
The Generalized Counting Method
for Recursive Logic Queries

Domenico Saccd t

CRAI, Rende, Italy

Carlo Zaniolo

MCC, Austin, Texas, USA

ABSTRA CT

This paper treats the problem of implementing efficiently recursive Horn Clauses
queries, including those with function symbols. In particular, the situation is stu-
died where the initial bindings of the arguments in the recursive query goal can be
used in the top-down (as in backward chaining) execution phase to improve the
efficiency and, often, to guarantee the termination, of the forward chaining exe-
cution phase that implements the fixpoint computation for the recursive query. A
general method is given for solving these queries; the method performs an analysis
of the binding passing behavior of the query, and then reschedules the overall exe-
cution as two fixpoint computations derived as results of this analysis. The first
such computation emulates the propagation of bindings in the top-down phase; the
second generates the desired answer by proving the goals left unsolved during the
previous step. Finally, sufficient conditions for safety are derived, to ensure that
the fixpoint computations are completed in a finite number of steps.

1. I n t r o d u c t i o n

This work is motivated by the belief that an integration of technologies of Logic
Programming and Databases is highly desirable, and will supply a corner stone of
future Knowledge Based Systems [P, U2]. Prolog represents a powerful query
language for database systems, and can also be used as a general-purpose
language for application development, particularly in the symbolic manipulation
and expert system areas [Z1]. However, Prolog's sequential execution model and
the spurious non-logical constructs thus grafted on the language constitute seri-

ous drawbacks for database applications, since

t Part of this work was done while this author was visiting at MCC.

32

i) they imply a one-tuple-at-the-time, nested-loop join strategy which is not

well-suited for parallel processing, and tends to be inefficient when the fact

base is stored on disk, and

ii) the programmer must guarantee the performance and the termination of the
program by carefully ordering rules and goals-- a policy that limits the
ease-of-use of the language and the data independence of applications writ-
ten in it.

Thus, we should move beyond Prolog, to a pure Logic-based language amenable
to secondary storage and parallel implementation, where the system assumes
responsibility for efficient execution of correct programs - - an evolution similar to
that of databases from early navigational systems to relational ones. Towards
this ambitions objective, we take the approach of compiling the intentional infor-
mation expressed as Horn clauses and queries into set-oriented processing primi-
tives, such as relational algebra, to be executed on the extensional database (fact
base). This is a simple process for Horn Clauses containing only non-recursive
predicates with simple variables, inasmuch as these rules basically correspond to
the derived join-select-project views of relational databases [U1]. Horn clauses,

however, contain two powerful constructs not found in the Relational calculus:
one is recursion, that, e.g., entails the computation of closures, the other is gen-
eral unification that, via the use of function symbols, can be used to support
complex and flexible structures (not just flat tuples as is relational databases).
The efficient implementation of these two powerful constructs poses some
interesting problems [HN, MS, CH, U2, L, BMSU1, SZl, Z2, GD, Vg, Vil. For
instance, the technique of using the query constants to search the database
efficiently (pushing selection) is frequently inapplicable to recursive predicates
[AhUl]. Moreover, the issue of safety, which in relational databases is solved by
simple syntactic conditions on the query language, here requires a complex
analysis on the bindings passed upon unification [UV,Z3].

This paper studies the problem of implementing safely and efficiently recursive
Horn clauses in the presence of query constants and thus it introduces a powerful
technique, called the generalized counting method, that is more effective in deal-
ing with recursive predicates with function symbols than those previously known
[HN, U2, BMSU1, BMSU2, SZ1].

2. F i x p o i n t E v a l u a t i o n of Recurs ive Queries

Take the recursive rule of Figure 1,

33

to: se(x ,y):- P(y,y,)
Se(x,x):- H(x).

Fig. 1. The same-generation example.

where P (x ,x 1) is a database predicate describing that x 1 is the parent of x , and

H (x) is a database predicate describing all humans 1. Then, a query such as:

GI: SG (x ,y)?

defines all persons that are of the same generation. The answer to this query can
be computed as the least fixpoint of the following function over relations:

f (SG)= ~r,,1g UTr,,s((P~o=~Sa)E><34=2P))

Our function f is defined by a relational algebra expression having as operands

the constants H and P and the variable SG(H and P denote the database
relations with respective function symbols H and P and respective arities one

and two - - whereas SG is an unknown relation with arity two). Therefore, the

computation of the least fixpoint can proceed by setting the initial value of SG
to the empty set and computing f (SG). Then f (SG) becomes the new value

for SG and this iterative step is repeated until no more tuples can be added to

SG, which then becomes the answer to the query. Since all goals in a Horn
clause are positive, the corresponding relational expression is monotonic, w.r.t.

the ordering on relations defined by set containment. Thus, there exists a unique

least fixpoint iT1]. The fixpoint computation approach, refined with the
differential techniques, such as those described in [B, BGK], supplies an efficient

algorithm for implementing queries with no bound argument. This approach,
however, becomes inefficient for common queries, such as G 2 below, where argu-

ments are either constant or otherwise bound to a small set of elements:

G2: SG (john ,y)7

This query retrieves all humans of the same generation as "john". A naive appli-

cation of the fixpoint approach here implies generating all possible pairs of
humans in the same generation, to discard then all but those having "john" as
their first component. Much more efficient strategies are possible; Prolog's back-

ward chaining, for instance, propagates all the bindings downwards, during the
top-down phase (from the goal to database), then, during the bottom-up phase,
performs a fixpoint computation using only those database facts that were found

1 A predicate that only unifies with facts will be called a database predicate. By data-
base relation we mean a set of facts with the same predicate symbol and number of argu-
ments.

34

relevant in the previous phase. (For the example at hand, the only relevant facts

are those describing ancestors of "john".) In traditional databases this top-down

binding propagation strategy corresponds to the well-known optimization tech-
nique of pushing selection inside the relational algebra expressions. We need here

to extend and generalize this technique to the case of recursive predicates. The

importance of the problem considered is underscored by the safety issue for
"computational" predicates, such as the merge example of Figure 2, which are
normally defined using both recursion and function symbols.

r0: MG (x *y ,x :*y l,x *w):- M a (y ,x :*y l,w), x ~_x :
rl: M G (x o y , x : . y l , x l o w) : - M G (x e y , y l , w) , x < x :

r2: MG (nil ,x ,x)

r3: MG (x ,nil ,x)

Fig. 2. Merging two sorted lists.

The problem of supporting non-recursive Horn clauses with function symbols was
studied in [Z2]. Since predicates have structured arguments (for instance the first

argument in the the head of r 1 in Figure 2 has x and y as subarguments), an

Extended Relational Algebra (ERA) was proposed in [Z2l to deal with them. A
first operator, called extended select-project, entails the selection of subcom-
ponents in complex arguments (in this particular case where the dot is our (infix)
function symbol, this operator performs "car" and "cdr" operations on dotted
lists). The second operator, called a combine, allows one to build complex argu-
ments from simpler ones (on a dotted list, this corresponds to the "cons" opera-
tor). Non-recursive Horn clauses can be implemented as ERA expressions [Z2,
Z3]. Moreover, since functions defined using ERA expressions are still monotonic,
the basic fixpoint computation approach (bottom-up execution) remains applica-
ble to predicates with function symbols.

However, there are safety issues which limit the applicability of the fixpoint
approach, since Herbrand's universe is infinite when function symbols are

involved. For instance, the relations representing all possible sets of values for x
and x I in our rules of Figure 2, are infinite; furthermore even if we restrict these

variables to a finite set, rules r I and r 2 would generate longer and longer lists at
each step of the fixpoint computation, which therefore becomes a non-terminating

one.

In reality, the potential safety problem previously described are avoided because
a procedure, such as that of Figure 2, is only invoked as a goal with certain
arguments bound, to derive the the unbound ones. Typically for instance, the

first two arguments are given to derive the third one (or perhaps, the third argu-
ment is given to generate all the pairs of lists that merge into this one, or some
combination of these two situations). This observation also extends to predicates

35

without function symbols; for instance, the same-generation example might be

written without, the H(x) goal in the second rule of Figure 1, because of an

implicit assumption that SG will only be called with some arguments bound - -

an assumption that better be verified before an relational algebra equivalent can
be generated for the SG rules.

In conclusion, an effective usage of the binding information available during the
top-down phase is vital for performance reasons and to avoid the non-termination
pitfall. The purpose of this paper is to propose a general framework and efficient
algorithms to deal with this problem. The basic approach consists of the follow-

ing steps:

i) a symbolic analysis of the binding propagation behavior during the top-down
phase, and using the results of this analysis,

ii) the computation of special sets (i.e., the counting sets and the supplemen-
tary counting sets) that actually implement the top-down propagation of

bound values,

iii) a modified bottom-up computation that generates the values satisfied by the
queries.

The method presented here, is more powerful than methods previously proposed
in the literature with respect to the treatment of recursive predicates with func-
tion symbols. For instance, the queries on the MG example of Figure 2, can not
be handled with the methods proposed in [U2] that doe not allow for function
symbols on the right side of rules.

3. Binding Passing Property.

In a logic program LP, a predicate P is said to imply a predicate Q , writ-
ten P ~ Q , if there is a rule in LP with predicate Q as the head and predicate
P in the body, or the exists a P~ where P-+P~ and p t .._~Q (transitivity).
Then any predicate P , such that P -*P will be called recursive. Two predicates

P , and Q are called mutually recursive if P---~Q and Q---~P. Then the sets of
all predicates in LP can be divided into recursive predicates and non-recursive
ones (such as database predicates). The implication relationship can then be used

to partition the recursive predicates into disjoint subclasses of mutually recursive
predicates, which we will call recursive cliques, with their graph representation in
mind. All predicates in the same recursive clique must be solved together - - can-

not be solved one at a time.

For the LP of Figure 1, SG is the recursive predicate (a singleton recursive
clique), and H and P are database predicates. However, in the discussion which
follows, H and P could be any predicate that can be solved independently of
SG ; thus they could be derived predicates - - even recursive ones- - as long that

36

they are not mutually recursive with SG. Finally, it should be clear that "john"

is here used as a placeholder for any constant; thus the method here proposed

can be used to support any goal with the same binding pattern.

Formally, therefore, we will s tudy the problem of implementing a query Q that

can be modeled as triplet < G ,LP ,D > , where:

LP is a set of Horn clauses, with head predicates all belonging to one recursive

clique, say, C.

G is the goal, consisting of a predicate in C with some bound arguments.

D denotes the remaining predicates, in the bodies of the LP-rules, which are

either non-recursive or belong to recursive cliques other than C.

The predicates in C will be called the constructed predicates (c-predicates for

short) and those in D the datum predicates. For instance, if our goal is

G 2 : S G (j o h n , x) ? on the LP of Figure 1, then SG is our c-predicate (a single-

ton recursive clique) and P and H are our datum predicates.

In general, datum predicates are those that can be solved independently of the c-

predicates; therefore, besides database predicates they could also include predi-

cates derived from these, including recursive predicates not in the same recursive

clique as the head predicates. Take for instance the LP of Figure 2, with goal

MG (L 1,L2,y)?

where L 1 and L2 denote arbitrary given lists. Here MG is our c-predicate and

the comparison predicates ~_ and < are our datums. The < predicate could, for

instance, s tand for a database predicate (e.g., if there is a finite set of characters
and their lexicographical order is explicitly stored: a < b, b < c , - - •) or it could
stand for a built-in predicate that evaluates to false or true when invoked as a

goal with both arguments bound, or, with integers defined using Peano's axioms,

it could be the recursive predicate of Figure 3,

r0: z < s (x) .
r l : x < s (y) : - x <y.
Fig. 3. The "less-than" relationship for integers represented using

the successor notation.

Exit rules and recursive rules:

A rule with a recursive predicate R as its head will be called reeursive if its

body contains some predicate from the same recursive clique as R ; it will be

called an exit rule, otherwise.

For notational convenience, we will always index the recursive rules starting from

zero, r0, • • • ,rm_l; thus, the total number of recursive rules under consideration

is always m . For instance, in Figure 2, r 0 and r I are the recursive rules, while

37

r 2 and r 3 are the exit rules.

3 .1 . B i n d i n g P r o p a g a t i o n

Da tum predicates propagate bindings from the bound arguments in the heads of

the rules to a rguments of the c-predicate occurrences in their bodies. Let us, for

now, say tha t our only da tums are database and comparison predicates; then the

binding propagat ion in a rule r i can be defined as follows. Say tha t B is a set of

(bound) variables of ri. Then the set of variables bound in r i by B will be

denoted B +'' (or B + when r i is unders tood) and is recursively defined as follows:

i) (basis)
E ve r y variable appearing in B is also in B +

ii) (induct ion)

database predicates: If some variable in da tabase predicate is bound then all

the o ther variables are bound.

comparison predicates: If we have an equali ty, such as x=express ion or

expression = x , and all the variables in expressions are bound, then x is

bound as well.

Let P be a predicate in the body of r i . Then, an argument of P will be said to

be bound when all its variables are bound.

Say tha t S denotes the bound arguments in the head predicate of r i and B the

(bound) variables in these arguments , moreover , say tha t T denotes the set of

a rguments bound by B in a c-predicate occurrence P ; then we will say tha t r i

maps the set of bound arguments S of its head, into the set of bound arguments T

of P .

Solved Predicates :
A da tum predicate of r i will be said to be solved when all its variables are

bound.

Say for instance tha t the first a rgument of SG is bound in Figure 1. Th en x is

bound and so is x 1 (via the database predicate P) . Thus in r 0 of Figure 1, the

bindings propaga te from SG l to SG t. Thus P (x ,x l) is a solved predicate in to,

whereas P (y ,Yl) is not. H (x) is solved in r 1.

3.2. B inding Graph of a Query

The binding graph of a query is a directed graph having nodes of the form p S

where P is a c-predicate symbol and S denotes its bound arguments , and whose

arcs are labeled by the pair [r i ,v], where r i is the index to a recursive rule, and

v is a zero-base index to c-predicate occurrences in the body of this rule, i.e, 0

is the index to the first c-predicate occurrence, 1 to the second one, etc. (the zero

38

base is chosen to simplify the counting operations).

query Q ~ (G ,LP ,D ~ is constructed as follows:

i)

The binding graph MQ for a

If S is the non-empty set of bound arguments in G, then G s is the source

node of MQ,

ii) If there e x i s t s a n o d e R S inMQ and there i s a r u l e r i i n L P that maps the

bound arguments of R into the bound arguments T of the v- th c-predicate
occurrence and this has symbol P , then P T is also node of MQ, and there
is an arc labeled [rl ,v] from R s to P r

Figure 4 shows a binding graph for a query SG 1,2 on the rules of Figure 1, and
Figure 5 shows the graph for a query MG 1,2 on the rules of Figure 2.

Let r i be a rule and S be the set of the bound arguments in the head of r i.
Then we say that r i is solved by S if all its variables are bound by the variables

in B s [,.JB¢, where:

• B s are the bound variables in the head (i.e., those contained in the S-
arguments), and

B c are the variables of c-predicates in the body of r i .

We can now enunciate our key property.

Binding passing property:

A query Q will be said to have the binding passing property when the following
properties hold for each node R s of its binding graph:

(a) S is not empty, and

(b) each rule r i such that the predicate symbol of its head is R , is solved by S .

Thus our examples in Figures 1 and 2, with binding graphs of Figure 4 and 5,
have the binding passing property. This property guarantees that (a) bindings
can be passed down to any level of recursion, and that (b) all predicates in the
recursive rules can be solved either in the top-down or in the bottom-up execu-

tion phase. Our binding graph is similar to the rule/goal graph described in [U2]
and is an extension of the query binding graph presented in [SZl].

We point out that we assume that the binding is propagated through an
argument of a c-predicate only if the whole argument is bound. A more detailed
analysis could consider that the binding can be also passed through partially
bound arguments of c-predicates. The binding passing property needs to be
checked only once for any given binding pattern in the query (e.g., at compile
time), moreover the following proposition guarantees that binding graphs can be

constructed efficiently [SZ3].

39

PROPOSITION 1. Let Q = < G ,LP ,D > be a query such that there is a bound
on the arity of the predicates in LP, then

a) The binding graph of Q can be constructed in time polynomial in the size of
LP.

b) The binding passing property of Q can be tested in time polynomial in the

size of LP.

4. The Generalized Counting Method.

We now present a method to implement logic queries which have the binding
passing property defined in the previous section. This method, called the general-
ized counting method, is an extension of the counting method described in [SZ1]
for solving a particular class of logic queries without function symbols and
without comparison predicates. An informal description of the counting method
was first given in [BMSU1].

The generalized counting method recasts a query that is inefficient or unsafe
to compute in a single fixpoint computation, into a pair of safe and efficient
fixpoint computations. While this pair could be expressed directly in terms of
relational algebra [SZ1], reasons of simplicity, expressivity and independence from
the target implementation language suggest to represent it by recursive rules.
Thus the generalized counting method can be viewed as a rule rewriting system
that maps a query Q = < G ,LP ,D > into an equivalent query
Q ~ < G ,LP ,D > that can be computed safely and efficiently using the fixpoint
approach described in Section 2. In LP we find two new sets of rules, called
counting rules and supplementary counting rules, that perform the top-down pro-
pagation of bound values; in addition, we find every rule of LP transformed into
one or more rules (modified rules) that perform the bottom-up computation of
the final anwer.

4.1. Counting and Supplementary Counting Rules

The overall translation process consists of (i) the generation of counting and
supplementary counting sets to perform the top-down propagation of bound
values, and (ii) the modification of the original goal and rules to take advantage
of the counting sets.

To generate counting sets, a number of new predicate symbols are introduced,
one for each node of the binding graph MQ of Q. Thus, for each node R s we

introduce a new predicate cnt.R s with IS 1+3 arguments. Thus, there is an
argument for each bound argument in the head of the original rule, plus three
additional integer arguments respectively recording (i) the level of the recursive
call, (ii) the recursive rule used and (iii) the c-predicate occurrence used in the

40

G: SG(a, b)?

LP: r0: SG(x, y):-P(x, Xl),P(y, yl),SG(x1, Yl)

rl: SG(x, x):- H(x).

Binding Graph

 [ro, o]

Counting Rules:

cnt.SG1.2 (0, 0, 0, a, b).

cnt.SG1.2 (j+l, l 'k+0, l 'h+0, Xl, Yl):- cnt.SG1.2 (j, k, h, x, y), P(x, Xl), P(y, Yl).

Supplementary Rules: None

Modified Rules and Goal:

SG1.2 (j-l, (k-0)/1, h/l) :-SG1.2 (j, k, h).

SGI,2 (j, k, h) :- cnt.SGI,2 (j, k, h, x, x), H(x).

G : SG1,2 (0, 0, 0)?

Figure 4. The Same Generation Example for G: SG(a,b)?

41

body of the rule.

Exi t Coun t ing Rules :

The first counting rule is generated by tile source node in M Q , say p S

which corresponds to the query goal. Say that the query goal has n----IS I >1

bound arguments with respective values a 1, " " " ,an . Then we add the following

clause for the counting set:

c n t . P s (O,O,O,a l, ' " ' ,an).

R e c u r s i v e Coun t ing Rules :

There is a recursive counting rule for each arc in MQ

labeled [r i iv] from node R s to node P r , we add the rule

c n t . P T (j + l , r a X k + i , p × h + v , y t , " ' " ,Y t) : -
c n t . R S (j , k , h , x l , ' ' ' , x n) , Q I ,

where:

i)
ii)

iii)
iv)

as follows: for an arc

• . , , Q q

xl, • • - , x n are the bound arguments in the head o f r i (i.e., those i n S) ,

Y t, " " " ,Yt are the bound arguments in the v- th c-predicate of r i (i.e., those

in T),

Q 1, " " " ,Qq are the predicates of r i , solved for bound arguments S .

j , k and h are the running indices, while m and p are constants character-

ized as follows:
m is the total number of recursive rules,

p denotes the total number of c-predicates in the body of r i .

It should be clear, that in tile rule above we have taken liberties with the nota-

tion by representing operations on indexes directly by their arithmetic expression

rather than introducing new goals, such as , , j l is j + l ", "k I is m × k + i " and

"h ~ is p Xh +s ", and then writing the head as

c n t . p T (j I , Ikl , hI ,Yl, " " ' ,Yl), as required, say, in Prolog. But we have used

this more concise notation since it is suggestive of the counting operations to be

performed during the fixpoint computation.

Informally described, the counting rules are constructed by eliminating all

unbound arguments and unsolved datum predicates, exchanging the a c-predicate

in the body with that in head, and adding tim two indexes. Note that, while

there are as many counting rules as arcs in the graph, there are only as many

counting predicates as there are nodes - - see Figure 5 for an example.

In the top-down generation of the counting sets we often generate values that are

needed in the successive bottom-up computation. For instance, in the merge

example of Figure 2, we generate the values of x in rule r 0 and those of x 1 in r t;

42

since these will not be part of the c-predicates in the modified rules, they must be

saved for later use in the bottom-up phase. The supplementary rules provide the

means to this end.

S u p p l e m e n t a r y C o u n t i n g Variables."

Consider u node R s in MQ. In MQ, there is arc labeled [ri,v 1 out of R s for

each occurrence of a c-predicate in the body of r~. Say that

a) B + denotes the set of the variables bound in r i by the (bound) variables in

the S-arguments of the head of r i ,

b) V U denotes the set of all variables either appearing in unsolved predicates of

r i , or in unbound arguments of the head of r i (i.e., those not in S)

c) V c the set of variables appearing in some unbound arguments of a c-

predicate in the body of r i ,

then we need to save the values of every variable in Vg N B + , but those in V c

whose values are recomputed in the bottom-up computation anyway (see

modified rules). Thus we need to keep the values of all variables in

V s p = - - . (B + F ~ V u) - V c , which will be called the set of s u p p l e m e n t a r y c o u n t i n g

var iab les . For rules where Vsp is empty there is no need for a supplementary

counting set. Such is the case for the S G example of Figure 4.

Consider however the example of Figure 5. For rule r 0 we have B + - - -

{x ,y ,x 1,Y 1}, while V U - - { x }. Since V c - ~ . { w }, the set of supplementary count-

ing variables is Vsp -~{x }. Likewise for r 1, the only supplementary counting vari-

able is x 1.

S u p p l e m e n t a r y C o u n t i n g R u l e s :

Then we can add the supplementary counting rules, one for each bundle of arcs
labeled with the same rule out of a node for which the set of supplementary

counting variables is not empty. If r i is the rule labeling a bundle leaving, say,

node R s , then, using the counting rule for R s , we write:

s p e n t . r i . R s (j ,k ,h , z l , . " " ,zt) : - c n t . R S (j , k ,h ,x l, . " " ,xn), Q I, " " " ,Qq

where,

i) xl , • • • , xn denote the bound arguments in the head of r i (i.e., these in

S),
ii) z 1, " " " ,zt are the supplementary counting variables.

iii) Q 1, " " " ,Qq are the predicates of r i , solved for bound arguments S .

For an example see Figure 5.

43

G : MG(L1, L2, W)?

LP:
r0: MG(xoy, x l -y l , x°w) :- MG(y, xl°yl , w), x > xl.

r l : MG(xoy, xloyl, xl°w) :- MG(xoy, Yl, w), x < Xl.

r2: MG(nil, x, x).

r3: MG(x, nil, x).

Binding Graph

[r0, 0l

Counting Rules:

cnt.MG1, 2 (0, 0, 0, L1, L2).

[rl, 0]

ent.MG1.2 (j+l, 2*k+0, l*h+0, y, xloyl) :- cnt.MG1, 2 (j, k, h, x°y, xloyl), x > Xl.

cnt.MG1,2 0+1, 2°k+1, l°h+0, x°y, Yl) :- cnt.MG1.2 (j, k, h, xoy, x l°yl) , x < Xl.

Supplementary Counting Rule:

spent.MG1.2.r0 (j, k, h, x) :- cnt.MG1,2 (j, k, h, x°y, xloyl), x > xl.

spcnt.MG1,2.rl (j, k, h, xl) :- cnt.MG1.2 (j, k, h, x°y, xl 'Yl), x < Xl.

Modified Rules and Goal:

MG1,2 0-1, (k-0)/2, h/l , x .w):- spcnt.MG1,2.ro(j-1, k/2, h, x), MG1,2(j, k, h, w).

MG1.2 (j- l , (k-1)/2, h/l , Xl°W):- spcnt.MG1,2.rl(j-1, (k-1)/2, h, Xl), MG1,2(j, k, h, w)

MG1,2 (j, k, h, x) :- cnt.MG1,2 (j, k, h, nil, x).

MGL2 (j, k, h, x) :- cnt.MG1.2 (j, k, h, x, nil).

G : MGL2 (0, 0, 0, w)?
Figure 5. The List Merge Example

4 4

4.2. Modif ied Rules

M o d i f i e d R e c u r s i v e R u l e s :

A number of new predicate symbols are in t roduced, one for each node in M Q , to

replace the c-predicate symbols in L P . For each node in M Q , there are as m an y

modified rules as there are bundles of arcs f rom the node labeled with the same

rule. Thus , let R s be a node in M Q and r i be the label of a bundle of arcs leav-

ing R s ; then, we in t roduce the following rule (again we take liberties wi th the

no ta t ion by denot ing wi th k - i / m an integer division tha t succeds only if the

W 1 , • - • ,Wq.

remainder is zero):

R S (j - l , (k - i) / m , h i p , u l , " " " , u n) : -

s p c n t . R S .r i (j _ l , (k _ i) / m ,h / p ,z , , . • . , z t), t 5 o , " ' • , /hp-1,

where:

i) u 1, • • • , u,~ are the unbound arguments in the head of r i (i.e., those t h a t

do N O T belong to S) ,

ii) s p c n t . R s .r i (j _ l , (k _ i) / m , h / p ,z 1, " " " ,z t) is the supp lemen ta ry count ing

predicate , if any, with z l, ' " ' ,zt , t ~>0 sup p l em en ta ry counting variables.

iii) W l , • • • , W q are the predicates of r i , N O T solved for bound a rguments S .

iv) / 5 0 , ' ' ' ,/hp-i are the modified c-predicate occurrences in the body of r i ,

cons t ruc ted as follows. Say tha t there is an arc labeled [r ; ,v] f rom R s to

p T, and x 1, " " " ,xl are the unbound a rguments in the v - t h predicate of r i

(i.e., those N O T in T) , then

/hv = P T (j , k ,h + v ,x l, " " " ,xt).

v) j , k and h are the running indices, while m , i and p are cons tants respec-

t ively denot ing the total number of recursive rules, the index of the rule

labeling the arc, and the total number of c-predicates in the body of this

rule. These indexing operat ions reverse those per formed when building the

count ing sets.

In o the r words, one has to take the original rule r i , e l iminate all solved var iables

and bound predicates , add the three indexes (af ter sui table indexing operat ions)

in each c-predicate , and, finally, add the the supp lemen ta ry count ing predicates ,

if any. In addi t ion to the modified recursive rules so genera ted we need some

modified exit rules.

M o d i f i e d E x i t R u l e s :

Say tha t R s is a node of M o and there is each exit rule r i wi th head predicate

R . T he n we add the following modified exit rule:

R S (j , k , h , u l , " ' ' , a n) : - c n t . R S (j , k , h , x l , " " " , x t) , W l , " " ' , W q .

45

where:

i) u I, • • • , un are tile unbound arguments in tile head of r i (i.e, those which

do NOT belong to S),

ii) cnt .RS (j , k , h , x l , " " " ,xt) is the counting predicate, with x l , " " " ,xt the

bound arguments in r i 's head.

iii) W i , ' • . ,Wq are the predicates in the body o f r i.

Thus the exit rules are generated by replacing the bound predicates in the

head by the indexes and then adding the counting set to the body of the rule.

Modified Goal:

If /5 is the original query goal with bound arguments S and predicate symbol P ,
then let x l , . • . , x n denote tile unbound arguments (i.e., those not in S). Then,

the modified query goal is

P (0 , 0 , 0 , x 1, " " ' , z .) . e

It thus follow that the fixpoint computation of the modified rules should be
stopped after zero values are generated for the indices.

Figure 6 illustrates the application of the method to the a situation involving
mutually recursive predicates and more than one c-predicate in the body of a

recursive rule (non-linear rule).

4.3. P r o p e r t i e s o f t h e G e n e r a l i z e d C o u n t i n g M ethod .

From a formal viewpoint the Generalized Counting Method can be viewed as a
rule rewriting system. In this framework, both the original set of Horn Clauses
and the modified one have a pure fixpoint-based semantics that defines the sets of
answers satisfying the query [VK] (arithmetic predicates can be treated in this
framework as being defined by infinite comparison relations over complex arith-

metic terms [Z3]). Then we can prove tile following basic result [SZ3]:

TItEOREM 1. Let Q--~< G , L P , D > be a query that has the binding passing

property. If Q ~ < G , LP , D > denotes the modified query produced by the gen-

eralized counting method, then Q and Q compute the same answer.

(Note however, that in the theorem above, the answer to both queries could be
infinite, a problem treated in Section 5.)

From a computational viewpoint, the generalized counting rules prescribe an
abstract computation plan having some desirable performance characteristics.

First of all, counting and modified rules can be generated efficiently:

PROPOSITION 2. Let Q ~ - < G ,LP ,D > be a query such that Q has the bind-

ing passing property and there is a bound on the arity of the predicates in L P .

Then the generalized counting method constructs the modified query

P and Q.

G : P(a, y)?

LP : r0: P(x, y) :- Bl(x, X1), Q(x1, y), BZ(x, x2), Q(x2, y), B3(y, z).

rl: Q(x, y) :- B4(x, z), P(z, y).

r2: P(x, y) :- BS(x, y).

A recursive clique of two mutually recursive predicates:

Binding Graph:

 [ro, ol

Counting Rules:

cnt.P1 (0, 0, 0, a).

46

cnt.Q1 0+1, 2*k+0, 2*h+0, xl):- cnt.P1 (j, k, h, Xl), Bl(x, Xl), B2(x, x2).(from [ro, 0]

cnt.Q1 0+1, 2*k+0, 2°h+1, x2):- cnt.P1 0, k, h, x), Bl(x, Xl), B2(x, x2). (from [r0, 1]

cnt.P1 0+1, 2°k+1, l*h+0, z):- cnt.Q1 0, k, h, x), B4(x, z). (from [rl, 01

Supplementary Rules: None

Modified Rules and Goal:

p1 0-1, (k-0)/2, h/2, y):- 0i 0, k, h, y), 01 0, k, h+l, y), B3(y,z).

Ol 0-I, (k-I)/2, h/l, y):- PI (j, k, h, y).

p1 (j, k, h, y):- cnt.P1 0, k, h, x), B5(x, y).

G :p1 (0 ,0 ,0 , y)?
Figure 6. Francois' Example

47

~- < G ,LP ,D > in time polynomial in the size of LP.

As today, we still lack a general fl'amework that allows us to characterize the
performance of the various methods proposed for the compilation of recursive
predicates. However, a clear understanding of the behavior of these methods has
emerged from the study of typical examples [BR]. These examples strongly sug-
gest that the counting method is superior to the others (in terms of database
accesses and computational steps required), particularly in situations that do not
require the elimination of duplicates. Thus, the method is ideally suited for situa-
tions involving function symbols, where a new term is generated at each step in
the fixpoint computations (either by adding some level of nesting in the structure
or by removing some). Recursive predicates such as appending two lists, extract-
ing all the elements of a list, searching and manipulating tree structures, etc.,
are ideal candidates for the generalized counting method.

Our confidence in the ability of the generalized counting method to deal with
reeursive predicates with function symbols is reinforced by the authors' experi-
ence with Prolog and the observation that the generalized counting can be imple-
mented to emulate Prolog very closely. To illustrate this point let us consider
the two fixpoint computation prescribed by the generalized counting method. A
possible implementation strategy consists of computing all counting set and sup-
plementary counting sets values, before going into the fixpoint computation of
the modified rules (a strategy similar to that used in implementing magic sets
[BMSU1, BMSU2, SZ2]). However, a modified exit rule with a certain index value,
can be fired as soon as the counting set value for that particular index value is
obtained. Assuming that no duplicate elimination is needed, the overall strategy
then becomes quite similar to that of Prolog (and also to that of [HN]). However,
the generalized counting method also allows for massive joins since it does not
imply a one-tuple-at-the-time join strategy, and the top-down binding propaga-
tion is independent from the ordering of rules and goals.

4.4. Simplif ications and Extensions.

A number of simplifications of the overall generalized counting method can be
introduced to deal with various subcases.

Single Recursive Rule:
When there is a single recursive rule, the second index remains constant and can
be eliminated (see for instance Figure 4).

Single e-predicate in the rule bodies:
When there is a single c-predicate in the body of every rule, the third index
remains constant and can be eliminated (see Figure 4).

Shared Solved Predicates
Counting rules and supplementary counting rules might share the same solved

48

predicates. For instance, in Figure 5, the comparison predicates are evaluated in

both the counting rules and in the supplementary counting ones; this duplicate

work could be eliminated. A general solution to this problem consists in intro-
ducing an allcnt predicate that computes both the bound arguments and the
supplementary counting variables [SZ3]. Then, the counting and special counting

predicates can simply be derived from the allcnt by projecting out variables not
needed in the specific case.

Arbitrary Datum Predicates.
As previously mentioned, datum predicates need not be restricted to database
and comparison predicates; all is required is that these predicates can be solved
independently of the recursive clique under consideration. For instance, the tech-
nique presented in [Z31 can be used to deal effectively with non-recursive rules,
possibly containing function symbols. Said technique provide a a generalization of
the binding propagation rules described in Section 3.1.

Let us now turn to the problem of determining whether reeursive predicates (not
in the same recursive clique as our c-predicates), can be used as solved datum
predicates. This tantamounts to determining whether the corresponding goal in
the rule can be solved for the given set of bindings. To this end, we can apply the
known techniques for solving recursive predicates, in particular the generalized
counting method described here. Take for instance a query G: MG (L 1,L2,X),
defined against a LP consisting of the rules of Figure 2 and 3 combined. Then, in
order to solve this query, we will also have to solve the goal G 2: C i < C2, where
C 1 and C 2 stand for arbitrary constants. Thus we get the modified set of rules of
Figure 7 (since we only have one recursive rule we only use one index).

Finally, we need to link the rules of Figure 7 with the last counting rule of Figure
5. This can, for instance, be accomplished by redefining the goal x < x 1 of Figure

5 as follows:

x < S l : - a s s e r t (c n t . <"2(x ,x l)) , <1'2(0).

(This is a rather coarse solution, presented here only as a quick illustration on
how things could function; more refined solutions will be given in future reports.)

Trivial Modified Rules

It is easy to see that the only function of the modified recursive rule in Figure 7,
is to decrement the index to zero one step at the time. We can thus dispense with
this rule and write a new modified goal:

: c . t . < 1 o_(_ ,x ,s

We have thus eliminated the second fixpoint computation (tail recursion); more-
over, we can also drop the index from the counting set computation.

49

G: C1 <C27

LP:

to: x < s (y) : - z <y.
r l : x < s (x).

Binding Graph

~ r o,0]

Counting rules:
cut. < 1,2(O,C 1,C 2)
cnt. < 12(j + l , x ,y):- cnt .< ,,2(j ,x ,s (y))

Supplementary Counting rules: None.
Modified Rules and Goal:

<, ,2(j):_ ont. <1,2(/ , x ,s (x)).
< 1,2(j_1): - < 1,2(j).

U: <',2(0) ¢

Fig. 7. Implementation of lhe "less-than" rules of Figure 3.

Symmetrically, it easy to identify many situations where the counting set compu-
tation becomes trivial and can be eliminated. Therefore, the counting method
also supplies a good framework for identifying simple cases where recursive
queries with constants can be implemented safely and efficiently by a single
fixpoint [AhUl].

5. Safety of Queries

A safe query is one that generates only a finite number of answers. Safety for
reeursive queries with function symbols is undecidable; thus the best a person can
do is to provide sufficient conditions that cover the cases of practical interests.
Our domain of interest consists of recursive queries having the binding passing
properties for which we want to ensure that the our methods terminate. Note
that the generalized counting method recasts the original query Q into two
fixpoint computations: whenever both these computations terminate in a finite
number of steps, we will say that the generalized counting method is safe w.r.t, to
the query Q.

The following property follows immediately from the definitions:

PROPOSITION 3. The generalized counting method is safe w.r.t, a query having
the binding passing property if and only if the counting set fixpoint computation
converges in a finite number of steps.

50

We will now assume that our c-predicates are either database predicates or com-

parison predicates (including equality).

We now give a sufficient condition for the generalized counting method to be

safe, which appears to cover most of the situations of practical interest.

Term Length
The length of a term t denoted I t I is defined as follows:

(a) i f t is a constant, then I t I----1,

(b) if t = / (t l , " " " ,tk), then { t { ----] t l l + " " " + l tk]+1 .

This definition allows to determine the length of constant terms. When the terms
contain variables, then we can express the length of the term in function of those

of the variables. For instance I x*x [~ - [x [+ { x l + l = 2 l x I+1 In general,
there is no information on the actual length of x , except that I x I >_1. Thus

Ix.x I>_a.
The length of a set of terms S is the sum of the length of all terms in S . For

instance the length of the bound arguments (i.e., x * y , x l * y l) in rule r 0 of the

M G example in F i g u r e 5 i s Ix I + I Y I + { x l [+] Y l l + 2 "

Arc Length Balance.
Let (R s ,p r) be an arc in the binding graph with label [ri ,v]. The length bal-
ance associated with this arc is defined as difference between the length of the
bound arguments in the head of r i (i.e., those denoted by S) and the length of

the bound arguments of the v-th c-predicate in the body (i.e., the arguments
denoted by T) . For instance the length balance for the arc labeled [r0,0] in the

binding graph of Figure 5 is:

(Ix l+ [y I+lx, l+ly,l+2)-(ly I+lx, i+ly,[+l)----Ix [+l.
A lower-bound of the arc length balance can be obtained by replacing.the length
of the variables by the lower bound of their length if the coefficient is positive, or
by the upper bound if the coefficient is negative. For instance, in the previous

example, a lower bound of the arc length balance is 2, since the variable x has

length one or greater.

Cycle Length Balance.
Given a cycle of the binding graph, the length balance associated to it is defined
as the sum of the length balances of its arcs. A lower bound of the cycle length
balance can be obtained as the sum of the lower bounds of the arc length bal-

ances.

THEOREM 2. I f the the length balance associated with every cycle in the binding
graph of a query is positive, then the fixpoint computation of the counting sets

converges in a finite number of steps.

51

Thus, tile examples in Figures 5 and 7 are sale. While Theorem 2 is very useful

for determining the safety of recursive predicates with function symbols, includ-
ing typical situations, such as appending two lists and searching and manipulat-
ing trees and lists, there are many situations where more elaborated or com-

pletely different techniques must be used.

For instance, if the are length balance computed over all bound arguments is not
positive, one may try to find a subset of the bound arguments for which it is
(also a sumeient condition for safety). Often, the cycle length balance depends
upon the lengths of variables, which is in turn determined by other predicates
(including recursive ones). An interesting technique to deal with some of the more

complex situations is given in [UIVg]. For variables that belong to some database
predicate, it is often reasonable to assume that their length is one. This addi-

tional assumption enables one to infer the safety of the counting method applied
to the following example, where Q is a database relation with no function sym-
bols in the second column:

P (b .b .x)?

P (b .b .x):-Q (x ,y),P (x .y).

P(b).

Finally, there are situations such as those of examples of Figure 4 and 6, where

all the solved predicates are database predicates, and the are balance is null.
Therefore, there is no a priori assurance that duplicates cannot occur in the com-
putation of the counting sets. Even for these situations, if the underlying data-
base is known to be acyclic, the generalized counting method remains safe and
efficient [SZ1]. When the acyclicity of the underlying database cannot be
guaranteed, two solutions are possible. The first is to use methods such as the
magic set [BMSU1] and minimagic method [SZ2], that have a built-in check for
and elimination of duplicates. The second approach consists of starting with the
computation of generalized counting sets while checking for duplicates. If dupli-
cates show up then one will fall back on the standard counting method. This
hybrid approach, known as magic counting is described in [SZl].

6. C o n c l u s i o n

We have presented a new method, named generalized counting, that is very
emcient [BR] and appears particularly useful in dealing with recursive rules con-

taining function symbols. The method implements recursive queries by two
fixpoint computations. The first propagates the initial bindings into the recumive
loop, while tile second solves the remaining goals and constructs the desired

answer. The method is applicable to arbitrary recursive predicates, including
those featuring mutual recursion and non-linear recumion.

52

The paper also discussed the application of the method to solve nested recursive
predicates. A sufficient condition for the finiteness of the fixpoint computations
was finally given; although quite simple, this condition seems adequate for many
common cases involving recursive predicates with function symbols. It thus
appears that the generalized counting method provides a very valuable tool
towards compiling pure logic programs with good performance and an a-priori
guarantee of termination.

Acknowledgments:
The authors are grateful to Francois Bancilhon, Ravi Krishnamurthy and Raghu
Ramakrishan for many inspiring discussions.

R e f e r e n c e s

[AhUI] Aho A. V. and J. Ullman, " Universality of Data Retrieval Languages,"
Proc. POPL Conference, San Antonio Tx, 1979.

[AC] Aiello, L. and Ceechi, "Adding a Closure Operator to tile Extended
Relational Algebra ...", Rome Univ. Technical Report, 1985.

[B l Baneilhon, F., "Naive Evaluation of Recursively defined Relations",
Unpublished Manuscript, 1985.

[BGK] Bayer, R., U. Guntzer and W. Kiessling, "On the Evaluation of Recur-
sion in Deductive DB Systems by Efficient Differential Fixpoint Itera-
tion," Technical Report, Technische Univ. Munich, 1985.

[BMSU1] Bancilhon, F., D. Maier, Y. Sagiv, J. Ullman, "Magic sets and other
strange ways to implement logic programs", Proc. 5th A C M SIGMOD-
SIGACT Syrup. on Principles of Database Systems, 1986.

[BMSU2] Bancilhon, F., D. Maier, Y. Sagiv, J. Ullman, "Magic sets: algorithms
and examples", unpublished manuscript, 1985.

[B R] Baneilhon, F., Ramakrishan, R., "An amateur's introduction to recur-
sire query processing strategies", Proc. A CM SIGMOD Int. Conference
on Management of Data, Washington, D.C., May 1986.

[CH] Chandra, A.K., Harel, D., "Horn clauses and the fixpoint hierarchy",
Proc. A C M SIGMOD-SIGACT Syrup. on Principles of Database Sys-
tems, 1982, pp. 158-163.

[GD] Gardarin, G., DeMaindreville, C., " Evaluation of Database Recursive
Logic Programs as Recursive Function Series," Proc. ACM SIGMOD
Int. Conference on Management of Data, Washington, D.C., May 1986.

[HN] Henschen, L.J., Naqvi, S. A., "On compiling queries in recursive first-
order databases", JACM 31, 1, 1984, pp. 47-85.

[L] Lozinskii, E.L., "Inference by generating and structuring of deductive
databases", Report 84-11, Dept. of Computer Science, Hebrew

53

[MS]

[PI

[RI

[SZl]

[sz2]

[sz3]

lUll

[T1]

[uv]

[u2]

[VK]

[vg]

[zi]

[z2]

[z31

University, Israel.

McKay, D., Shapiro, S., "Using active connection graphs for reasoning
with recursive rules", Proc. 7lh IJCAI, 1981, pp. 368-374.

Parker, S. et al., "Logic Programming and Databases," in Expert Data-
base Systems, L. Kerschberg (ed.), Benjamin/Cummings, 1988.

Reiter, R., "On closed world databases", in Logic and Databases (Gal-
laire, H., Minker, J., eds), Plenum, New York, 1978, pp. 55-76.

Sacc~i, D., Zaniolo, C., "On the implementation of a simple class of
logic queries for databases", Proc. 5th A C M SIGMOD-SIGACT Syrup.
on Principles of Database Systems, 1986.

Sacc£, D., Zanlolo, C., "Implementation of recursive queries for a data
language based on pure Horn clauses", unpublished manuscript, 1986.

Sacc£, D., Zaniolo, C., "Techniques for Solving Recursive queries in a
Logic Based Language," in preparation.

Ullman, J.D., Principles of Database Systems, Computer Science Press,
Rockville, Md., 1982.

Tarski, A. "A Lattice Theoretical Fixpoint Theorem and its Applica-
tion," Pacific Journal of Mathematics No. 5, pp. 285-309, 1955.

Ullman, J.D. and A. Van Gelder, "Testing Applicability of Top-Down
Capture Rules," Stanford University, Report STAN-CS-85-1046, 1985.

Ullman, J.D., "Implementation of logical query languages for data-
bases", TODS 10, 3, 1985, pp. 289-321.

van Emden, M.H., I(owalski, R., "The semantics of predicate logic as a
programming language", JACM 23, 4, 1978, pp. 733-742.

Van Gelder, A., "A Message Passing Framework for Logical Query
Evaluation," Proc. ACM SIGOD Int. Conference on Management ol
Data, Washington, D.C., May 1988.

Vieiile, L. "Recursive Axioms in Deductive Databases: the Query-
Subquery Approach," Proc. First Int. Conference on Expert Database
Systems, Charleston, S.C., 1986.

Zaniolo, C. "Prolog: a database query language for all seasons," in
Expert Database Systems, L. Kerschberg (ed.), Benjamin/Cummings,
1986.
Zaniolo, C. "The Representation and Deductive Retrieval of Complex
Objects," Proc. 11-th VLDB, pp. 459-469, 1985.

Zanioio, C. "Safety and Compilation of Non-Recursive Horn Clauses,"
Proc. First Int. Conference on Expert Database Systems, Charleston,
S.C., 1988.

