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Abstract

This paper treats the problem of implementing efficiently queries
expressed by Horn clauses containing recursive predicates, including
those with function symbols, In particular, the situation is studied
where the initial bindings of the arguments in the recursive query
goal can be used in the top-down (as in backward chaining) execu-
tion phase to improve the efficiency and, often, to guarantee the
termination of the forward chaining execution phase that imple-
ments the fixpoint computation for a recursive query. (To ensure
efficient support for database applications this fixpoint computa-
tion is actually carried out by relational algebra operators.) A gen-
eral approach is given for solving these queries; the approach per-
forms an analysis of the binding passing behavior of the query, and
then reschedules the overall execution as two fixpoint computations
derived as results of this analysis. One such computation emulates
the propagation of bindings in the top-down phase; the other gen-
erates the desired answer by proving the goals left unsolved, in the
recursive rules, by the previous step. Finally, sufficient conditions
for safety are derived, to ensure that the fixpoint computations are
completed in a finite amount of time. Two instances of this basic
approach are discussed in details: one is called the magic set
method and the other is the minimagic method.

t Part of this work was done while this author was visiting at MCC.
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1. Introduction

While the advantages of Logic in studying and formally describing
knowledge-based computing have long been recognized [Nil, GMN],
its use in programming actual applications was hampered, for a
long time, by the lack of efficient implementations. This situation
changed with the introduction of Prolog which proved the amena-
bility of Horn Clause Logic to efficient implementation, and the
applicability of Logic Programming to a variety of realms, including
expert systems, translator writing, and databases.

For all its merits, however, Prolog must be regarded as a still
imperfected realization of the Logic Programming idea, since it is
based on a particular execution model — SLD resolution with left-
most goal expansion— which is not logically complete. Furthermore,
non-logical constructs (such as the cut, assert and retract) where
included in the language using the sequential execution model as
the basis for their meaning. Therefore, Prolog is, to a large extent, a
prescriptive language which suffers from the following drawbacks:

(2) The programmer must guarantee the performance and termina-
tion of the application at hand by carefully ordering rules and
goals; this detracts from the ease of use of the language, and from
the portability and generality of applications written in it.

(b) The Prolog execution model is well-suited for main memory
resident fact bases and single processor machines, but tends to be
inefficient for fact bases stored in secondary memory (e.g., for data-
base applications); moreover, the imperative constructs in Prolog
limit its amenability to parallel processing.

A strategy for overcoming the limitations of point (b) has been that
of extending the language with additional constructs designed for
interfacing to databases [KY, Z1]. or for controlling parallel execu-
tion [CG,ST]. While such an approach is undeniably one of great
expedience and short-term benefits, it also represents a further
-move away from the elegance of declarative logic, and leads to an
endless stream of ad-hoc solutions and potpourri semanties. More-
over, this strategy offers no relief with respect to point (a).

In this paper, instead, we suggest to return to the pristine --

minimum model and fixpoint based -- semantics of definite Horn
clause queries [VK, Llo] and to have the system select a safe and
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efficient execution strategy for the given query and processing
environment.! A number of interesting proposals have been
advanced for solving the formidable technical problems thus issuing,
including the use of meta-logic [SG], and of dynamic goal reordering
[Nai]. More directly germane to this paper is what can be termed a
"database oriented” approach; a number of recent contributions
can, tentatively, be cataloged in this class [Ban, BMSU1, GD, KL,
U2, 871,Vi]. In addition to the Logic Programming experience, the
database oriented approach has been influenced by the work on
deductive databases [Rei, KT], whereby the intensional information
(query and rules) is treated separately from the extensional one
(fact base); the intensional information is compiled into efficient
code that is applied at run time to the extensional database. The
third important influence comes from database systems, that during
the last decade, have evolved from navigational DB systems (based
on 2 sequential execution model very similar to that of Prolog {Z1])
to relational systéms which use declarative query languages based
on logic. This recent progress of database systems suggests that a
similar evolution may take logic based languages past Prolog and
towards truly non-procedural languages. Moreover the relational
database experience can provide many techniques that will be useful
in solving the arduous technical problems thus resulting (Par, U2).

The "database oriented” viewpoint has greatly influenced the design
and the implementation of LDL which is a language based on Horn
clause logic and intended for data intensive and knowledge based
applications [TZ|. Thanks to the amalgamation of the functionali-
ties of logic programming and databases, an LDL system will be
able to support and manage large data and rule sets and remove
the "impedance mismateh” between the query language and the
programming language, currently besetting the development of
database applications [CM].

1 This approach remains applicable when useful declarative extensions, such
as sets and negation, are included [TZ]. However, inasmuch as these extensions
are based upon stratification assumptions [BNRST], they are orthogonal to the
recursion issues discussed here,
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2. Technical Issues

Consider a grandmother rule;
GM(z,y) - P(z,z), M{zy).
with parent defined by a father and mother base relations 2

P(z,y) :- F(z,y).
P(a":y) - M(.’E,‘y}.

Then, an obvious way to support a query
Gl1: -2GM(z,y).

is to use bottom up processing; using relational algebra [Ul] this
can be expressed as follows (take the union of F and M, then join
the result with M and project out the middle column):

GM =m, ((F M) 1><p_ M)

where F and M denote the relations that store the father and
mother fact base. The important fact to be observed here is that by
using a bottom-up processing we have replaced full unification with
matching (only one of the two terms contain variables) which is a
computationally more efficient and parallelizable operation [DKM,
MK]. Since we are interested in data intensive applications, we will
implement matching using relational algebra operators, since these
have proven effective in database applications, but this is only
incidental to the discussion of this paper. However, let us consider
a second query

G2: -?GM{marc, y).

We could support this second query by fltering the results of the
first by a selection condition: o,_ ,,.; however, this approach is
inefficient, since only the mother and father of marc need to be con-
sidered in taking the union and the successive join; i.e., the selec-
tion should be pushed down and applied directly to the fact base.
The Prolog solution to this problem is a two-phase process whereby
the constant is first migrated down during the depth-first goal
expansion, and a second phase where the actual join is performed

2 A predicate that only umnifies with facts will be called a database predicate.
By base relation or database relation we mean a set of facts having the same
predicate symbol and number of arguments.
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and the answer returned. The price paid by Prolog is the need to
use full unification in the first phase, Thus, we opt for the alternate
solution of pushing the constant down at compile time by modify-
ing the original rules for the particular query. Thus our query is
reformulated into

G3: -?GM{marc, y).

GM(marc,y) .-  P(mare,z), M(zy).
P(mare,y) - F{mare,y).
P(marc,y) - M(marc,y).

As we turn this specialized set of rules into its relational algebra
equivalent we see that the selection is now applied directly into the
database. Thus, the query compilation approach just described
offers the important advantages of (i) eliminating Prolog’s first com-
putation phase, and (ii) requiring matching rather than full
unification.

Unfortunately,. things become more complicate when recursive

predicates are involved. Take for instance the recursive predicate
SG of Figure 1,

to: 8G(z,y):- P(z,1,), SG(x1,y,), Py,yy)

ry: SG(z,x)~ H(z).

Fig. 1. The same-generation ezample.
where P(z,r,) is a database predicate describing that z, is the
parent of z, and H(r) is a database predicate describing all
humans. We want to support recursive queries by a least fixpoint
operator; this decision is in natural agreement with (a) the seman-
tics of Horn clauses that is defined using the notions of minimum
model and least fixpoint [VK, Llo], (b) the bottom up, matching-

based execution strategy and (¢) the operator-based approach, using
relational algebra.

For instance, for the query,
G4: ?- SG(z,y)?

one will start by setting the initial value of a variable relation SG
to empty and computing a new value, say

5G' =8G | ] (¢)

where f denotes the bottom up computation defined by the previous
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rules. Using relational algebra, for instance, f can be expressed as
follows:

f (SG)=m \H (U1 5((P1><U— 1 SG )><1yoP )

Thus, after replacing SG by SG' , the computation iterates and
terminates when SG' =SG . Since our rules contain only positive
goals, the function f is monotonic and continuous in the lattice of
relations defined by set containment, and this procedure computes a
unique least fixpoint [Tar]. This fixpoint approach, refined with the
differential techniques described in [BaR, Ban), is effective for
queries as G4, where no argument is bound. However, the basic
fixpoint approach becomes inefficient once the recursive predicate is
called with some arguments bound. For a query,

GS: 2-8SG (adam ,y)

for instance, the fixpoint approach will still compute all possible
pairs of humans that are of the same generation, only to later dis-
card those that do mot have "adam” has their first argument.
Clearly, we need a strategy for taking advantage of the constants
present in the query. Unfortunately, the simple approach of special-
izing the rules by substituting the constants in place of the vari-
ables does not work for recursive predicates. For instance, if we
replace the occurrence of the variable z by adam” we obtain rules
that do not produce humans of the same generation as adam. (of
course, there are also cases in which the substitution trick works
[AU]; but detecting those cases is, in general, undecidable [BKBR].)
Thus, we need some new techniques for taking advantage of con-
stants in recursive queries. The need for such techniques is rein-
forced by the safety issues discussed next.

To illustrate a first aspect of the safety issue let us assume that the
goal (i.e., H(z)) is removed from rule r; in Figure 1. Then, assum-
ing an infinite underlying universe, the query G4 becomes unsafe,
since any pair (z,z ) satisfies it. The query G5 is safe per se, since
only a finite number of people can be of the same generation of
adam; but its evaluation using the fixpoint approach is still unsafe,
and therefore unfeasible. Here, an evaluation that is capable of
migrating the query constraints downwards is needed to ensure the
very feasibility, rather than efficiency, of the execution strategy.
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The safety issue is even more of a concern for ”computational”
predicates such as that of F igure 2, which are normally intended for
use only with certain input bindings. The potential sources of
unsafe behavior in the rules of Figure 2 are two. One is that the
non-recursive rules ry and r; admit infinjte models --this is the
same problem as in the previous example. However, even if the z-
values range over a finite set, the recursive rules r1 and r2 generate
longer and longer lists at each step in the fixpoint computation,
which, therefore, never ends.

ro: MG (zey,z 0y, 20w )- MG v,z 0y ,w), z>2,
T MG (zey,z,8y,,7 0w )~ MG (zoy ypw), z <z,
rot MG (nil,z ,z)
rat MG (z,ni,z)

Fig. 2. Merging two sorted lists.

In conclusion, an effective usage of the bindings information avail-
able in a recursive goal is vital for performance reasons and to
avoid the non-termination pitfall. Therefore, it should be of no
surprise that a number of interesting approaches were proposed to
deal with this problem, including [BMSU1, GD, CH, HN, KL, MS,
SZ1, U2, Vi|. The reader is referred to [BR] for an overview and a
comparison of these approaches. As described in [BR], some of these
approaches lack generality --i.e., the realm in which they work is
either narrow or poorly defined-- and they lack robustness -- i.e.,
they are stated in terms of specialized algorithms or lower level
primitives, hence their suitability to different execution models is
unclear.

In this paper, we propose a formal framework and general algo-
rithms to guarantee safety and efficiency in the implementation of
recursive predicates. The proposed solution takes the form of
rewriting rules whereby the original query and relative rules are
recast into an equivalent set that can be safely and efficiently
implemented using least fixpoint operators and matching., Since
these are generic high level operations, an assortment of more
specific architectures and implementation primitives can then be .
used at a lower level; in particular, relational algebra operators are
suitable for implementations intended for data intensive application
environments,
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Two methods are presented for the compilation of recursive predi-
cates: one is the magic set method BMSU1, BMSU2, ZS1] that is
here extended to handle function symbols, comparisons and nested
recursive predicates. The second is a new method called minimagic
method that improves on the previous one by eliminating duplicate
work. The two methods can be developed along a common frame-
work consisting of following steps:

i)  asymbolic analysis of the binding propagation behavior during
the top-down phase, and using the results of this analysis,

ii) the generation of rules for the computation of special sets (i.e.,
the magic sets or the minimagic sets) that actually implement
the top-down propagation of bound values,

iii) the generation of rules for producing the query answer,

The two methods share i} and they differ in the specific rules gen-
erated in (ii) and (i), The paper is organized as follows. We first
describe point i) and then we present the two methods. Finally we
discuss their safety and their trade-offs.

3. Binding Passing Property.

In a logic program LP, a predicate P is said to tmply a predi-
cate @, written P —@Q, if there is a rule in LP with predicate Q@
as the head and predicate P in the body, or the exists a P’ where
P—P' and P' —Q (transitivity). Then any predicate P, such
that P —P will be called recursive. Two predicates P, and Q are
called mutually recursive if P—¢ and @ —P. Then the sets of all
predicates in LP can be divided into recursive predicates and non-
recursive ones (such as database predicates). The implication rela-
tionship can then be used to partition the recursive predicates into
disjoint subclasses of mutually recursive predicates, which we will
call recursive cliques, with their graph representation in mind. All
predicates in the same recursive clique must be solved together —
cannot be solved one at a time.

For the LP of Figure 1, SG is the recursive predicate (a singleton
recursive clique), and H and P are database predicates. However,
in the discussion which follows, # and P could be any predicate
that can be solved independently of SG ; thus they could be derived
predicates — even recursive ones— as long that they are not
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mutually recursive with SG . Finally, it should be clear that ”john”
is here used as a placeholder for any constant; thus the method here
proposed can be used to support any goal with the same binding
patiern.

Formally, therefore, we will study the problem of implementing a
query @ that can be modeled as triplet <G ,LP,D >, where:

LP is a set of Horn clauses, with head predicates all belonging to
one recursive clique, say, C.

G is the goal, consisting of a predicate in € with some bound
arguments.

D denotes the remaining predicates, in the bodies of the LP-
rules, which are either non-recursive or belong to recursive
cliques other than C'.

The predicates in €' will be called the constructed predicates (c-
predicates for short) and those in D the datum predicates. For
instance, if our goal is G 2:5G (john ,z)? on the LP of Figure 1,
then SG is our c-predicate (a singleton recursive clique) and P and
H are our datum predicates.

In general, datum predicates are those that can be solved indepen-
dently of the c-predicates; therefore, besides database predicates
they could also include predicates derived from these, including
recursive predicates not in the same recursive clique as the head
predicates. Take for instance the LP of Figure 2, with goal

MG (L ,L,y)?

where L, and L, denote arbitrary given lists. Here MG is our c-
predicate and the comparison predicates > and < are our datums.
The < predicate could, for instance, stand for a database predicate
(e.g., if there is a finite set of characters and their lexicographical
order is explicitly stored: ¢ <b, b <c, - ) or it could stand for
a built-in predicate that evaluates to false or true when invoked as
a goal with both arguments bound, or, with integers defined using
Peano’s axioms, it could be the recursive predicate of Figure 3,
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rorz<s(z)

rpr<s(y)-z<y.

Fig. 3. The "less-than” relationship for integers represented
using the successor notation.

Ezxit rules and recursive rules:

A rule with a recursive predicate R as its head will be called
recursive if its body contains some predicate from the same recur-
sive clique as R ; it will be called an ezit rule, otherwise.

For notational convenience, we will always index the recursive rules
starting from zero, rg, - - ,r, _;; thus, the total number of recur-
sive rules under consideration is always m. For instance, in Figure
2, ro and r, are the recursive rules, while r, and r; are the exit
rules,

3.1. Binding Propagation
Datum predicates propagate bindings from the bound arguments in
the heads of the rules to arguments of the c-predicate oceurrences
in their bodies. Let us, for now, say that our only datums are data-
base and comparison predicates; then the binding propagation in a
rule r; can be defined as follows. Say that B is a set of (bound)
variables of r;. Then the set of variables bound in r; by B will be
denoted B + (or BY when r; is understood) and is recursively
defined as follows:
i) (basis)
Every variable appearing in B is alsoin BT
ii) (induction} »
database predicates: If some variable in database predicate is in
B then all the other variables are in B,
comparison predicates: If we have an equality, such as
=-expression or ezpression=x, and all the variables in
ezpressions are in B, then z is in B as well.

Let P be a predicate in the body of r;. Then, an argument of P
will be said to be bound by B when all its variables are bound by
B. If all arguments of P are bound by B then the predicate P is
solved by B.
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Consider again a rule r;. Let S denote a set of bound arguments
in the head of r;. Then we say that ri is solved by S if all its vari-
ables are bound by the variables in Bs U B, U B; where:

By are the bound variables in the head (i.e., those contained in
the S-arguments),

B, are the variables of c-predicates in the body of r; (if any), and
B; are the variables of database predicates in the body of r,.

Let S be the bound arguments in the head predicate of 7; and B
the (bound) variables in these arguments. Moreover, let T denote
the set of arguments bound by B in a c-predicate occurrence P,
Then we will say that r; maps the set of bound arguments S of its
head, into the set of bound arguments T of P.

Say for instance that the first argument of SG is bound in Figure
1. Then B = {z},i.., z is bound. Moreover, z, is bound by B
via the database predicate P. Thus in ro of Figure 1, the bindings
propagate from SG! to SG}. Thus P (z,z,) is a solved predicate in
7o, Whereas P (y,y,) is not. H(z ) is solved in ri.

3.2. Binding Graph of a Query

The binding graph of a query is a directed (multi-)graph having
nodes of the form P5 where P is & c-predicate symbol and §
denotes its bound arguments, and whose arcs are labeled by the
pair [r;,v], where r; is the index to a recursive rule, and v is a
zero-base index to c-predicate occurrences in the body of this rule,
i.e, 0 is the index to the first c-predicate occurrence, 1 to the
second one, ete. (the zero base is chosen to simplify the counting
operations). The binding graph Mg for a query Q=< G ,LP D>
is constructed as follows:

i) IfS isthe non-empty set of bound arguments in G, then G ¥

is the source node of MQ ,

ii) If there exists a node RS in My and there is a (recursive) rule
r; in LP that maps the bound arguments of R into the bound
arguments 7' of the v-th c-predicate occurrence and this has
symbol P, then P7 is also node of Mg, and there is an arc
labeled [r;,v] from RS to PT.



115

Figure 4 shows a binding graph for a query SG 12 on the rules of
Figure 1, and Figure 5 shows the graph for a query MG Y2 on the
rules of Figure 2,

We can now enunciate our key property.

Binding passing property:

A query @ will be said to have the binding passing properly when
the following properties hold for each node RS of its binding
graph:

(a) S is not empty, and

(b) each (exit or recursive) rule r; such that the predicate symbol
of its head is R, is solved by S.

The binding passing property guarantees that (a) the bindings can
be passed down to any level of recursion, and that {b) all predicates
in the recursive rules can be solved either in the top-down or in the
bottom-up execution phase. Our examples in Figures 1 and 2, with
binding graphs of Figure 4 and 5, have the binding passing pro-
perty. However, the query

Rfa,y)¢
R(1,y) - R(w,z), Bly), y>w.
R(z,z) - Bfx).

does not have the binding passing property since R1—-R2 2% Our
binding graph is similar to the rule/goal graph described in [U2]
and is an extension of the query binding graph presented in [SZ1].

We point out that we assume that the binding passing pro-
perty needs to be checked only once for any given binding pattern
in the query (e.g., at compile time), moreover the following proposi-
tion guarantees that binding graphs can be constructed efficiently.
PROPOSITION 1 [SZ2). Let Q=<G,LP,D> be a query such
that there is a bound on the arity of the predicates in LP, then

a)  The binding graph of Q can be constructed in time linear in the
size of LP and G.

b)  The binding passing property of Q can be tested in time linear
in the size of LP. [
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G : SG(a, b)?

LP:
ro: SG(x, y)i- P(x, x1), P(y, y1), SG(x1, v1).

ry: SG(x, x):- H(x).

Binding Graph

[ro, 1]

Magic Rules
magic.SG1 2(a, b).
magic.SG1 2(x1, y1) :- magic.SG1 2(x, y), P(x,x1), P(y, ¥1).

Modified Rules
SG? 2(x, y) :- magic.SG1 2(x, y), P(x, x1), P(y, y1), SG1 2(x1, y1).
SG1 2(x, x) :- magic.SG1 2(x, x), H(x).

Figure 4. The magic set method for SG(a,b)?
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G: MG(L1, L, W)?

LP:
r0: MG(xey, x1oy1, x*w) :- MG(y, x1y1, W), X > X1.
rl: MG(xey, X101, Xt*w) :—= MG(xey, Y1, W), X < X1.
r2: MG(nil, x, x).
r3: MG(x, nil, x).

Binding Graph

[r0, 1]

Magic Rules

magic. MG1 2(L¢, Lp).

magic.MG1 2(y, x12y1) :- magic MG1 2(xey, x1¢y1), X > X1.
magic.MG1 2(xey, y1) :- magic.MG1 2(x*y, x1*y1), X < X1.

Modified Rules

MG1 2(xey, x10y1, x*W) :~
magic. MG1 2(xey, x1°y1}, MG1 2(y, X1°y1, W), X > X1.

MG1 2(xey, x10y1, X1%W) :— ‘
magic.MG1 2(xey, x1°y1), MG? 2(x*y, 1, W), X < X1.

MG1 2(nil, x, x) :- magic.MG1 2(nil, x).
MG1 2(x, nil, x) :- magic.MG1 2(x, nil).

Figure 5. Magic Set Implementation of the List Merge
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4. The Magic Set Method.

‘We now present a method to implement logic queries which have
the binding passing property defined in the previous section. The
method presented next extends the magic set method deseribed in
[BSMU1, BSMU2| and [SZ1] to include function symbols, com-
parison predicates, and nested recursive queries.

The objective of the general magic set method is to transform the
query Q =< G ,LP,D > into a query @ =< G ,LP ,D > which has
the same answer as @ . This transformation is performed at compile
time, following, and guided by the results of, the binding graph
analysis. A set of new rules, called the magic rules, defining various
magic predicates is generated. Moreover, every rule of LP is
transformed into a modified rule by the addition of a magic predi-
cate to the rule body. At run time, the magic rules execute the
propagation of bindings, while the successive bottom-up evaluation
of the modified rules computes the answer, having some variables
constrained to range on sets generated by the previous phase.

4.1. Magic Rules

A number of new predicate symbols are introduced, one for
each node of the binding graph Mg of @ . They correspond to sets
of values (magic sets) which contain the propagated bindings. The
magic set corresponding to a node RS of Mg has arity equal to
| $ | and is denoted by magic.R §. The magic sets are computed
by means of the magic rules.

Fxit Magic Rule:

The first magic rule is generated by the source node in Mg, say PS
which corresponds to the query goal. Say that the query goal has
n=|S5 | >1 bound arguments with respective values a, - - ,q,.
(Here and elsewhere, arguments as well as variables are listed in the
order they appear in the predicate or in the rule.) Then we add the
following clause for the magic set:

magic.PS(ay, - - * ,8,)-

Recursive Magic Rules:
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There is a recursive magie rule for each arc in My as follows: for an
arc labeled [r;,7] from node R to node P T, we add the rule

magic.PT(yl, Cey ) - magic.RS(:rl, 2. )y Q@ @y
where:

i) =y ...,z, are the bound arguments in the head of r; (i..,
those in ),

il) g -,y are the bound arguments in the j-th c-predicate of
r; (ie., those in T'),

ili) @,, - ,Qs are the datum predicates of r;, solved by the
variables in the bound arguments S .

Informally described, the magic rules are constructed by removing
all unsolved datum predicates, all c-predicates but the j-th one, by
exchanging this c-predicate with that in head, and by removing the
bound arguments in these two predicates. Note that, while there
are as many magic rules as arcs in the graph, their head predicates
are only as many as there are nodes in the graph — see Figures 5
and 6 for an example.

4.2, Modified Rules and Goal:

Modified Recursive Rules:

A number of new predicate symbols are introduced, one for each
node in My, to replace the ¢-predicate symbols in LP. For each
node in Mg, there are as many modified rules as there are bundles
of arcs labeled with the same rule, leaving the node. Thus, let B ¥
be a node in My and r; be the label of a bundle of arcs leaving R S
(thus r; is a recursive rule with head predicate symbol R ); then,
each original rule r; is modified by the addition of a magic predi-
cate to the body of the rule, as follows:

RS('TI! o szn) — magic.RS(zI, tr ,Z[),Pl, Py @@
where:
(i) #y -,z are the bound arguments in the head of r; {i.e.,
those in S'),
(i) Py, - -,P. are the original c-predicates each adorned by its

bound arguments, and
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(iii) @y, -+ -,Qy are the remaining predicates, i.e.,, all datum
predicates.
Modified Exit Rules:

Say that RS is & node of Mg and there is an exit rule r; with
head predicate symbol R. Then we meodify the original rule r; by

(i) replacing the predicate symbol B by R ¥, and
(i) adding the goal

magic. RS (2, - -+ ,z,)

to its body, where ©, - - - ,z, are the bound arguments in the
head of r;

Modified Goal

If the source node in My is PS5 then the modified goal becomes
P%(z1, - ,z,)where z, - - - +&, denote all arguments (bound or
unbound) in the query goal.

- Examples of the Magic Set method are in given in Figures 4, 5 and
6.

4.3. Properties of the Magic Set Method

From a formal viewpoint, the Magic Set Method can be viewed as a
rule rewriting system. In this framework, both the original set of
Horn Clauses and the modified one have a pure fixpoint-based
semantics that defines the sets of answers satisfying the query [VK]
(arithmetic predicates can be treated in this framework as being
defined by infinite comparison relations over complex arithmetic
terms [Z3]). Then we can prove the following basic result [SZ2]:

THEOREM 1. Let Q@=<G,LP, D> be a query and
Q=<G,[P,D> be the query modified by the magic set method.
Then Q@ and Q compute the same answer.

PROOF. The proof follows the lines of that given in [SZ2] for
showing that the query modified by the generalized counting
method computes the same answer as Q.0

Theorem 1 only establishes the logical correctness of Q. The fact
that ©@ has the desired characteristics, e.g., uses only matching, is
guaranteed by the binding passing property. When this property
holds, the magic set method prescribes an abstract computation
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G : P(a, y)?

LP:
ro: P(X, y) - Bl(x, w, X'I), Q(X‘l, y)s B2(w, X2): Q(x2' Y)s BS(Y, Z)‘

ri: Q(x, y) - B4(x, z), P(z, v).
rz: P(x, y) :~ B5(x, y).
Binding Graph

Magic Rules

magic.P1(a).

magic.Q1(x1) = BI1(x, w, x1), B2(w, x2), magic.P1(x).
magic.Qi(x2) :- Bl{x, w, x1), B2(w, x2), magic.P1(x).
magic.P1(z) :- B4(x, z), magic.Q1(x).

Modified Rules

Pl (x, y) :~
magic.P1(x), Bi(x, w, x1), Q1(x1, ), B2(w x2), Q1(x2, ¥), B3(y, z).

Q1 (%, y) :- magic.Q! (x), B4(x, z), P1(z, ).
Pt (%, y) :- magic.P1(x), B5(x, y).

Figure 6. The Magic Set Method for Francois’ Example
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plan having some desirable performance characteristics. First of all,
the magic set rules and modified rules can be generated efficiently:

PROPOSITION 2. Let Q=<G,LP,D> be a query that has the
binding passing property and let there be a bound on the arity of the
predicates in LP. Then the general magic set method constructs
the modified query Q =< & ,LP,D > in time linear in the size of
LP.

PROOF. There are at most two rules for each arc in the bind-
ing graph. By Proposition 1 the number of arcs is O (s +g¢ ), where
s is the size of LP and g is the size of G. Furthermore, it is easy
to see that a recursive or modified rule can be constructed while
reading the rule. Hence the modified query is constructed in time
linear in the size of LP and G.qQ

The performance of the magic set method versus  alternate
approaches has been studied in [BR), where it was shown that it is
clearly superior to the fixpoint computation, but not as efficient as
the generalized counting method [SZ2] and the well-known method
of [HN] when duplicates do not occur in the generation of the magic
sets and /or of the answer. The magic set method is however better
at handling duplicates and also has the important property that it
guarantees safety in situations where other methods do not (see dis-
cussion in Section 7). An improvement of the magic set method
designed to enhance its performance is discussed in the next section.

5. The Minimagic Method

The magic set method tends to compute the solved predicates
twice. Omnce in the computation of magic sets, and a second time in
the final fixpoint computation. For example in Figure 5 the > and
< predicates are repeated in the Magic Rules and modified Rules.

These problems can be solved by using two sets of specialized magic
predicates, as follows:

(i) The supplementary magic predicates record useful results
obtained during the top down phase, and are thus used in the
recursive modified rules.

{ii) The minimagic predicates are derived from the above and used
in the generation of modified exit rules.
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Therefore the minimagic method transform query
Q=<G,LP,D > that has the binding passing property into a
query @ =< G,LP,D > which has the same answer as ¢

5.1. Minimagic and Supplementary Magic Rules
Minimagic Exit Rule:

The first minimagic rule is generated by the source node in Mg, say
P% which corresponds to the query goal. Say that the query goal

has n=|8|>1 bound arguments with respective values
ay, " - 0, . Then we add the following clause:
minimagic.PS(ay, -+ ,a, ).

Supplementary Variables:

Given 2 rule r; and its head predicate bindings S, the supplemen-
tary variable set contain all the bound variables that are to become
useful in the second (bottom up) phase, thus including:

Vy: the variables appearing in the head,
Vy: the variables appearing in some unsolved datum predicate,
Vi : the variables appearing in some c-predicate of the body.

If V5 denote the set of all bound variables ir r;, then the set of
supplementary variables is:

Ve =YsN(VaUVorUVc)

Thus, V,, contains all solved variables but those that only appear

in solved datum predicates. For instance in the rule rg of Figure 6,
the variable w will be left out of V.

Supplementary Magic Rules:

There is a supplementary magic rule for each node R 5 in My and
each bundle of arcs labeled with the same rule name, say r;, leaving
RS (thus r; has B as head predicate symbol).

supmagic.RS iy W)
minimagic. RS (zy, - 2, )y Qv @

where:
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i) =z, ...,%, are the bound arguments in the head of r; (ie.,
those in §),
i) @, '-,@, are the datum predicates of r;, solved by the

variables in the bound arguments S.
iii) y,, ' -,y arethe supplementary variables.
Minimagic Rules:
The minimagic sets are computed from the set of supplementary
magic predicates. There is a minimagic rule for each arc in My.
For an arc from node RS to node P T, with label [r;,7] we add a
rule

minimagic.PT(zq, -+ 12 ) - supmagic.RS r;(y1, - ,u)

where:

i) 2z, ,% are the bound arguments in the j-th predicate of
r; (i.e., those in T), while

il) y,, -, are the supplementary variables for rule r; with
head bindings S.

5.2, Modified Rules for the Minimagic Method

Modified Recursive Rules:

A number of new predicate symbols are introduced, one for each
node in My, to replace the ¢-predicate symbols in LP . For each
node in Mgy, there are as many modified rules as there are bundles
of arcs from the node labeled with the same rule name. Thus, let
R¥ be anode in Mg and r; be the label of a bundle of ares leaving
R¥ (thus r; is a recursive rule with head predicate symbol R);
then, the original rule r; is replaced by:

RS(II, P ’xn) —
supmagic.RS.r,-(yl, e ’y_l)! Py P, Qo '@
where:
(i) yy -,y denote the supplementary variables in 7; given

that the bound arguments in the head are S.

(i) Py, - - -,Pp are the original c-predicates each adorned by its
bound arguments, and
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(iii) @4, - - - ,Q, are the unsolved datum predicates.

Modified Exit Rules:
Say that RS is a node of My and there is an exit rule r; with
head predicate symbol R. Then we modify the original rule r; by

(i) replacing the predicate symbol R by RS in the head of the
rule, and

(ii) the addition of the goal
minimagic.R 5 (zq, - - - ,x,)

to its body, where z, - - - ,z, denote the bound arguments in
the head of r;

Modified Goal:

If the source node in My is PS then the modified goal becomes
P5(z1,---,2,) where z,, - - ,z, denote the arguments (bound
or unbound) in the query goal.

Figures 7,8,9 and 10 give some examples of the application of the
minimagic method.

From a formal viewpoint, the minimagic method has properties
similar to those of the magic set method since it preserves the
equivalence of queries (as per Theorem 1) and the modified program
can be constructed in polynomial time (as per Proposition 2). The
minimagic method is similar to the Alexander method [RLK], also
discussed in [{BeR]. '

6. Arbitrary Datum Predicates.

As previously mentioned, datum predicates need not be restricted
to database and comparison predicates; all is required is that these
predicates can be solved independently of the recursive clique under
consideration, For instance, the technique presented in [Z3] can be
used to deal effectively with neon-recursive rules possibly containing
function symbols. That technique also comsists of (i) 2 binding
passing analysis, and (ii} a modified execution plan. Said binding
passing analysis is based on a (functional) dependency model that
determines what other variables are bound conce an initial set is
given, using a computationally efficient closure algorithm. (Thus it
represent a generalization of binding propagation rules described in
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G : SG(a, b)?

LP:
ro: SG(x, y):- P(x, x1), P(y, y1), SG(x1, y1).

ri: SG(x, x):- H{x).

Binding Graph

Minimagic and Supplementary Magic Rules
minimagic.SG1 2(a, b).

supmagic.SG1 2.ry (x, y, x1, y1) -
minimagic.8Gt 2(x, y), P(x, x1), P(y, y1).

minimagic.8G1 2(xq, y1) :- supmagic.SG1 2.r1(x, v, x1, yi).

Modified Rules
SG1 2(x, y) :- supmagic (x, y, X1, y1), SG 2(x1, y1).
SG1 2(x, x) :~ minimagic.SG1 2(x, x,), H(x).

Figure 7. The Minimagic Set Method for SG(a,b)?
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G : MG(L, Lp, W)?

LP:

10: MG(xey, x1°y1, x*w) := MG(y, X1%¥1, W), X > X1.
rl: MG(xey, x1°y1, X1*W) = MG(xey, vy, W), X < X1.
r2: MG(nil, x, x).

r3: MG(x, nil, x).

Binding Graph [r1, 1]

[ro, 1]

Minimagic and Supplementary Magic Rules
minimagic.MG1 2(L4, Lj).

supmagic.MG1 2.rg (x, y, x1, y1) :-
minimagic.MG1 2(xey, X1oy4), X > X1.

supmagic.MG1 2.ry (x, v, x1, y1) :-
minimagic.MG1 2(xsy, X1°y1), X < Xj.

minimagic. MG1 2(y, xyey3) :- supmagic. MG1 2.rg (%, y, X1, y1).
minimagic. MG1 2(xsy, y1) :- supmagic.MG? 2.ry (x, y, X1, ¥1).
Modified Rules

MG1 2(xsy, X1°y1, Xow) :-
supmagic.MG1 2.rg (x, ¥, X1, y1), MG1 2(y, xsey1, W).

MG1 2(xsy, xq*y1, X*w) :-
supmagic.MG1 2.ry (, y, X1, 1), MG1 2(x+y, y1, ).

MG1 2(nil, x, x) :- minimagic.MG1 2(nil, x).
MG1 2(x, nil) :- minimagic. MG1 2(x, nil).

Figure 8. Minimagic Set Implementation of the List Merge.
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G : P(a, y)?

LP:
ro: P(x, ) := B1(x, W, x1), Q(x1, y), B2(w, x2), Q(x2, ¥), B3, 2).

r1: Q(x, y) - B4(x, 2}, P(z, y).
r2: P(x, y) :- B5(x, y).

Binding Graph

Minimagic and Supplementary Magic Rules
minimagic.P1 (a).

supmagic.Pl.rg (x, y, X1, x2) :-
minimagic.P1(x), B1(x, w, x1), B2(w, X2).

supmagic.Ql.ry (x, z) :- minimagic.Q1(x), B4(x, z).
minimagic.Q1(xy) :- supmagic.P1.rg (x, x1, x2).

minimagic.Q1(x3) :- suﬁmagic.PLro (x, x1, X2).

minimagic.P1(x) :- supmagic.Ql.ry (x, z).

Modified Rules

Pi(x, y) :- supmagic.P1.ro(x, x1, x2), Q1(x1, ¥), Qi(xz, y), B3(, 2)
Q1(x, y) :- supmagic.Qt.r1(x, z), Pi(z, y)-

P1(x, y) :- minimagic.P1(x), BS(x, ).

Figure 9. The Minimagic Set Method for Francois’ Example.
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Section 3.1.) Given a set of bound variables in a recursive rule we
can therefore use the algorithm in [Z3] to determine the remaining
bound variables in non-recursive predicates.

Let us consider now the problem of determining whether recursive
predicates (not in the same recursive clique as our c-predicates), can
be used as solved datum predicates. This tantamounts to determin-
ing whether the corresponding goal in the rule can be solved for the
given set of bindings. To this end, we can apply the known tech-
niques for solving recursive predicates, in particular the methods
described here. Take for instance a query G: MG (L., L,, X),
defined against a LP consisting of the rules of Figure 2 and 3 com-
bined. Then, in order to solve this query, we will also have to solve
the goal G 2: C;<C,, where C| and C, stand for arbitrary con-
stants. Thus we get the modified set of rules of Figure 10.
G C;< C,t
LP:
ez <s(z).
rez<s(y)-z<y
Binding Graph:
[re:1]

Minimagic and Supplementary Magic rules:
mintmagic. <1%(C,,C,)
supmagic. <¥%.r (z,y ):- minimagic. <V¥(z,5(y))
minimagic. <“*(z,y )i~ supmagic. >12.r 1(z,y)
Modified Rules and Goal:
<Mz 5 (y ))i- supmagic. < %.r1(x 5 (4)),< %z ¥ ).
<Yz 8 (z ))i-minimagic. <(z,s (z)).
G: <MC,,Cy)?
Fig. 10. Implementation of the "less-than” rules of Figure 3.

For a complete implementation plan, the goals x <z, in the rules
in Figure 5 and 8, must be given a suitable interpretation that basi-
cally links those rules with those of Figure 10. For instance, for
Figure 10, said goal could be redefined as follows:
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z <1, assert (minimagic. <}z ,z,)), <V¥(z,z)).

7. Safety of Queries

A safe query is one that generates only a finite number of answers.
Safety for recursive queries with function symbols is undecidable;
thus the best a person can do is to provide sufficient conditions that
cover the cases of practical interests. OQur domain of interest con-
sists of recursive queries having the binding passing properties for
which we want to ensure that the our methods will terminate. Note
that the magic set (the minimagic) method recast the original query
Q into two fixpoint computations: whenever both these computa-
tions terminate in a finite number of steps, we will say that the
magic set method (the minimagic method) is sefe w.r.t. to the query
Q.

Thus, the following two propeérties follow immediately from the
definitions:

PROPOSITION 3. The magic set (the minimagic method) is safe
w.r.t. ¢ query having the binding passing property if and only if the
magic sel (minimagic set) firpoint computation converges tn ¢ finite
number of steps.

PROPOSITION 4. The magic set method is sefe w.r.t. to a query
Q having the binding passing property if and only if the minimagic
method is safe w.r.t. Q.

Thus any safety property discussed next, that holds for the magic
set method also holds for the minimagic method (and vice versa).

We will now limit our attention to datum predicates are either
database predicates or comparison predicates. We can thus state
the following sufficient conditions for safety:

PROPQSITION 5. Let Q=<G,LP,D> be a query having the
binding passing property. A sufficient condition for the magic set to
be safe with respect to Q 1s that every recursive rule in LP does not
have any function symbol in its body. This condition can be tested in
time polynomzial in the size of LP.

Proposition 5 expresses a more general condition for safety than
that given in [U2] where the absence of function symbols on the
right hand side of rules must be complemented with additional
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conditions to guarantee safety.

Using Proposition 5, it is easy to see that the magic set method is
safe with respect to the same generation query (Figure 1}, the Fran-
cois’ query (Figures 6 and 9) and the less-than query (Figure 10).
On the other hand, this proposition does not guarantee the safety
of the magic set method with respect to the list-merge query (Fig-
ure 2). Therefore, we need to generalize Proposition 5 as follows.
Say that z is a subcomponent of y if either ¥y=z, or
y=f(zy, - ,r,) with = a subcomponent of z; for some
1<1<n. Also observe that the body of of each recursive magic
rule contains exactly one magic predicate. Thus,

PROPOSITION 6. Let Q@ be a query having the binding passing
property and Q be the modified query according to the magic set
method. If for each recursive magic rule 7;, each complex argument
z of the head of F‘l, T 15 o subcomponent of some argument of the
magic predicate in the body of ¥, then the magic set method is safe
w.r.t. @. This condition can be tcstcd tn time polynomial in the size

of §.

Thus, by Proposition 6, the magic set method is safe with respect
to the list-merge query (Figure 2). This proposition is very useful
for determining the safety of recursive predicates with function
symbols, including typical situations, such as appending two lists
and searching and manipulating trees and lists. An interesting area
of further research is finding more general sufficient conditions for
the magic set method to be safe.

8. Conclusion

The numerous methods proposed for supporting recursion in logic
based languages were reviewed and their performance compared in
a recent study [BR]. This study indicates that the magic counting
method is one of the techniques most generally applicable and, in
terms of performance, it ranks above most other methods, but
below the counting method. The last result has been also confirmed
in [MPS]. However, the magic set method remains the method of
choice, since it is safe in all cases where the counting method is, and
it is also safe in situations where the counting method fails to ter-
minate (e.g., when there are cycles in the database). The minimagic
method here introduced improves on the magic set method by
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removing redundant work while retaining its advantages in terms of
safety and generality. Current research attempts to generalize the
magic counting method [SZ1] that merges the magic set (or
minimagic) method with the counting method to obtain the
strengths of both [SZ3].
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