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Abstract

Non-deterministic extensions are needed in logic-based languages, such as First-Order

relational languages and Datalog, to enhance their expressive power and support the

eÆcient formulation of low-complexity problems and database queries. In this paper,

we study the semantics and expressive power of the various non-deterministic constructs

proposed in the past, including various versions of the choice operator and the witness

operator. The paper develops a model-theoretic semantics, a �xpoint semantics, and an

operational semantics for these constructs, and characterizes their power of expressing

deterministic and non-deterministic queries. The paper presents various soundness and

completeness results and establishes an expressiveness hierarchy that correlates the vari-

ous operators with each other, and with other constructs, such as negation and �xpoint.

Keywords and phrases. Deductive databases, logic{based languages, non-determinism,

expressive power, operational semantics, declarative semantics, �xpoint.

ACM-CR Subject Classi�cation. D.1.6, I.2.3, H.2.3, F.1.3, F.3.2, F.3.3

1 Introduction

Two main classes of logic-based languages have been extensively investigated as the theo-

retical basis for relational database languages and their generalizations. One is the class

of �rst-order FO languages, which are based on the relational algebra. The other is the

class of Datalog languages, which are endowed with an elegant semantics based on notions

such as minimal model and least �xpoint. In many respects, these two lines of research on

database languages have faced similar problems and evolved along parallel and closely related

directions.
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A common focus of research has been on constructs that enable the expression of PTIME

algorithms. Many PTIME problems that could not be expressed in relational algebra (e.g.,

transitive closures) can be expressed using recursive Datalog rules, or through the addition

of a �xpoint operator in FO. But even after the introduction of a �xpoint operator, many

PTIME queries, such as the parity query, cannot be expressed unless a total order on the

database is assumed, thus compromising the data-independence principle of genericity [7, 5].

Symmetrically, the parity query, and many others low-complexity queries, cannot be ex-

pressed in Datalog with strati�ed negation. However, non-deterministic constructs provide

a very e�ective vehicle for achieving PTIME; this observation led to the parallel but in-

dependent introduction of a witness operator for FO languages and a choice operator for

Datalog.

The work of Abiteboul and Vianu [1, 2, 3, 4] brought into focus the need for having non-

deterministic operators in such languages in addition to recursion or �xpoint. Therefore,

they proposed the non-deterministic construct called the witness [2, 3, 4] for the �xpoint

extensions of FO. They also proposed a non-deterministic procedural semantics for Datalog:

(�a la production systems), giving rise to the class of N Datalog languages. The referenced

work also characterized the expressive power of languages with these constructs for both

deterministic and non-deterministic queries.

Concurrently, the quest for enhancing the expressiveness of Datalog led to the introduction

of the choice construct in the logic database language LDL [27]. This proposal extends

the procedural (bottom-up) semantics of deductive databases in such a way that a subset

of query answer is chosen, on the basis of a functional dependency constraint. Successive

studies showed that several improvements were needed. Therefore, the original proposal by

Krishnamurthy and Naqvi [26] was later revised by Sacc�a and Zaniolo [29], and re�ned in

Giannotti, Pedreschi, Sacc�a and Zaniolo [16]. These studies also exposed the close relation-

ship connecting nonmonotonic reasoning with non-deterministic constructs, leading to the

de�nition of a stable-model semantics for choice. While the declarative semantics of choice

is based on stable model semantics, choice is amenable to eÆcient implementations, and it is

actually supported in the logic database languages LDL and LDL++ [27, 9].

So far, no comprehensive study had been produced, which analyzes and compares non-

deterministic constructs such as choice and witness operators. In this paper, therefore, these

operators are systematically studied, with the aim of:

� clarifying the relationships among their procedural, declarative and �xpoint semantics,

and

� comparing their power of expressing deterministic and non-deterministic queries.

More precisely we will compare:

� Datalog with static choice, i.e., the choice construct in [26], both without negation, and

with strati�ed negation.

� Datalog with lazy dynamic choice, i.e., the choice construct in [29], both without nega-

tion, and with strati�ed negation.
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� Datalog with eager dynamic choice, i.e., the choice construct in [16].

� FO + W(itness) and in
ationary �xpoint IFP .

� The positive existential calculus FO+ + W(itness) and in
ationary �xpoint IFP .

This analysis will be performed for both deterministic and non-deterministic queries.

A non-deterministic query is one which has more than one acceptable answer. A relevant

example of such a query is the construction of an arbitrary total ordering relation for the

constants in the universe of interest. For a universe with n constants, there are n! acceptable

answers that can be returned for such a query.

A deterministic query is one which admits only one correct answer. Without non-deterministic

constructs, Datalog can only compute deterministic queries. On the other hand, a Datalog

program with non-deterministic constructs might produce a deterministic query. In fact, non-

deterministic operators are also essential for expressing deterministic low complexity queries,

such as determining the parity or the cardinality (or other set-aggregation functions) of a

given relation.

We establish a hierarchy of increasing expressiveness. First, we prove that Datalog with static

choice has the same expressiveness as the non-deterministic �xpoint extension of the positive

fragment of FO. Second, we recall a result from [12, 17] and observe that Datalog with eager

dynamic choice has the same expressiveness as the non-deterministic �xpoint extension of

FO|a language which is known to express exactly the non-deterministic polynomial-time

queries NDB-PTIME. Third, we show that Datalog with lazy dynamic choice exhibits an

intermediate expressiveness.

In addition to the systematic analysis of the expressive power of non-deterministic constructs,

this paper presents a novel characterization of non-deterministic bottom-up evaluation of dy-

namic choice programs, by introducing an immediate consequence operator which uni�es

the procedural, declarative and �xpoint-based semantics for choice. In particular, we prove

soundness and completeness of the procedural semantics with respect to the intended declar-

ative semantics, based on stable models. This allows us to prove the monotonic behavior of

programs with lazy dynamic choice.

The outline of the paper is as follows. In Section 2 we provide some background on Datalog

semantics, relational calculus and query complexity. In Section 3 we brie
y review the non-

deterministic witness operator for relational calculus, while in Section 4 we review the static

choice construct for Datalog. Section 5 presents a �rst batch of expressiveness characteri-

zations, pointing out the similarity between witness and static choice. The dynamic choice

construct and its declarative semantics based on stable models is reviewed in Section 6, while

its expressiveness is discussed in section 7. In Section 8, the �xpoint-based semantics of

dynamic choice is formalized and shown equivalent to the declarative semantics, and the two

di�erent versions of the dynamic choice, lazy and eager, are characterized. Finally, Section 9

presents the expressiveness characterization of lazy and eager dynamic choice, together with

the overall expressive power hierarchy of the non-deterministic extensions of Datalog.
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2 Background

We assume that the reader is familiar with the relational data model and associated algebra,

the relational calculus (i.e. the �rst-order queries, denoted FO), and Datalog [5, 23, 30,

10, 13]. The basic semantics of Datalog consists in evaluating \in parallel" all applicable

instantiations of the rules. This is formalized using the immediate consequence operator TP
associated to a Datalog program P , which is a map over (Herbrand) interpretations de�ned

as follows:

TP (I) = f A j A B1; : : : ; Bn 2 ground(P ) and I j= B1 ^ : : : ^Bn g:

The upward powers of TP starting from an interpretation I are de�ned as follows:

TP " 0(I) = I

TP " (i+ 1)(I) = TP (TP " i(I)); for i � 0

TP " !(I) =
G

i�0

TP " i(I):

The least model MP of a positive program P is equal to TP " !(;) which we will also

abbreviate to TP " !.

The in
ationary version of the TP operator is de�ned as follows:

T 0P (I) = TP (I) [ I:

For programs without negation, TP " ! = T 0P " ! =MP . This equality no longer holds for the

language Datalog: which allows the use of negation in the bodies of rules. In this case, many

alternative semantics can be adopted. One possibility is the so called in
ationary semantics

for Datalog: which adopts T 0P " ! as the meaning of a program P . Other alternatives are

well-founded semantics, and stable model semantics. In this paper, we use the stable model

semantics of Datalog: programs, a concept originating from autoepistemic logic, which was

applied to the study of negation in Horn clause languages by Gelfond and Lifschitz [14]. To

de�ne the notion of a stable model we need to introduce a transformation which, given an

interpretation I, maps a Datalog: program P into a positive Datalog program groundI(P )

obtained from ground(P ) by

� dropping all clauses with a negative literal :A in the body with A 2 I, and

� dropping all negative literals in the body of the remaining clauses.

Next, an interpretation M is a stable model for a Datalog: program P i� M is the least

model of the program groundM (P ). In general, Datalog: programs may have zero, one or

many stable models. We shall see how multiplicity of stable models can be exploited to give

a declarative account of non-determinism.

A word on the terminology and notation used in the �xpoint extension of the relational

calculus|or �rst-order logic (FO) interpretation of the relational data model|is in order.

The in
ationary �xpoint operator IFP is de�ned as follows. Let � be a FO formula where
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the n-ary relation symbol S occurs. Then IFP (�; S) denotes an n-ary relation obtained

as the limit of the sequence J0; : : : ; Jk; : : :, de�ned as follows (given an interpretation, or

database instance, I):

� J0 = I(S), where I(S) denotes the set of tuples of S in the interpretation I, and

� Jk+1 = Jk [ �(I[Jk=S]), for k > 0, where �(I[Jk=S]) denotes the evaluation of the

query � on I where S is assigned to Jk.

It is important to observe that IFP converges in polynomial time on all input databases.

First-order logic augmented with IFP is called in
ationary �xpoint logic and is denoted by

FO+IFP. The queries computed by the language FO+IFP are the so-called �xpoint queries,

for which various equivalent de�nitions exist in the literature [7, 20].

Close connections exist between the �xpoint FO extensions and the Datalog extensions [4]:

Datalog: under in
ationary �xpoint semantics expresses exactly the �xpoint queries, i.e., it is

equivalent to FO+IFP. This implies that Datalog: under the in
ationary �xpoint semantics

is strictly more expressive than Datalog with strati�ed negation, as the latter is known to

be strictly included in FO+IFP [25]. Moreover, Datalog is equivalent to FO++ IFP , where

FO+ denotes the positive existential calculus, namely the negation-free, purely existential

fragment of FO [8].

Following [4, 5], the complexity measures are functions of the size of the input database.

We denote by NDB-PTIME the class of (non-deterministic) database queries that can be

computed in polynomial time by a non-deterministic Turing transducer such that, for each

input, each branch of the transducer's computation halts in an accepting state. It is important

to avoid confusing the class NDB-PTIME of non-deterministic queries with the DB-NP of

deterministic queries computed by non-deterministic devices. Intuitively speaking, any query

in NDB-PTIME can be evaluated by means of don't care non-determinism: at any choice

point, any non-deterministic choice will lead to some acceptable outcome|so no backtracking

is needed. Analogously, DB-PTIME is the class of (deterministic) database queries that can

be computed in polynomial time by a deterministic Turing transducer. A question, among

others, that remains unsolved is whether a deterministic language exists, capable of expressing

exactly the queries in DB-PTIME.

3 The Witness Operator

A non-deterministic extension of FO proposed by Abiteboul and Vianu is based on the

witness operator [3, 4].

Let R be a relation (instance) over some attribute set U = X [ Y , where X and Y are

disjoint. Then, the witness operator, WX(R), selects one tuple t 2 R for each t[X] 2 �X(R).

Therefore,WX selects a maximal subset R0 � R satisfying the functional dependency Y !X.

Example 3.1 Our TinyCollege database contains the two binary relations student and

professor. The �rst column in student contains the student name and the second column

gives his/her major. The �rst column in professor contains his/her name and the second
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column his/her area of research. In fact, let us say that our database consists only of the

following facts:

student(marc; ee): professor(ohm; ee):

student(bianca; ee): professor(bell; ee):
(1)

Next, assume that we want to write an expert system that assigns advisors to all students

according to some simple rules. A �rst rule is that the major of a student must match his/her

advisor's area. Then, eligible advisors can be expressed by the FO equivalent of:

elig adv = �$1;$4(student ./$2=$2 professor) (2)

Thus for the previous database, we obtain:

elig adv(marc; ohm):

elig adv(marc; bell):

elig adv(bianca; ohm):

elig adv(bianca; bell):

But, the second rule is that a student can only have one advisor. Thus we must now use the

operator W$2 to express the fact that, in the actual advisor relation, the second column (pro-

fessor name) is functionally dependent on the �rst one (student name). Thus, the assignment

of an actual advisor might be performed through the following relational algebra+witness

(FO+W) expression:

actul adv = W$2 (�$1;$4(student 1$2=$2 professor)) (3)

The result of executing this expression is non-deterministic. It yields a relation consisting of

one of the four following sets of tuples: f(marc; ohm); (bianca; ohm)g f(marc; bell); (bianca; ohm)g,

f(marc; ohm); (bianca; bell)g f(marc; bell); (bianca; bell)g. 2

4 Datalog and Static Choice

The choice construct was �rst proposed by Krishnamurthy and Naqvi in [26]. According to

their proposal, special goals, of the form choice((X); (Y )), are allowed in Datalog rules to

denote the functional dependency (FD) X ! Y . The meaning of such programs is de�ned

by its choice models, as discussed next.

In Datalog, eligible advisors of Example 3.1 can be computed by the following rule:

elig adv(S; P)  student(S; Major); professor(P; Major):

Then, using LDL's static choice construct [27], the goal choice((S); (P)) can be added to

the rule forcing the selection of a unique advisor for each student. The goal choice((S); (P))

denotes that the functional dependency S ! P must hold in actual adv:

Example 4.1 Computation of unique advisor by choice rules.

actual adv(S; P)  student(S; Major); professor(P; Major);

choice((S); (P)):
(4)

The above program has the following four choice models:
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M1 = factual adv(marc; ohm); actual adv(bianca; ohm)g [ DB,

M2 = factual adv(marc; bell); actual adv(bianca; ohm)g [ DB,

M3 = factual adv(marc; ohm); actual adv(bianca; bell)g [ DB,

M4 = factual adv(marc; bell); actual adv(bianca; bell)g [ DB.

where DB denotes the set of atoms in the database, i.e.,

DB = f student(marc; ee); student(bianca; ee); (5)

professor(ohm; ee); professor(bell; ee)g

Thus, the choice rule above produces the same result as the relational expression with

witness of Equation 3. 2

Static choice can therefore be viewed as a construct for declaring and enforcing FDs in

Datalog. In more operational terms, the programmer can also view choice as an actual table

used to memorize every pair (S; P ) produced by a rule such as that of Example 4.1; the table

is used to compare each new pair against the old ones and discard those whose addition would

violate the FD constraint. Facts produced by other rules with the same predicated name,

actual adv, are not compared against the old values in the table, since they are not subject

to the FD constraint declared by the choice goal in Example 4.1.

We now explain the semantics of the static choice construct. We shall see that the quali�cation

static for this choice operator stems from the observation that the choice is applied once and

for all, after a preliminary �xpoint computation. A choice predicate is an atom of the form

choice((X); (Y )), where X and Y are lists of variables (note that X can be empty). A rule

having one or more choice predicates as goals is a choice rule, while a rule without choice

predicates is called a positive rule. Finally, a choice program is a program consisting of

positive rules and choice rules.

The set of the choice models of a choice program formally de�nes its meaning. The main

operation involved in the de�nition of a choice model is illustrated in Example 4.1. Basically,

any choice model can be constructed in two steps. First, by using the rule (4) for actual adv

where the choice goal has been dropped, the set of all possible actual adv facts is computed.

Then, the basic operation of enforcing the FD constraints is performed, by selecting a maximal

subset of the previous actual adv facts that satis�es the FD S ! P .

For the sake of simplicity, assume that P contains only one choice rule r, as follows:

r : A B(Z); choice((X); (Y )):

where B(Z) denotes the conjunction of all the non-choice goals of r, and Z is the vector

of variables occurring in the body of r (hence Z � X[Y .) The positive version of P , denoted

by PV (P ), is the positive program obtained from P by dropping all choice goals. Positive

programs admit least models, and therefore we can consider the set MP , denoting the least

model of the positive program PV (P ). Next, we can construct the set CP of choice facts
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which are related to instances of B(Z) which are true in the least model, formally de�ned as

follows:

CP = f choice((x); (y)) j MP j= B(z)g

where x, y and z are vectors of values such that z � x [ y, since Z � X [ Y . Finally, we

consider a maximal subset C 0P of CP satisfying the FD X ! Y . Under these hypotheses,

a choice model of P is de�ned as the least model of the program P [ C 0P , i.e., program P

extended with the set of choice facts speci�ed by C 0P . Observe that the program P [ C 0P
admits a least model as it is a positive program.

Thus, computing with the static choice entails three stages of a bottom-up procedure. In

the �rst stage, the saturation of PV (P ) is computed, ignoring choice goals. In the second

stage, an extension of the choice predicates is computed by non-deterministically selecting

a maximal subset of the corresponding query which satis�es the given FD. Finally, a new

saturation is performed using the original program P together with the selected choice atoms,

in order to propagate the e�ects of the choice made.

Because of its static nature, this form of choice becomes ine�ective with recursive rules, in

the sense that the combined use of recursion and static choice does not buy extra expressive-

ness. The following section, devoted to illustrate the close relationships between the witness

operator and the static choice, also clari�es the problem of static choice within recursion.

The solution to this problem, which is the subject of Section 6, consists of de�ning a new

declarative semantics for the choice construct.

5 Expressiveness Characterizations I

The similarities between the witness operator (in the context of FO) and the static choice

operator (in the context of Datalog) become obvious once we concentrate on FO+|the

positive existential fragment of FO where negation and universal quanti�cation is not used.

These similarities will allow us to extend the natural equivalence, expressed by the following

folk theorem [8, 5]:

Theorem 5.1 A query is expressible in Datalog i� it is expressible in FO+ + IFP . 2

Furthermore, safe FO+ formulas, or non recursive Datalog programs, are equivalent to expres-

sions in the monotonic fragment of relational algebra (i.e., RA without negation or division)

[30].

Positive Existential Calculus and Witness The witness construct, when added to lan-

guages which support negation, enhances expressiveness, inasmuch as it allows to compute

new deterministic and non-deterministic queries. Also, it has been recently shown that the

addition of W to FO (without recursion) allows to compute deterministic queries not ex-

pressible in FO.

However, when added to FO+, W does not extend the power of FO+ in expressing deter-

ministic queries. As discussed next, this observation hold both for FO+ and FO+ + IFP .
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Theorem 5.2 A deterministic query is expressible in FO+ i� it is expressible in FO++W .

Proof. Consider a deterministic query � in FO++W , and let I be the (unique) interpretation

which satis�es �. Consider next the (deterministic) query �0 in FO+, obtained from � by

removing any occurrence of a witness operator, and let J be the interpretation which satis�es

�0. Clearly, we have I � J , by the de�nition of W . We now prove that indeed I = J .

Assume by contradiction that there exists a tuple � such that � 2 J n I. By the de�nition

of W , I [ f�g 6j= FD, where FD denotes the set of functional dependency constraints of the

W operators in �. Next, consider K � I such that K [ f�g j= FD. Observe that such a K

exists: it can be constructed by removing from I the tuples which, together with �, violate

the FD's. As a consequence of the fact that FO++W is monotonic, there exists a maximal

interpretation I 0 satisfying FD such that K[f�g � I 0 � J . To conclude the proof, it suÆces

to observe that, by construction, I 6= I 0, and both I and I 0 satisfy �, which contradicts the

fact that � is a deterministic query. 2

Next, we observe that the above argument can be literally repeated in the case of the �xpoint

extension of FO+, thus obtaining the following result.

Theorem 5.3 A deterministic query is expressible in FO+ + IFP i� it is expressible in

FO+ + IFP +W . 2

In summary, when added to negation-free deterministic query languages, the witness opera-

tor's only contribution is to allow the expression of non-deterministic queries, with no bene�t

w.r.t. deterministic ones.

A similar, but more far-reaching result is that FO+ + IFP + W is equivalent to its sub-

language L consisting of the formulas where W does not occur within the �xpoint IFP op-

erator. In other words, in absence of negation, W has not e�ect within recursion|the only

meaningful use of W is after a �xpoint computation.

Theorem 5.4 A query is expressible in FO+ + IFP +W i� it is expressible in L.

Proof. It suÆces to show that any interpretation of the formula IFP (�; S), where � is a

formula in FO+ +W and S is a relation occurring in �, coincides with the (unique) inter-

pretation of IFP (�0; S), where �0 is the FO+ formula obtained by dropping all occurrences

of W in �. To this end, we observe that the monotonicity of FO+ implies that the exten-

sion of �0 at stage n of the �xpoint computation is included in the extension of �0 at any

later stage. As a consequence of the fact that the FD constraints of the witness operators

are not maintained through the �xpoint computation, we have that eventually all candidate

witnesses are selected. 2

The above result is based on the observation that the witness does not enforce the FD as a

global constraint upon the �xpoint iteration, but rather as as a local constraint on each step

of the iteration. Therefore, the witness operator has no e�ect in presence of monotonicity.

The absence of negation implies that no alternative is lost because of previously made choices,

and therefore every alternative is eventually selected in the �xpoint computation.
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Datalog with Static Choice Datalog programs with static choice are evaluated by �rst

disregarding the choice construct, and then selecting some subset of the answer which satis�es

the FD's. In other words, the choice is performed at the end of recursion. Say that we use the

term non-recursive choice to denote the situation where the choice construct only appears in

non-recursive rules. Then, we can state the following property:

Theorem 5.5 A query is expressible in Datalog with static choice i� it is expressible in

Datalog with non-recursive static choice. 2

This observation, together with Theorem 5.1, allows us to derive immediately an interesting

corollary of Theorem 5.4, namely that Datalog with static choice and FO+ + IFP +W are

equivalent query languages.

Theorem 5.6 A query is expressible in Datalog with static choice i� it is expressible in

FO+ + IFP +W . 2

Theorem 5.6 extends theorem 5.1 and also con�rms the aÆnity between the witness operator

and the static choice operator|an aÆnity that can be traced back to their common reliance on

the concept of functional dependencies as the basis for their semantics. These two constructs

also share common limitations w.r.t. expressive power, which in turn can be traced back

to Theorem 5.4 and Theorem 5.5, where it is shown that the usage of choice in (positive)

recursive rules does not yield more expressive power than its usage in non-recursive ones.

The dynamic choice operator, discussed in the next section, was indeed introduced to correct

this weakness, and produced a signi�cant augmentation of expressive power.

6 Datalog and the Dynamic Choice

A new semantics for the choice operator was proposed by Sacc�a and Zaniolo [29]. As discussed

next, the new formulation called dynamic choice avoids the problems pertaining to the use

of choice within recursive rules [16], that a�icted the version proposed in [26].

Dynamic choice is no longer de�ned using FD directly, rather choice programs are transformed

into programs with negation which exhibit a multiplicity of stable models. Each stable model

corresponds to an alternative set of answers for the original program. Following [29], therefore,

we introduce the stable version of a choice program P , denoted by SV (P ), de�ned as the

program with negation obtained from P as follows.

De�nition 6.1 The stable version SV (P ) of a choice program P is obtained by the following

transformation. Consider a choice rule r in P :

r : A B(Z); choice((X1); (Y1)); :::; choice((Xk); (Yk)):

where:

(i) B(Z) denotes the conjunction of all the non-choice goals of r, where Z is the vector of

variables occurring in B, and
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(ii) for i 2 [1; k], Xi; Yi, denote vectors of variables from Z such that Xi \ Yi = ;.

Then the original program P is transformed as follows:

1. replace r with a rule r0 obtained by substituting the choice goals with the atom

chosenr(W ):

r0 : A B(Z); chosenr(W ):

where, W � Z is the list of all variables appearing in choice goals;

2. add the new rule:

chosenr(W ) B(Z); :diffChoicer(W ):

3. add, for each choice atom choice((Xi); (Yi)) (1 � i � n), the new rule:

diffChoicer(W ) chosenr(W
0); Yi 6= Y 0i :

where (i) the list of variables W 0 is derived from W by replacing each variable V 2 Yi
with a new variable V 0 2 Y 0i (i.e., by priming those variables), and (ii) Yi 6= Y 0i is

a shorthand for the disjunction of inequalities V1 6= V 01 _ : : : _ Vki 6= V 0ki , where

Yi = hV1; : : : ; Vkii (and Y
0
i = hV

0
1 ; : : : ; V

0
ki
i.) 2

Example 6.2 The stable version of the rule in Example 4.1 is the following, whose declara-

tive reading is \a student can be assigned a professor provided that a di�erent professor has

not been assigned":

actual adv(S; P)  student(S; Major); professor(P; Major); chosen(S; P):

chosen(S; P)  student(S; Major); professor(P; Major); :diffChoice(S; P):

diffChoice(S; P)  chosen(S; P0); P 6= P
0:

(6)

2

Therefore, the pair of rules chosen and diffchoice provide an intuitive logical translation

of FD constraints; this declarative formulation is semantically well-formed under stable model

semantics. In fact, the program SV (P ) generated by this transformation has the following

properties [29, 16]:

� SV (P ) has one or more stable models

� The chosen atoms in each stable model of SV (P ) obey the FDs de�ned by the choice

goals.

The stable models of SV (P ) are called dynamic choice models for P .

When the choice rules are non-recursive (i.e., no choice rule is used in the de�nition of a

recursive predicate), the semantics of static choice and dynamic choice coincide [29]. For

instance, the program de�ned by the rules of Example 6.2 with the database de�ned by the

facts of Example 4.1 has four stable models, corresponding to the four choice models of the

program of Example 4.1 under the static choice semantics.
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The signi�cance of dynamic choice is two-fold. On the theory side, it establishes a clear rela-

tion between nonmonotonicity and non-determinism in logic languages; on the practical side

it is critical in a deductive database system such as LDL++, for expressing queries such as

user-de�ned aggregates and depth-�rst graph traversals. These issues are best illustrated by

simple examples where choice is used to modify and prune the transitive closure computation

in a directed graph. For instance, the following program generates a spanning tree, rooted in

a node a for a graph, where an arc from X to Y is represented by facts g(X; Y):

Example 6.3 Spanning tree rooted in node a

st(nil; a):

st(X; Y)  st( ; X); g(X; Y); Y 6= a; choice((Y); (X)):
(7)

This program is basically the computation of the transitive closure of a graph constrained by

addition of the choice goal and the pruning induced by the FD constraints. Thus, the condi-

tion Y 6= a ensures that the in-degree for the node a is one, while the condition choice((Y); (X))

ensures that the in-degree of all nodes generated by the recursive rule is also one.

Consider now the following graph:

g(a; b):

g(a; c):

g(b; c):

g(c; b):

If we consider the stable version of the spanning tree program, it is easy to see that it has 3

stable models, as follows:

st(nil; a); st(a; b); st(a; c)

st(nil; a); st(a; b); st(b; c)

st(nil; a); st(a; c); st(c; b)

2

Under the original, static version of choice (illustrated in Section 4), the semantics prescribes

(i) the computation of the model of the program PV (P ) obtained from P by eliminating the

choice goals and (ii) the extraction of a subset of this model to satisfy the FDs of the choice

goals. Therefore, in addition of the above three models the static choice will also accept the

solution:

st(nil; a); st(b; c); st(c; b)

This extra solution does not correspond to a tree but rather to an unsupported cycle a !b in

the graph. In fact, this is an example of the greater expressive power and improved eÆciency

available through the use of dynamic choice, due to its ability in pruning and controlling the

computation of a recursive predicate. This ability is lost with static choice, which can only

perform a postselection on the nodes generated by the transitive closure. As a result, dynamic

choice is both more eÆcient and more powerful than static choice. The gains in eÆciency,

due to the early pruning performed in the course of the computation, can be underscored

even further by the following example|which is indeed an excursion out of pure Datalog.
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Example 6.4 Shortest path

st(a; 0):

st(Y; s(J))  st(X; J); g(X; Y); choice((X); (J)):
(8)

On the graph g(a; b); g(b; b) this program has an in�nite number of static-choice models, each

requiring an in�nite computation. But, this program has only one dynamic-choice model,

namely: g(a; b); g(b; b); st(a; 0); st(b; s(0)). 2

7 Expressiveness Characterizations II

We show in this section that dynamic choice represents an improvement in expressive power,

in that it is strictly more expressive than static choice. First, we observe that, trivially,

Datalog with dynamic choice is at least as expressive as Datalog with static choice, since

every query expressible in the latter language can be computed by a separate use of recursion

and choice. Thus we have the following result:

Theorem 7.1 If a query is expressible in Datalog with static choice then it is expressible in

Datalog with dynamic choice. 2

To prove the strict inclusion, we consider the following program using dynamic choice that

orders the elements of an EDB relation u in an arbitrary way.

Example 7.2 The program ORD[u] for ordering the elements of u:

r1 : succ(min; min):

r2 : succ(X; Y)  succ( ; X); u(Y);

choice((X); (Y)); choice((Y); (X)):

where min is a new constant, which does not occur in the EDB. 2

According to the semantics of dynamic choice, the binary relation succ de�nes a total,

strict ordering over the input relation u. Viewing succ as a graph, we see that the �rst

clause of program ORD[u] starts the �xpoint computation, by simply adding a loop arc on the

distinguished element min. Consider now the second rule, and say that this, in the second

stage of the computation, adds an arc (min; a) to succ, where a is an element in u. No other

arc can be added at this stage, because it would violate the constraints imposed by choice.

Likewise, at the third step, a new element from u will become the unique successor of a, and

so on. Since the two choice goals enforce acyclicity (for the elements added by the second

rule), at the end of the computation succ contains a simple path touching all elements in u.

With relation succ(X; Y) de�ning the immediate successor Y of an element X, the less-than

relation < can be constructed as the transitive closure of succ (also we eliminate the distin-

guished element min):

X < Z  succ(X; Z); u(X); u(Z):

X < Z  X < Y; succ(Y; Z); u(Z):
(9)
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From this, the de�nition of inequality follows:

X 6= Y  X < Y:

X 6= Y  Y < X:
(10)

It is known that the inequality query cannot be expressed in FO++IFP (see, e.g., [5]), so by

Theorem 5.3 we conclude that the inequality query cannot be expressed in FO++ IFP +W

either, as it is a deterministic query. But the expressive power of Datalog with static choice

is, by Theorem 5.6 equivalent to FO+ + IFP +W , so we have the following:

Theorem 7.3 The inequality query is not expressible in Datalog with static choice. 2

Therefore, Datalog with dynamic choice is strictly more expressive than Datalog with static

choice. Even so, Datalog with dynamic choice cannot express express all PTIME queries,

inasmuch as, as proven later, it cannot express nonmonotonic queries. However, all non-

deterministic polynomial-time queries become expressible provided that strati�ed negation is

supported by the language: thus Datalog:swith dynamic choice can express all NDB-PTIME

queries. In fact we have the following result [19]:

Theorem 7.4

A query is expressible in Datalog:s with dynamic choice i� it is expressible in FO+IFP+W .

2

As a consequence of the key result by Abiteboul and Vianu that FO + IFP + W ex-

presses precisely NDB-PTIME [3, 4], Theorem 7.4 implies that also Datalog:s with dynamic

choice is a precise characterization of NDB-PTIME. Therefore, all deterministic DB-PTIME

queries can be expressed in this language. This conclusion is consistent with the fact that

Datalog:sexpresses all PTIME queries when a total order exists on the database [21, 31]:

in fact, Example 7.2 illustrates how to generate such an order using dynamic choice.

8 Constructive Semantics

This section is devoted at providing a constructive characterization of dynamic choice. To-

wards this goal, we de�ne a general operator 	P for non-deterministic bottom-up computa-

tions of a choice program P , and study its properties. The main result, stated in Corollary 8.8,

is that the proposed constructive semantics coincide with the stable choice model semantics

discussed in the previous section.

Two alternative semantics for dynamic choice, called lazy and eager dynamic choice, are then

identi�ed as instances of the general operator 	P , in such a way that their relevant properties

are directly derived. The lazy operator yields a constructive formalization of the dynamic

choice construct discussed in the previous section.

We develop our constructive semantics of choice programs with reference to proper Datalog

(choice) programs, i.e., function-free programs over a �nite universe. However, all results

presented in this section also hold in the more general case of arbitrary choice programs with

function symbols, i.e., programs over in�nite universes. This issue is addresses in the �nal
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part of this section, and requires the development of a notion of fairness of non-deterministic

computations.

Given a choice program P , we denote by TPC the immediate consequence operator associated

with the chosen rules in the stable version SV (P ) of P , i.e., the rules introduced at step

2 of the transformation of De�nition 6.1. Analogously, we denote by TPH the immediate

consequence operator associated with the non-chosen rules in SV (P ). Therefore, we have

that, for any interpretation I:

TSV (P )(I) = TPH (I) [ TPC (I):

Moreover, when we refer to an interpretation of a choice program, we actually mean an

interpretation of its stable version. Given a choice program P and an interpretation I, we

write I j= FDP if, for any choice rule r of P , the set of chosenr atoms of I satis�es the

FD constraint speci�ed by the choices in rule r. We are now ready to introduce a general

operator for non-deterministic �xpoint computations of choice programs.

De�nition 8.1 Given a choice program P , its non-deterministic immediate consequence op-

erator 	P is a map from interpretations to sets of interpretations de�ned as follows:

	P (I) = fJ [ TPH " !(J) j J 2 �P (I)g

where

�P (I) = fI [�I j ; � �I � TPC (I) n I ^ �I j= FDP g [ fI j TPC (I) n I = ;g:

2

Informally, the 	P operator, when applied to an interpretation I, behaves as follows:

� �rst, TPC is used to derive from I all the possible choices;

� second, �P is used to construct the set of all possible ways of augmenting I with a new

set of admissible choices �I, which do not violate the FD of choice rules; if such �I is

empty, then the singleton set fIg is returned;

� �nally, for each set in �P (I), a saturation using TPH is performed, in order to derive all

consequences of the operated choices.

Clearly, non-determinism is due to the �P operator, which returns a multiplicity of sets of

admissible choices, which satisfy the functional dependency constraints placed by choice rules.

Notice that, at this stage, we are not speci�c on what kind of subsets of choices are selected.

For instance, it is possible that two such subsets are included in each other.

Observe that the usage of the ordinal ! in the above de�nition is not problematic, since

saturation via TPH is is guaranteed to occur at some �nite stage for Datalog programs. More

precisely, we have that TPH " !(J) = TPH " k(J) for some �nite k (< !:)

In the de�nition of �P (I), �I is not empty if TPC (I) n I is not empty; this re
ects the fact

that, if there are admissible new choices, then at least one such choice has to be made. As
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a �nal comment to De�nition 8.1, we observe that in the de�nition of �P , the check for

functional dependencies can be speci�ed simply as �I j= FDP , instead of (I [ �I) j= FDP ;

the reason is that for each single tuple t 2 �I, I [ ftg j= FDP diffChoice rules in SV (P )

disallow such a con
ict. It is therefore suÆcient to check that each pair in �I of such rules

do not con
ict with each other with respect to the given FDs.

The 	P operator formalizes a single step of an ideal bottom-up non-deterministic compu-

tation of a choice program. Instead of de�ning the powers of 	P , it is technically more

convenient to de�ne directly the notion of a non-deterministic computation based on the 	P

operator.

De�nition 8.2 Let P be a choice program. A (non-deterministic) computation based on 	P

is a sequence hInin�0 of interpretations such that:

i. I0 = ;,

ii. In+1 2 	P (In), for n � 0.

2

The following result points out some basic properties of non-deterministic computations,

namely that they are in
ationary, and they preserve the FD's.

Lemma 8.3 Let hIni (n � 0) be a non-deterministic 	P -based computation, for a choice

program P . Then, for n � 0

(1) In � In+1,

(2) In j= FDP .

Proof. (1) follows from the fact that, for any pair of interpretations I and J such that

J 2 	P (I), we have I � J , which is a direct consequence of the de�nition of 	P .

The proof of (2) is by induction on n. In the base case, we have ; j= FDP , which holds

trivially.

In the induction case, two subcases arise. If TPC (In)nIn is empty, then we have In+1 = In by

the de�nition of 	P , and therefore the thesis directly follows from the induction hypothesis

that In j= FDP . If TPC (In) n In is not empty, we have to prove that In [�I j= FDP for any

non empty subset �I of TPC (In) n In. Consider a chosen-atom chosenr(x; y) 2 TPC (In) n In.

Consider the rule chosenr(x; y) B(x; y);:diffChoicer(x; y) from SV (P ): the fact that

chosenr(x; y) 2 TPC (In) implies that the body of such a rule holds in In, and in particular

diffChoicer(x; y) 62 In. As a consequence of the facts that SV (P ) contains any instance of

the di�Choice rule diffChoicer(X;Y ) chosenr(X;Y
0); Y 6= Y 0, and that In is saturated

with respect to such rule, we obtain that chosenr(x; y
0) 62 In, for every y

0
6= y, Therefore, the

choice chosenr(x; y) does not violate the FD's, i.e., I [fchosenr(x; y)g j= FDP . To conclude

the proof, it suÆces to observe that the above reasoning can be repeated for any chosen atom

in �I, and that �I j= FDP by the de�nition of 	P . 2

Given a computation hIni (n � 0), we de�ne its (!) limit limn�0hIni =
S
n<! In. It should

be noted that, in our case of function-free Datalog programs, the limit of a computation is
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reached at some �nite stage. Therefore, we have that, for some �k < !, limn�0hIni = I�k, and

In = I�k for every n �
�k.

Our next concern is to correlate the limits of computations with the �xpoints of 	P , in order

to justify the fact that non-deterministic computations are in fact �xpoint computations. We

need here an unconventional notion of �xpoint, due to the fact that 	P maps interpretations

to sets of interpretations (a multivalued mapping):

De�nition 8.4 An interpretation I is a �xpoint of 	P if 	P (I) = fIg. 2

In other words, I is a �xpoint of 	P if the operator behaves deterministically on I, and I itself

is obtained as a result. In order to justify the above notion of �xpoint of a non-deterministic

operator, we observe here that this notion coincides with that of a �xpoint of the ordinary

immediate consequence operator TSV (P ) associated with the stable version SV (P ) of a choice

program P .

Lemma 8.5 Let P be a choice program. Then M is a �xpoint of 	P i� M is a �xpoint of

TSV (P ).

Proof. First, observe that, for any interpretation I:

TSV (P )(I) = I i� TPC (I) = IC and TPH (I) = IH ; (11)

where IC denote the set of chosen atoms in I and IH denote the set of non-chosen atoms

in I. Consider a �xpoint I of TSV (P ). Now, (11) implies that TPC (I) n I = ;, and therefore

�P (I) = fIg. Also, (11) implies TPH " �(I) [ I = I. Therefore 	P (I) = fIg, so I is a

�xpoint of 	P .

Conversely, assume that 	P (I) = fIg. Then clearly TPH (I) = IH and TPC (I) = IC by the

de�nition of 	P , so the fact that I is a �xpoint of TSV (P ) follows from (11). 2

The next two results show that the limit of a non-deterministic computation is a dynamic

choice model and vice versa, thus providing a notion of soundness and completeness w.r.t.

the stable model semantics of choice programs.

Theorem 8.6 (Soundness) Let P be a choice program. If M is the limit of a non-

deterministic 	P -based computation, then M is a dynamic choice model for P .

Proof. LetM = I�k be the limit of a computation hInin�0, and consider the reduced program

P 0 = groundM (SV (P )). We have to show thatM is the least model of P 0. This is established

by the following Claims 1 and 2.

Claim 1. M is a model of P 0.

To this end, we now prove thatM is a �xpoint of 	P which, together with Lemma 8.5, implies

that M is a �xpoint of TSV (P ), and a fortiori a model of P 0. Assume by contradiction that

	P (M) 6= fMg. This, together with Theorem 8.3(1) implies that there exists J 2 	P (M)

withM � J . Therefore, for some ground instance H  B of a clause r from SV (P ), we have

M j= B (12)

M 6j= H (13)

J j= H: (14)
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By (12), we have that I�k j= H. Two cases then arise.

Case 1. r is not a chosen clause.

Then we conclude that I�k+1 j= H by the de�nition of 	P , which, together with the fact that

M = I�k is the limit of the computation, contradicts (13).

Case 2. r is a chosen clause.

Then I�k [ fHg j= FDP , otherwise (14) is contradicted. By De�nition 8.1, a non-empty �I

exists (= fHg), and therefore each interpretation K 2 	P (I�k) strictly includes I�k. This

contradicts the fact that M = I�k is the limit of the computation, as any possible choice for

I�k+1 is such that I�k � I�k+1.

Claim 2. M is the least model of P 0.

To this end, assume by contradiction that J(� M) is a model of P 0, and consider an atom

H 2 M n J . Let n (> 1) be the stage of the computation at which H is inferred, i.e., such

that In j= H and In�1 6j= H, and consider the ground clause H B of SV (P ) such that

In�1 j= B, and the corresponding clause H  B0 of P 0. Two cases arise.

Case 1. H is not a chosen atom.

As J 6j= H, we have that J 6j= A, for some atom A of B0.

Case 2. H is a chosen atom.

Let H = chosenr(t). As a consequence of Theorem 8.3(2), M j= FDP , which implies that

M 6j= diffChoicer(t). Therefore, all atoms in the body B0 of the clause from P 0 are not

chosen or diffChoice, by the de�nition of SV (P ) and the stability transformation. Again,

as J 6j= H, we have that J 6j= A, for some atom A of B.

We can therefore repeat the construction of cases 1 and 2 at most n� 1 times before �nding

an atom A, inferred by a unit clause A from P 0, such that J 6j= A. This contradicts the

fact that J is a model of P 0. 2

Theorem 8.7 (Completeness) Let P be a choice program. If M is a dynamic choice

model for P , then there exists a computation based on 	P , which has M as its limit.

Proof. Let M be a stable model of SV (P ). i.e., the least model of P 0 = groundM (SV (P )).

First, observe that

M j= FDP : (15)

To prove (15), assume by contradiction thatM j= choicer(t)^choicer(t
0) such that choicer(t)

and choicer(t
0) violate the FD's. Then, by the de�nition of SV (P ), we have that M j=

diffChoicer(t
0) ^ diffChoicer(t). By the stability transformation, there is no clause in P 0

with either choicer(t) or choicer(t
0) in the head, thus contradicting that M is the least model

of P 0.

Next, let P 0H be the program consisting of the non-chosen rules of P 0, and P 0C be the program

consisting of the chosen rules of P 0. We can de�ne the following sequence of interpretations

hMnin�0:

i. M0 = ;,
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ii. Mn+1 = TP 0

H

" !(TP 0

C

(Mn) [Mn), for n > 0.

Clearly, M = TP 0 " ! =
S
n�0Mn, since P

0 is a de�nite program, and therefore the powers

of TP 0

H
and TP 0

C
can be arbitrarily interleaved to obtain TP 0 " !. Therefore, by (15), we get

Mn j= FDP for n � 0. As a consequence, TP 0

C
(Mn) is a subset of TPC (Mn) which satis�es

the FD's, and therefore it can be selected as a �I in the de�nition of 	P . To conclude the

proof, it suÆces to notice that, by construction, hMni (n � 0) is a computation based on

	P . 2

As a consequence of Theorems 8.6 and 8.7, we obtain the following corollary:

Corollary 8.8 (Characterization) Let P be a choice program, and M an interpretation.

Then M is a dynamic choice model for P i� M is the limit of a computation based on 	P .

2

Next, we can show that the limits of computations are minimal �xpoints of 	P . This result,

stated in the next theorem, is a direct consequence of the Soundness Theorem 8.6, Lemma

8.5, and the fact that every stable model of a program P is a minimal �xpoint of TP .

Theorem 8.9 Let P be a choice program, and M be the limit of a computation hIni, (n � 0),

based on 	P . Then M is a minimal �xpoint of 	P . 2

In summary, the notions of dynamic choice models and of limits of 	P -based computations

coincide, and these are minimal �xpoints. Therefore, the declarative semantics of choice

programs and their procedural (�xpoint) semantics coincide. Such an equivalence does not

extend to minimal-�xpoint semantics, since there are programs with minimal �xpoints which

are not dynamic choice models. As an example, consider the following program P :

p(a) p(a):

p(b):

q(X) p(X); choice((); (X)):

and its stable version SV (P ):

p(a) p(a):

p(b):

q(X) p(X); chosen(X):

chosen(X) p(X);:diffChoice(X):

diffChoice(X) chosen(X0); X 6= X
0:

It is readily checked that 	P has two minimal �xpoints:

M1 = fp(b); q(b); chosen(b); diffChoice(a)g

M2 = fp(b); p(a); q(a); chosen(a); diffChoice(b)g

19



but M2 is not a dynamic choice model of P , and cannot be obtained as the limit of any

computation. In fact, the atom chosen(a) in M2 is supported by the fact p(a) which cannot

be computed by a bottom up computation starting with the empty set.

Two remarks arise from this discussion. First, the non-coincidence of the procedural (�xpoint-

based) semantics and the minimal-�xpoint semantics underscores the suitability of stable

models as the formal basis for the non-deterministic semantics of choice programs. For in-

stance, completion semantics also allow multiple models, but these coincide with the minimal-

�xpoint semantics of the programs. Therefore, for the simple example shown above, the

completion semantics is undesirable, since it allows more models than those computable with

the intended procedural semantics.

As a second remark, it is natural to ask ourselves whether reasonably large classes of choice

programs exist for which the stable model and the minimal-�xpoint (or completion) semantics

do coincide. We believe that the answer is aÆrmative, and that a promising way to go is

to extend to choice programs the notion of acceptable programs from [6], as for this class

of programs we have coincidence between stable model and completion semantics. This

represents a subject for further research.

8.1 Lazy Versus Eager Dynamic Choice

The non-deterministic 	P operator generates a family of di�erent operators, obtained by

suitably restricting the set �P . We now introduce two specializations of the 	P , and provide

their characterizations. The �rst one is the lazy version of dynamic choice, while the second

is called eager dynamic choice. Lazy choice is obtained by letting the �I's in the de�nition

of �P be minimal, while greedy choice is obtained by only taking maximal �I's, as follows:

De�nition 8.10

(1) The lazy operator 	L
P is de�ned as the instance of 	P where �I is a singleton:

	L
P (I) = fJ [ TPH " !(J) j J 2 �P (I)g

where

�P (I) = fI [ fHg j fHg � TPC (I) n Ig [ fI j TPC (I) n I = ;g:

(2) The eager operator 	E
P is de�ned as the instance of 	P where �I is maximal:

	E
P (I) = fJ [ TPH " !(J) j J 2 �P (I)g

where

�P (I) = fI [�I j ; � �I � TPC (I) n I ^ �I j= FDP ^�I is maximal g

[ fI j TPC (I) n I = ;g:

2

Lazy choice and eager choice exhibit very di�erent properties. In particular, in the next

section, we will show that the latter is more powerful than the former. Moreover, the lazy

operator is non-deterministically complete in the sense of Theorem 8.7; in fact every choice

computation can be emulated by one where choices are made one-at-a-time. Thus we can

state the following:
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Lemma 8.11 (Completeness) Let P be a choice program. Then, any dynamic choice

model of P is the limit of a computation based on 	L
P . 2

On the other hand, the procedural semantics based on the eager operator is not complete,

and some of the possible solutions might in fact be lost. Take for instance Example 6.3. Under

eager semantics both st(a; b) and st(a; c) are produced in the �rst step of the recursive

computation. Thus, only the �rst of the three solutions in Example 6.3 is obtained under

eager choice. Therefore, under static choice, lazy choice and eager choice this program has,

respectively, four choice models, three choice models and one choice model. In fact, stricter

non-deterministic semantics here yields a greater expressive power.

Therefore, we are witnessing an interesting phenomenon with non-deterministic semantics:

as the set of canonical models becomes smaller expressive power increases. This is further

illustrated by the following example taken from [16], where we emulate negation using eager

choice. The following choice program de�nes relation not p as the complement of a relation

p with respect to a universal relation u (for simplicity, say that both p and u are extensional

relations):

Example 8.12 The choice program NOT[p; u] consists of the following rules:

R1 : not p(X) comp p(X; 1):

R2 : comp p(X; I) tag p(X; I); choice((X); (I)):

R3 : tag p(nil; 0):

R4 : tag p(X; 0) p(X):

R5 : tag p(X; 1) u(X); comp p( ; 0):

where nil is a new constant, which does not occur in the EDB. 2

According to the operational semantics of eager choice, we obtain a set of answers where

comp p(x; 1) holds if and only if x is not in the extension of p. This behavior is due to the

fact that the extension of comp p is taken as a subset of the relation tag p which obeys the

FD (X ! I), and that the dynamic choice operates early choices which binds to 0 all the

elements in the extension of p. This implies that all the elements which do not belong to p

will be chosen in the next saturation step, and hence bound to 1. The fact rule tag p(nil; 0)

is needed to cope with the case that relation p is empty.

More precisely, in the �rst saturation phase, the facts tag p(nil; 0) and tag p(x; 0) are

inferred, for every x in the extension of relation p. In the following choice phase, the facts

chosen(x; 0) are derived again for every x in the extension of p, since all possible choices are

exercised. In the second saturation phase, we infer comp p(x; 0) for every x in the extension

of p, and tag p(x; 1) for every x in u. In the following choice phase, the facts chosen(x; 1) are

chosen in a maximal way to satisfy the FD, i.e., for every x not in the extension of p, since

every x in p has already been chosen with tag 0. In the third saturation step the extension

of not p becomes the complement of p with respect to u.

Essentially, this example shows that the eager dynamic choice o�ers a 
exible mechanism for

handling the control needed to emulate the di�erence between two relations. It is shown in
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[11] that the above program can be re�ned in order to realize more powerful forms of negation,

such as strati�ed and in
ationary negation. This goal is achieved by suitably emulating the

extra control needed to handle program strata and �xpoint approximations, respectively.

Thus, eager choice can compute nonmonotonic deterministic queries. On the other hand, we

shall see in Section 9 that any deterministic query speci�ed using the lazy dynamic choice is

indeed monotonic.

8.2 Function Symbols and Programs with In�nite Universe

The key properties of the �xpoint semantics, discussed above, also extend to the more general

case of logic programs with function symbols, i.e., programs whose underlying universe is

in�nite. For the sake of generality, and because many logic-based languages, such as LDL,

support function symbols, we brie
y discuss this generalization next.

The main problem with in�nite non-deterministic computations is the possibility of an

unfair behavior w.r.t. choices: this occurs when some choice is considered in�nitely often

during a computation, but is never made, since other choices are always preferred. This

behavior, which is not possible over �nite universes, may produce limits of in�nite computa-

tions, which are not choice models (or �xpoints), thus contradicting soundness. To solve this

problem, and guarantee that in�nite computations converge to a �xpoint, we next de�ne the

notion of fairness with respect to choices.

De�nition 8.13 Let P be a choice program. A non-deterministic computation hInin�0 based

on 	P is fair i� there is no chosen atom H such that H 2 TPC (In) for in�nitely many n � 0.

2

Conversely, an unfair computation is one which never selects a particular choice although

this is o�ered an in�nite number of times during the computation. Therefore, all �nite

computations are fair. However, for in�nite computations, the fairness assumption is needed

to ensure that every admissible choice is eventually selected.

It should be observed here that, while in general a computation based on 	P can be either

fair or unfair, depending on the choices made during the computation itself, any computation

based on the eager operator 	E
P is always fair, as the criterion of \�I maximal" entails that

all possible choices are made at eachs stage. On the contrary, lazy computations are not

necessarily fair, and therefore lazy computations must be scheduled or monitored explicitly

to ensure that computations are not terminated until a complete dynamic choice model is

reached.

It is readily checked that, that Theorem 8.7 (completeness) generalizes to programs with

function symbols with no change, while Theorem 8.6 (soundness) generalizes in the case of fair

computations. Thus, we obtain the following generalization of the Characterization Theorem

8.8:

Corollary 8.14 (Characterization II) Let P be a choice program, possibly with function

symbols, and M an interpretation. Then M is a dynamic choice model for P i� M is the

limit of a fair computation based on 	P . 2
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A �nal remark concerns the e�ectiveness of non-deterministic computations in the case of

in�nite universes. The point here is the de�nition of 	P , which we recall from De�nition 8.1:

	P (I) = fJ [ TPH " !(J) j J 2 �P (I)g

Due to the !-power of TPH , a trans�nite computation is required in the evaluation of a

single step of 	P in order to compute any stable model. While in the case of �nite universes

this is not a problem, in the case of in�nite universes the saturation of TPH may not be

e�ectively computed. For this reason, practical implementations of the 	P operator truncate

the saturation of TPH at some �nite stage. Fortunately, this policy is not problematic from

the point of view of soundness (the proof of Theorem 8.6 goes through, verbatim, if we replace

! with 1 in the de�nition of 	P ). However, completeness is compromised, in that this policy

in general anticipates choices, and may therefore prevent to reach certain stable models.

9 The Expressive Power Hierarchy for Choice Constructs

The next result, which characterizes the expressiveness of eager dynamic choice, has been

proven in [12, 17].

Theorem 9.1 A query is expressible in FO + IFP +W i� it is expressible in Datalog with

eager dynamic choice. 2

Therefore, Datalog with eager choice represents a very powerful language, inasmuch as it can

express all queries in NDB-PTIME. Datalog with lazy dynamic choice is characterized by the

	L
P operator.

As a consequence of Lemma 8.3(1), any computation with the 	P operator is in
ationary and,

a fortiori, any query supported by such a computation is polynomial. As a consequence of

Theorem 9.1, we obtain that any query expressible with lazy dynamic choice is also expressible

using eager dynamic choice, as the latter expresses all (non-deterministic) polynomial queries.

Theorem 9.2 If a query is expressible in Datalog with lazy dynamic choice then it is ex-

pressible in Datalog with eager dynamic choice. 2

The inverse property does not hold since Datalog with eager dynamic choice is strictly more

powerful than Datalog with lazy dynamic choice or unrestricted dynamic choice. This is due

to the monotonic nature of dynamic choice, proven in Theorem 9.3. As customary, we can

partition the predicates in a program P in extensional and intensional predicates. Let edb(P )

(resp. idb(P )) denote the clauses of P having extensional (resp. intensional) predicate names.

Thus, idb(P ) contains all the rules of P , while edb(P ) only contain facts: the database facts.

Lemma 9.3 Let P and P 0 be choice programs where idb(P 0) = idb(P ) and edb(P 0) � edb(P ).

Then, for every M that is the limit of a computation of 	P , there exists a computation of

	0P which has as limit M 0 �M .

Proof. Let I be the limit of a computation hInin�0 of P . We construct a computation

hJnin�0 of P
0 with limit J such that In � Jn for any n � 0, which directly implies the thesis.

The construction is by induction on n. We maintain the following invariants, for any n � 0:

I [ (Jn n In) j= FDP (16)

I \ (Jn n In) = ;: (17)
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In other words, we require that the extra choices made in the computation over P 0 do not

con
ict with the choices made in the computation over P .

In the base case, we clearly put J0 = ;. In the induction case, consider In+1 2 	P (In), i.e.,

In+1 = TPH " !(In [�In), for some subset �In of TPC (In) n In such that �In j= FDP .

We now show

�In � TP 0

C
(Jn) n Jn: (18)

Due to (17) and the fact that �In and In are disjoint, we have that �In and Jn are disjoint,

so it suÆces to how that �In � TP 0

C

(Jn). Assume by contradiction that some chosen atom

chosen(t) violates this inclusion. Therefore, the clause chosen(t) B(t);:diffChoice(t) is

such that In j= B(t);:diffChoice(t), and Jn 6j= B(t);:diffChoice(t). By the induction

hypothesis that In � Jn we have Jn j= B(t), so Jn 6j= :diffChoice(t), i.e., diffChoice(t) 2

Jn. Therefore, we have chosen(t
0) 2 Jn for some t0 6= t such that chosen(t) ^ chosen(t0) 6j=

FDP . So we get a contradiction with (16), as chosen(t) 2 �In and, a fortiori, in I.

Next, as a consequence of (18) we can choose a subset �Jn of TP 0

C
(Jn) n Jn such that �In �

�Jn in order to satisfy (16) and (17), and let Jn+1 be:

Jn+1 = TP 0

H

" !(Jn [�Jn):

To conclude that In+1 � Jn+1 it suÆces to observe that TPH (H) � TP 0

H
(K) for H � K.

2

Thus, dynamic choice programs de�ne monotonic transformations on the underlying database:

the same can also be said for the transformation de�ned by lazy dynamic choice rules (a proof

follows immediately from the completeness Lemma 8.11, or directly from a construction sim-

ilar to that used in the previous Lemma for the choice operator 	L
P ).

As a consequence of this Lemma, we have that on deterministic queries, i.e., those queries for

which exactly one computation exists, the general choice operator and the lazy choice operator

behave monotonically in the standard sense. In other words, these operators can compute

only deterministic queries that are monotonic. On the contrary, the eager operator 	E
P is

not monotonic, due to the fact that the commitment to maximal sets of admissible choices

reduces the non-determinism in such a way that the construction in the proof of Lemma 9.3

is no longer possible. An example of a nonmonotonic deterministic query computed by means

of the eager operator is the negation/complement query in Section 4.3.

As a consequence of Lemma 9.3, Datalog with lazy dynamic choice has a monotonic semantics,

in the sense that the query associated with a lazy dynamic choice program yields a larger

output when applied to a larger input database. As a consequence of this fact, the negation

query cannot be computed.

Theorem 9.4 The negation query is not expressible in Datalog with lazy dynamic choice.2

Therefore, eager dynamic choice is strictly more expressive than lazy dynamic choice. Because

of its expressive power and its simpler implementation eager choice is normally preferable as

a practical construct. However, lazy choice �nd important applications in the de�nition of

other constructs, such as monotonic aggregates [32].
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10 Conclusions

This paper has elucidated the semantic and computational aspects of non-deterministic con-

structs of Datalog languages. From a semantic viewpoint, there is a simple connection be-

tween choice constructs and stable models of nonmonotonic logic. Furthermore we have

provided a �xpoint-based operational semantics for programs with choice, where the compu-

tation of each choice model is polynomial in the size of the database.

In fact, we have studied three di�erent versions of choice (i.e, static choice, lazy dynamic

choice and eager dynamic choice) and shown that they de�ne a strict hierarchy that paral-

lels the expressive power hierarchy of FO languages with in
ationary �xpoint and witness

operator. This hierarchy, which follows from Theorems 5.6, 7.1, 7.3 ,9.2, 9.4, 9.1, and 7.4, is

summarized by following table where successive rows de�ne languages of increasingly higher

expressiveness:

Datalog with static choice = FO+ + IFP +W

� �

Datalog with lazy dynamic choice = ...

� �

Datalog with eager dynamic choice = FO + IFP +W

Datalog:s with lazy dynamic choice = FO + IFP +W

The typical situation that a language designer has to face is a tradeo� between increased

expressive power and increased computational complexity of various constructs. Remarkably

enough, in moving from static choice to lazy dynamic choice, and then to eager dynamic

choice, we were instead faced with an unusual \win/win" situation, where greater expressive

power was achieved along with improved eÆciency of execution: a perfect combination, which

rarely occurs.

The results obtained in this paper, however, have a signi�cance that exceeds the purely

theoretical domain. In fact, experience in writing applications in LDL++ illustrates that

such a construct can be a powerful programming tool, to express, e.g., user-de�ned set-

aggregates or depth-�rst tree traversals. A broad compendium of the programming styles

supported by the non-deterministic logic database languages can be found in [15], along with

examples from many application domains.
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