the final anwer. 

4.1. Counting and Supplementary Counting Rules 

The overall translation process consists of (i) the generation of counting and 
supplementary counting sets to perform the top-down propagation of bound 
values, and (ii) the modification of the original goal and rules to take advantage 
of the counting sets. 

To generate counting sets, a number of new predicate symbols are introduced, 
one for each node of the binding graph MQ of Q.  Thus, for each node R s  we 

introduce a new predicate cnt.R s with IS  1+3 arguments. Thus, there is an 
argument for each bound argument in the head of the original rule, plus three 
additional integer arguments respectively recording (i) the level of the recursive 
call, (ii) the recursive rule used and (iii) the c-predicate occurrence used in the 
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G: SG(a, b)? 

LP: r0: SG(x, y):-P(x, Xl),P(y, yl),SG(x1, Yl) 

rl: SG(x, x):- H(x). 

Binding Graph 

 [ro, o] 

Counting Rules: 

cnt.SG1.2 (0, 0, 0, a, b). 

cnt.SG1.2 (j+l, l 'k+0, l 'h+0, Xl, Yl):- cnt.SG1.2 (j, k, h, x, y), P(x, Xl), P(y, Yl). 

Supplementary Rules: None 

Modified Rules and Goal: 

SG1.2 (j-l, (k-0)/1, h/l) :-SG1.2 (j, k, h). 

SGI,2 (j, k, h) :- cnt.SGI,2 (j, k, h, x, x), H(x). 

G : SG1,2 (0, 0, 0)? 

Figure 4. The Same Generation Example for G: SG(a,b)? 
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body of the rule. 

Exi t  Coun t ing  Rules :  

The first counting rule is generated by tile source node in M Q ,  say p S  

which corresponds to the query goal. Say that the query goal has n----IS I >1  

bound arguments with respective values a 1, " " " ,an .  Then we add the following 

clause for the counting set: 

c n t . P  s (O,O,O,a l, ' " ' ,an). 

R e c u r s i v e  Coun t ing  Rules :  

There is a recursive counting rule for each arc in MQ 

labeled [r i iv ] from node R s to node P r ,  we add the rule 

c n t . P T ( j + l , r a X k + i , p × h + v , y t , "  ' " ,Y t ) : -  
c n t . R S ( j , k , h , x l , ' ' ' , x n ) ,  Q I ,  

where: 

i) 
ii) 

iii) 
iv) 

as follows: for an arc 

• . , , Q q  

xl,  • • - , x n  are the bound arguments in the head o f r  i (i.e., those i n S ) ,  

Y t, " " " ,Yt are the bound arguments in the v- th  c-predicate of r i (i.e., those 

in T),  

Q 1, " " " ,Qq are the predicates of r i ,  solved for bound arguments S .  

j ,  k and h are the running indices, while m and p are constants character- 

ized as follows: 
m is the total number of recursive rules, 

p denotes the total number of c-predicates in the body of r i .  

It should be clear, that  in tile rule above we have taken liberties with the nota- 

tion by representing operations on indexes directly by their arithmetic expression 

rather than introducing new goals, such as , , j l  is j + l  ", "k I is m × k + i "  and 

"h ~ is p Xh +s  ", and then writing the head as 

c n t . p T ( j  I , Ikl , hI  ,Yl, " " ' ,Yl), as required, say, in Prolog. But we have used 

this more concise notation since it is suggestive of the counting operations to be 

performed during the fixpoint computation. 

Informally described, the counting rules are constructed by eliminating all 

unbound arguments and unsolved datum predicates, exchanging the a c-predicate 

in the body with that  in head, and adding tim two indexes. Note that,  while 

there are as many counting rules as arcs in the graph, there are only as many 

counting predicates as there are nodes - -  see Figure 5 for an example. 

In the top-down generation of the counting sets we often generate values that are 

needed in the successive bottom-up computation. For instance, in the merge 

example of Figure 2, we generate the values of x in rule r 0 and those of x 1 in r t; 
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since these will not be part of the c-predicates in the modified rules, they must be 

saved for later use in the bottom-up phase. The supplementary rules provide the 

means to this end. 

S u p p l e m e n t a r y  C o u n t i n g  Variables." 

Consider u node R s  in MQ. In MQ, there is arc labeled [ri,v 1 out of R s for 

each occurrence of a c-predicate in the body of r~. Say that  

a) B + denotes the set of the variables bound in r i by the (bound) variables in 

the S-arguments  of the head of r i , 

b) V U denotes the set of all variables either appearing in unsolved predicates of 

r i ,  or in unbound arguments of the head of r i (i.e., those not in S ) 

c) V c the set of variables appearing in some unbound arguments of a c- 

predicate in the body of r i ,  

then we need to save the values of every variable in Vg N B + ,  but those in V c 

whose values are recomputed in the bottom-up computation anyway (see 

modified rules). Thus we need to keep the values of all variables in 

V s p = - - . ( B + F ~ V u ) - V  c ,  which will be called the set of s u p p l e m e n t a r y  c o u n t i n g  

var iab les .  For rules where Vsp is empty there is no need for a supplementary 

counting set. Such is the case for the S G  example of Figure 4. 

Consider however the example of Figure 5. For rule r 0 we have B + - -  - 

{x ,y ,x 1,Y 1}, while V U - - { x  }. Since V c - ~ . { w  }, the set of supplementary count- 

ing variables is Vsp -~{x }. Likewise for r 1, the only supplementary counting vari- 

able is x 1. 

S u p p l e m e n t a r y  C o u n t i n g  R u l e s :  

Then we can add the supplementary counting rules, one for each bundle of arcs 
labeled with the same rule out of a node for which the set of supplementary 

counting variables is not empty. If r i is the rule labeling a bundle leaving, say, 

node R s ,  then, using the counting rule for R s , we write: 

s p e n t . r  i . R  s ( j  ,k  ,h , z  l ,  . " " ,zt ) : -  c n t . R  S ( j  , k  ,h ,x  l, . " " ,xn ), Q I, " " " ,Qq 

where, 

i) xl ,  • • • , xn denote the bound arguments in the head of r i (i.e., these in 

S), 
ii) z 1, " " " ,zt  are the supplementary counting variables. 

iii) Q 1, " " " ,Qq are the predicates of r i ,  solved for bound arguments S .  

For an example see Figure 5. 
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G : MG(L1, L2, W)? 

LP: 
r0: MG(xoy, x l -y l ,  x°w) :- MG(y, xl°yl ,  w), x > xl. 

r l :  MG(xoy, xloyl,  xl°w) :- MG(xoy, Yl, w), x < Xl. 

r2: MG(nil, x, x). 

r3: MG(x, nil, x). 

Binding Graph 

[r0, 0l 

Counting Rules: 

cnt.MG1, 2 (0, 0, 0, L1, L2). 

[rl, 0] 

ent.MG1.2 (j+l, 2*k+0, l*h+0, y, xloyl) :- cnt.MG1, 2 (j, k, h, x°y, xloyl),  x > Xl. 

cnt.MG1,2 0+1, 2°k+1, l°h+0, x°y, Yl) :- cnt.MG1.2 (j, k, h, xoy, x l°yl ) ,  x < Xl. 

Supplementary Counting Rule: 

spent.MG1.2.r0 (j, k, h, x) :- cnt.MG1,2 (j, k, h, x°y, xloyl),  x > xl.  

spcnt.MG1,2.rl (j, k, h, xl) :- cnt.MG1.2 (j, k, h, x°y, xl 'Yl),  x < Xl. 

Modified Rules and Goal: 

MG1,2 0-1,  (k-0)/2, h/l ,  x .w):-  spcnt.MG1,2.ro(j-1, k/2, h, x), MG1,2(j, k, h, w). 

MG1.2 (j- l ,  (k-1)/2, h/l ,  Xl°W):- spcnt.MG1,2.rl(j-1, (k-1)/2, h, Xl), MG1,2(j, k, h, w) 

MG1,2 (j, k, h, x) :- cnt.MG1,2 (j, k, h, nil, x). 

MGL2 (j, k, h, x) :-  cnt.MG1.2 (j, k, h, x, nil). 

G : MGL2 (0, 0, 0, w)? 
Figure 5. The List Merge Example 
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4.2. Modif ied Rules  

M o d i f i e d  R e c u r s i v e  R u l e s :  

A number  of new predicate  symbols are in t roduced,  one for each node in M Q ,  to 

replace the c-predicate symbols  in L P .  For  each node in M Q ,  there  are as m an y  

modified rules as there  are bundles of arcs f rom the node labeled with the same 

rule. Thus ,  let R s be a node in M Q  and r i be the label of a bundle of arcs leav- 

ing R s ;  then,  we in t roduce  the following rule (again we take liberties wi th  the 

no ta t ion  by  denot ing wi th  k - i / m  an integer  division tha t  succeds only  if the 

W 1 ,  • - • ,Wq. 

remainder  is zero): 

R S ( j - l  , ( k - i ) / m  , h i p  , u l ,  " " " , u n )  : -  

s p c n t . R  S .r  i ( j _ l , ( k _ i  ) / m  ,h / p  ,z  , ,  . • . , z  t ), t 5 o , "  ' • , /hp-1, 

where: 

i) u 1, • • • , u,~ are the unbound  arguments  in the head of r i (i.e., those t h a t  

do N O T  belong to S ) ,  

ii) s p c n t . R  s .r  i ( j _ l , ( k _ i  ) / m  , h / p  ,z  1, " " " ,z t  ) is the supp lemen ta ry  count ing  

predicate ,  if any, with z l, ' " ' ,zt ,  t ~>0 sup p l em en ta ry  counting variables.  

iii) W l ,  • • • , W q  are the predicates of r i ,  N O T  solved for bound  a rguments  S .  

iv) / 5 0 , ' ' '  ,/hp-i are the modified c-predicate occurrences  in the body of  r i ,  

cons t ruc ted  as follows. Say tha t  there is an arc labeled [ r ; ,v]  f rom R s to 

p T,  and x 1, " " " ,xl are the unbound  a rguments  in the v - t h  predicate  of r i 

(i.e., those N O T  in T ) ,  then  

/hv = P  T ( j  , k  ,h + v  ,x  l, " " " ,xt ). 

v) j ,  k and h are the running indices, while m ,  i and p are cons tants  respec- 

t ively denot ing the  total  number  of recursive rules, the index of the  rule 

labeling the arc, and the total  number  of c-predicates  in the body  of this 

rule. These  indexing operat ions  reverse those per formed when building the 

count ing sets. 

In o the r  words,  one has to take the original rule r i , e l iminate all solved var iables  

and bound predicates ,  add the three indexes (af ter  sui table indexing operat ions)  

in each c-predicate ,  and, finally, add the the supp lemen ta ry  count ing predicates ,  

if any. In addi t ion  to the modified recursive rules so genera ted  we need some 

modified exit rules. 

M o d i f i e d  E x i t  R u l e s :  

Say tha t  R s is a node of M o and there is each exit rule r i wi th  head predicate  

R .  T he n  we add the following modified exit rule: 

R S ( j , k , h , u l ,  " ' ' , a n ) : -  c n t . R S ( j , k , h , x l ,  " " " , x t ) ,  W l ,  " " ' , W q .  
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where: 

i) u I, • • • , un are tile unbound arguments in tile head of r i (i.e, those which 

do NOT belong to S ), 

ii) cnt .RS ( j , k , h , x l ,  " " " ,xt) is the counting predicate, with x l ,  " " " ,xt the 

bound arguments in r i 's  head. 

iii) W i , '  • . ,Wq are the predicates in the body o f r  i. 

Thus the exit rules are generated by replacing the bound predicates in the 

head by the indexes and then adding the counting set to the body of the rule. 

Modified Goal: 

If /5 is the original query goal with bound arguments S and predicate symbol P ,  
then let x l , .  • . , x  n denote tile unbound arguments (i.e., those not in S).  Then, 

the modified query goal is 

P ( 0 , 0 , 0 ,  x 1, " " ' , z .  ) . e  

It thus follow that  the fixpoint computation of the modified rules should be 
stopped after zero values are generated for the indices. 

Figure 6 illustrates the application of the method to the a situation involving 
mutually recursive predicates and more than one c-predicate in the body of a 

recursive rule (non-linear rule). 

4.3. P r o p e r t i e s  o f  t h e  G e n e r a l i z e d  C o u n t i n g  M ethod .  

From a formal viewpoint the Generalized Counting Method can be viewed as a 
rule rewriting system. In this framework, both the original set of Horn Clauses 
and the modified one have a pure fixpoint-based semantics that defines the sets of 
answers satisfying the query [VK] (arithmetic predicates can be treated in this 
framework as being defined by infinite comparison relations over complex arith- 

metic terms [Z3]). Then we can prove tile following basic result [SZ3]: 

TItEOREM 1. Let Q--~< G , L P , D  > be a query that has the binding passing 

property. If  Q ~ <  G , LP , D  > denotes the modified query produced by the gen- 

eralized counting method, then Q and Q compute the same answer. 

(Note however, that  in the theorem above, the answer to both queries could be 
infinite, a problem treated in Section 5.) 

From a computational viewpoint, the generalized counting rules prescribe an 
abstract computation plan having some desirable performance characteristics. 

First of all, counting and modified rules can be generated efficiently: 

PROPOSITION 2. Let Q ~ - <  G ,LP ,D > be a query such that Q has the bind- 

ing passing property and there is a bound on the arity of the predicates in L P .  

Then the generalized counting method constructs the modified query 



P and Q. 

G : P(a, y)? 

LP : r0: P(x, y) :- Bl(x, X1), Q(x1, y), BZ(x, x2), Q(x2, y), B3(y, z). 

rl: Q(x, y) :- B4(x, z), P(z, y). 

r2: P(x, y) :- BS(x, y). 

A recursive clique of two mutually recursive predicates: 

Binding Graph: 

 [ro, ol 

Counting Rules: 

cnt.P1 (0, 0, 0, a). 
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cnt.Q1 0+1, 2*k+0, 2*h+0, xl):-  cnt.P1 (j, k, h, Xl), Bl(x, Xl), B2(x, x2).(from [ro, 0] 

cnt.Q1 0+1, 2*k+0, 2°h+1, x2):- cnt.P1 0, k, h, x), Bl(x, Xl), B2(x, x2). (from [r0, 1] 

cnt.P1 0+1, 2°k+1, l*h+0, z):- cnt.Q1 0, k, h, x), B4(x, z). (from [rl, 01 

Supplementary Rules: None 

Modified Rules and Goal: 

p1 0-1, (k-0)/2, h/2, y):- 0i 0, k, h, y), 01 0, k, h+l, y), B3(y,z). 

Ol 0-I, (k-I)/2, h/l, y):- PI (j, k, h, y). 

p1 (j, k, h, y ):- cnt.P1 0, k, h, x), B5(x, y). 

G :p1 (0 ,0 ,0 ,  y)? 
Figure 6. Francois' Example 
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~- < G ,LP ,D > in time polynomial in the size of LP. 

As today, we still lack a general fl'amework that allows us to characterize the 
performance of the various methods proposed for the compilation of recursive 
predicates. However, a clear understanding of the behavior of these methods has 
emerged from the study of typical examples [BR]. These examples strongly sug- 
gest that the counting method is superior to the others (in terms of database 
accesses and computational steps required), particularly in situations that do not 
require the elimination of duplicates. Thus, the method is ideally suited for situa- 
tions involving function symbols, where a new term is generated at each step in 
the fixpoint computations (either by adding some level of nesting in the structure 
or by removing some). Recursive predicates such as appending two lists, extract- 
ing all the elements of a list, searching and manipulating tree structures, etc., 
are ideal candidates for the generalized counting method. 

Our confidence in the ability of the generalized counting method to deal with 
reeursive predicates with function symbols is reinforced by the authors' experi- 
ence with Prolog and the observation that the generalized counting can be imple- 
mented to emulate Prolog very closely. To illustrate this point let us consider 
the two fixpoint computation prescribed by the generalized counting method. A 
possible implementation strategy consists of computing all counting set and sup- 
plementary counting sets values, before going into the fixpoint computation of 
the modified rules (a strategy similar to that used in implementing magic sets 
[BMSU1, BMSU2, SZ2]). However, a modified exit rule with a certain index value, 
can be fired as soon as the counting set value for that  particular index value is 
obtained. Assuming that no duplicate elimination is needed, the overall strategy 
then becomes quite similar to that of Prolog (and also to that of [HN]). However, 
the generalized counting method also allows for massive joins since it does not 
imply a one-tuple-at-the-time join strategy, and the top-down binding propaga- 
tion is independent from the ordering of rules and goals. 

4.4. Simplif ications and Extensions.  

A number of simplifications of the overall generalized counting method can be 
introduced to deal with various subcases. 

Single Recursive Rule: 
When there is a single recursive rule, the second index remains constant and can 
be eliminated (see for instance Figure 4). 

Single e-predicate in the rule bodies: 
When there is a single c-predicate in the body of every rule, the third index 
remains constant and can be eliminated (see Figure 4). 

Shared Solved Predicates 
Counting rules and supplementary counting rules might share the same solved 



48 

predicates. For instance, in Figure 5, the comparison predicates are evaluated in 

both the counting rules and in the supplementary counting ones; this duplicate 

work could be eliminated. A general solution to this problem consists in intro- 
ducing an allcnt predicate that computes both the bound arguments and the 
supplementary counting variables [SZ3]. Then, the counting and special counting 

predicates can simply be derived from the allcnt by projecting out variables not 
needed in the specific case. 

Arbitrary Datum Predicates. 
As previously mentioned, datum predicates need not be restricted to database 
and comparison predicates; all is required is that  these predicates can be solved 
independently of the recursive clique under consideration. For instance, the tech- 
nique presented in [Z31 can be used to deal effectively with non-recursive rules, 
possibly containing function symbols. Said technique provide a a generalization of 
the binding propagation rules described in Section 3.1. 

Let us now turn to the problem of determining whether  reeursive predicates (not 
in the same recursive clique as our c-predicates), can be used as solved datum 
predicates. This tantamounts  to determining whether the corresponding goal in 
the rule can be solved for the given set of bindings. To this end, we can apply the 
known techniques for solving recursive predicates, in particular the generalized 
counting method described here. Take for instance a query G: MG (L 1,L2,X), 
defined against a LP consisting of the rules of Figure 2 and 3 combined. Then, in 
order to solve this query, we will also have to solve the goal G 2: C i <  C2, where 
C 1 and C 2 stand for arbitrary constants. Thus we get the modified set of rules of 
Figure 7 (since we only have one recursive rule we only use one index). 

Finally, we need to link the rules of Figure 7 with the last counting rule of Figure 
5. This can, for instance, be accomplished by redefining the goal x < x  1 of Figure 

5 as follows: 

x < S l : - a s s e r t ( c n t .  <"2(x ,x l ) ) ,  <1'2(0). 

(This is a rather coarse solution, presented here only as a quick illustration on 
how things could function; more refined solutions will be given in future reports.) 

Trivial Modified Rules 

It is easy to see that  the only function of the modified recursive rule in Figure 7, 
is to decrement the index to zero one step at the time. We can thus dispense with 
this rule and write a new modified goal: 

: c . t .  < 1 o_(_ ,x ,s 

We have thus eliminated the second fixpoint computation (tail recursion); more- 
over, we can also drop the index from the counting set computation. 



49 

G: C1 <C27 

LP: 

to: x < s ( y ) : -  z <y. 
r l :  x < s  (x). 

Binding Graph 

~ r  o,0] 

Counting rules: 
cut. < 1,2(O,C 1,C 2) 
cnt. < 12(j + l , x  ,y ):- cnt .< ,,2(j ,x ,s (y )) 

Supplementary Counting rules: None. 
Modified Rules and Goal: 

<, ,2( j  ):_ ont. <1,2(/ ,  x ,s (x)). 
< 1,2(j_1): - < 1,2(j ). 

U: <',2(0) ¢ 

Fig. 7. Implementation of lhe "less-than" rules of Figure 3. 

Symmetrically, it easy to identify many situations where the counting set compu- 
tation becomes trivial and can be eliminated. Therefore, the counting method 
also supplies a good framework for identifying simple cases where recursive 
queries with constants can be implemented safely and efficiently by a single 
fixpoint [AhUl]. 

5. Safety of Queries 

A safe query is one that generates only a finite number of answers. Safety for 
reeursive queries with function symbols is undecidable; thus the best a person can 
do is to provide sufficient conditions that cover the cases of practical interests. 
Our domain of interest consists of recursive queries having the binding passing 
properties for which we want to ensure that the our methods terminate. Note 
that the generalized counting method recasts the original query Q into two 
fixpoint computations: whenever both these computations terminate in a finite 
number of steps, we will say that the generalized counting method is safe w.r.t, to 
the query Q. 

The following property follows immediately from the definitions: 

PROPOSITION 3. The generalized counting method is safe w.r.t, a query having 
the binding passing property if and only if the counting set fixpoint computation 
converges in a finite number of steps. 
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We will now assume that our c-predicates are either database predicates or com- 

parison predicates (including equality). 

We now give a sufficient condition for the generalized counting method to be 

safe, which appears to cover most of the situations of practical interest. 

Term Length 
The length of a term t denoted I t I is defined as follows: 

(a) i f t  is a constant, then I t  I----1, 

(b) if t = /  ( t l ,  " " " ,tk ), then { t { ---- ] t l  l + " " " + l tk ]+1 .  

This definition allows to determine the length of constant terms. When the terms 
contain variables, then we can express the length of the term in function of those 

of the variables. For instance I x*x [ ~ - [ x  [ + { x  l + l = 2 l x  I+1  In general, 
there is no information on the actual length of x ,  except that I x I >_1. Thus 

Ix.x I>_a. 
The length of a set of terms S is the sum of the length of all terms in S .  For 

instance the length of the bound arguments (i.e., x * y , x l * y l )  in rule r 0 of the 

M G  example in F i g u r e 5 i s  Ix  I + I Y  I + { x l [ + ] Y l l + 2 "  

Arc Length Balance. 
Let (R s ,p  r )  be an arc in the binding graph with label [ri ,v ]. The length bal- 
ance associated with this arc is defined as difference between the length of the 
bound arguments in the head of r i (i.e., those denoted by S )  and the length of 

the bound arguments of the v-th c-predicate in the body (i.e., the arguments 
denoted by T) .  For  instance the length balance for the arc labeled [r0,0 ] in the 

binding graph of Figure 5 is: 

( Ix l+ [y  I+lx, l+ly,l+2)-(ly I+lx, i+ly,[+l)----Ix [+l. 
A lower-bound of the arc length balance can be obtained by replacing.the length 
of the variables by the lower bound of their length if the coefficient is positive, or 
by the upper bound if the coefficient is negative. For instance, in the previous 

example, a lower bound of the arc length balance is 2, since the variable x has 

length one or greater. 

Cycle Length Balance. 
Given a cycle of the binding graph, the length balance associated to it is defined 
as the sum of the length balances of its arcs. A lower bound of the cycle length 
balance can be obtained as the sum of the lower bounds of the arc length bal- 

ances. 

THEOREM 2. I f  the the length balance associated with every cycle in the binding 
graph of a query is positive, then the fixpoint computation of the counting sets 

converges in a finite number of steps. 
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Thus, tile examples in Figures 5 and 7 are sale. While Theorem 2 is very useful 

for determining the safety of recursive predicates with function symbols, includ- 
ing typical situations, such as appending two lists and searching and manipulat- 
ing trees and lists, there are many situations where more elaborated or com- 

pletely different techniques must be used. 

For instance, if the are length balance computed over all bound arguments is not 
positive, one may try to find a subset of the bound arguments for which it is 
(also a sumeient condition for safety). Often, the cycle length balance depends 
upon the lengths of variables, which is in turn determined by other predicates 
(including recursive ones). An interesting technique to deal with some of the more 

complex situations is given in [UIVg]. For variables that  belong to some database 
predicate, it is often reasonable to assume that  their length is one. This addi- 

tional assumption enables one to infer the safety of the counting method applied 
to the following example, where Q is a database relation with no function sym- 
bols in the second column: 

P (b .b .x  )? 

P (b .b .x  ):-Q (x ,y ),P (x .y  ). 

P(b). 

Finally, there are situations such as those of examples of Figure 4 and 6, where 

all the solved predicates are database predicates, and the are balance is null. 
Therefore, there is no a priori assurance that duplicates cannot occur in the com- 
putation of the counting sets. Even for these situations, if the underlying data- 
base is known to be acyclic, the generalized counting method remains safe and 
efficient [SZ1]. When the acyclicity of the underlying database cannot be 
guaranteed, two solutions are possible. The first is to use methods such as the 
magic set [BMSU1] and minimagic method [SZ2], that have a built-in check for 
and elimination of duplicates. The second approach consists of starting with the 
computation of generalized counting sets while checking for duplicates. If dupli- 
cates show up then one will fall back on the standard counting method. This 
hybrid approach, known as magic counting is described in [SZl]. 

6. C o n c l u s i o n  

We have presented a new method, named generalized counting, that  is very 
emcient [BR] and appears particularly useful in dealing with recursive rules con- 

taining function symbols. The method implements recursive queries by two 
fixpoint computations. The first propagates the initial bindings into the recumive 
loop, while tile second solves the remaining goals and constructs the desired 

answer. The method is applicable to arbitrary recursive predicates, including 
those featuring mutual recursion and non-linear recumion. 
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The paper also discussed the application of the method to solve nested recursive 
predicates. A sufficient condition for the finiteness of the fixpoint computations 
was finally given; although quite simple, this condition seems adequate for many 
common cases involving recursive predicates with function symbols. It thus 
appears that the generalized counting method provides a very valuable tool 
towards compiling pure logic programs with good performance and an a-priori 
guarantee of termination. 
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