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ABSTRACT

We propose a new model-theoretic semantics for logic programs,
called pure semantics, based on the notions of unfounded set and assump-
tion set. The pure semantics emerges from the observation that major
logic programming semantics have the following feature in common:
given an ’intended model’ M, the set of negative literals in M corresponds
exactly with the greatest unfounded set w.r.t. the set of positive literals in
M. In other words, a model contains redundant information as its negative
part can be described in function of its positive part. Thus, the total
models and the partial models of programs can now be characterized by a
sct of positive literals. Bascd on this idea, we develop the pure semantics
for logic programs. The result is a remarkably simple semantics that
unifies previous approaches and explains how partial model semantics fol-
lows from a weaker closed world assumption.

1. Introduction

This note presents a new model-theoretic semantics for logic programs, called pure
semantics, based on the notions of unfounded setGe188a and assumption set L2¢90a, Lac90b
The logic programs under consideration are

tive programste90¢ ) e seis of rules of the form

Ly, Ly...L, = A

where A isanatomand L, , .., L, arc literals (atoms or negated atoms).

general logic programsCe1892 (or seminega-
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Given a rule r, H(r) denotes the head of r and B{(r) denotes the set of all literals in the
body of r. A term, atom, rule is ground if it is variable-free.

Given a logic program P, the Herbrand Universe of P (denoted H p) is the set of all possi-
ble ground terms. The Herbrand Base of P (denoted B[P]) is the set of all possible
ground atoms whose predicate symbols occur in P and whose arguments are elements of
Hp. A ground instance of a rule r in P is a rule obtained from r by replacing every vari-
able X in r by ¢(X), where ¢ is a mapping from the set of all variables occurring in P to
H p. The set of all ground instances of all rules in P is denoted by ground(P). Any subset
of B[P] w Not B[P] is called an interpretation of P if it is consistent, i.e. there are no
two literals A and B in X such that A = Not B.

Notation. Let S be a set of ground literals. The set of atoms that occur positively, resp.
negatively, in § is denoted pos(S), resp. neg(S). Not S denotes the set {Not s | s € Sj.
o

Definition G¢l8%2, Let P be a logic program and / an interpretation of P. X < B{P] is an
unfounded set of P w.r.t. I if for each p € X and for each r € ground(P) with H(ry=p
one of the following holds:

1. B(r)ANotl+@,ie.risblocked inl
2. B(NNX=D.

The greatest unfounded set of P w.r.t. I, denoted U(J), is the union of all sets that are
unfounded sets of P w.r.t. I. U(J) is easily seen to be an unfounded set. O

The pure semantics emerges from the observation that major logic programming seman-
tics - such as the well-founded semantics C¢!88a, 1he stable partial model semantics SacS0a_
the three-valued stable semanticsP902 . have the following feature in common: given an
"intended model’ M, the set of negative literals in M corresponds exactly with the greatest
unfounded set w.r.t. the set of positive literals in M, i.e. neg(M)=U(pos(M)). In other
words, a model contains redundant information as its negative part can be described in
function of its positive part. So we can follow the line of the stable model
semantics9e183b in the sense that a model is a set of atoms rather than a set of literals.
Based on this idea, we next develop the pure semantics for logic programs. The result is
a remarkably simple semantics that unifies previous approaches and explains how partial
model semantics follows from a weaker closed world assumption.

The proofs of all results presented in the sequel can be found in L2e912,

2. The Pure Semantics

Definition. Let P be a logic program. A positive interpretation of P is any subset of
B{P]. O

Intuitively, an unfounded set w.r.t. an interpretation / contains atoms that are known to be
non-inferrable from I and from any extension of /. The next definition (which resembles
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the definition of unfounded sets) introduces assumption sets. Assumption sets differ from
unfounded sets in that the atoms they contain are not inferrable from the interpretation at
hand but might be inferrable from extensions of it. As an example, consider the logic pro-
gram consisting of two rules Not p — q and Not ¢ — p; and let ] be the empty set.
The greatest unfounded set w.r.t. [ is empty whereas {p,q} is an assumption set as nei-
ther p nor ¢ is inferrable from /. Formally, this amounts to the following definition.

Definition. Let P be a logic program and let [ be a positive interpretation of P.
X < B[P] is an assumption set of P wrt. I if for each p in X and for each rule r in
ground(P) with H(r)=p, one of the following holds:

1. B(r)ANotlI=@
2. BNNX=D
3. B(r) ¢ 1w Not U(l),ie. ris non-applicable in 1

The greatest assumption set of P w.r.t. I, denoted A(7}, is the union of all sets that are
assumption sets of P w.r.t. . A([) is easily seen to be an assumption set.

I is said to be assumption-free iff A(l) N 1= . O

Since the notion of assumption set rclaxes the notion of unfounded set by adding an alter-
native condition (3), we conclude:

Proposition 1. Given a logic program P and a positive interpretation / of P, every
unfounded set of P w.r.t. ] is an assumption setof P w.r.t./. O

Let us take a closer look at the new condition in the above definition. Traditionally, a
rule r is applicable in a (partial) interpretation / if B(r) ¢ I which means that the atoms
occurring positively in r’s body are true w.r.t. I, i.e. pos(B(r)) < I, and that the atoms
occurring negatively in its body are false w.r.t. 1, i.e. neg(B(r)) < Not I. Itis our feel-
ing that this (traditional) definition of false atoms (i.e. an atom p is false wr.t. I iff
Not p € I) obscures what falsity is really about. Indeed, it is essential to remember that
an atom is not false because its negation is in the interpretation, but that the negation of
an atom is in the interpretation because the atom is found to be false. An excellent illus-
tration of this is the fixpoint computation of the well-founded model inG¢1882 where each
iteration adds, besides the positive atoms as inferred using the immediate consequence
transformation, also the negation of each atom in the greatest unfounded set which is the
set of ground atoms that are already known to be false. This suggests that the greatest
unfounded set w.r.t. an interpretation / is actually the set of all atoms that are false w.r.t. /.
It follows that the classical definition of falsity only makes sense when neg(I)=U(I). So
condition 3 in the definition of assumption set uses a more exact definition of rule appli-
cability, based on the essential meaning of falsity: an atom p is false w.r.t. I iff p € U({{).
As we shall see later, this tantamounts to a more conservative application of the CWA,

Intuitively, the greatest assumption set w.r.t. a positive interpretation / is the set of all
atoms that are non-inferrable from /. In view of this fact, whenever I N A(I) = & we
know that / contains *assumptions’, i.e. atoms for which no proper motivation of their
presence in [ exists, Accordingly, A(}=B[P]-A(I) contains all atoms that are inferr-
able from [ and consequently 7 is not deductively closed whenever A(I -I1=0. Itis



evident that we want a model to be deductively closed and assumption-free at the same
time. This leads us to the introduction of pure models.

Definition. Let P be a logic program and M a positive interpretation of £. M is a pure
(partial) model of P iff its complement, M=B[P]— M, is the greatest assumption set w.T.t.
M,ie. M=A(M). D

The following equivalence is useful in the proofs.

Proposition 2. Let P be a logic program and let M be a positive interpretation, M is a
pure model iff it is assumption-free and its complement M is an assumption set w.r.t. M.
m!

Since pure models are assumption-free, they are - according to Proposition 1 - also free
from ’unfounded literals’.

Proposition 3. Given a logic program P and a pure model M of P. Then
MAnUM)=0 .0

The pure semantics is universal in the sense that it captures the meaning of every logic
program.

Theorem 1. Every logic program has at least one pure model.
Proof (sketch). pos(Wg (@ ))5¢1882 s a pure model of P. O

3. Examples
Consider the logic program P,.

Notp = ¢
Notq - p

Let M,=@ . Then UM )=D. M.{=B[P,]={p , g} is the greatcst assumption set W.r.L.
M, asno rule for p or g is applicable in M ;. Hence, M, is a pure model of P.

Let M,={p}. Then U(M;)={q}. So M,={q} is the greatest unfounded set w.r.t. M5,
and since every unfounded set is an assumption set (Proposition 1}, we find that M_z is an
assumption set. Moreover, {p,g} is not an assumption set as the rule Not g — p does
not satisfy any of the conditions in the definition of assumption sct: Not ¢ — p is appli-
cable in M ,, not blocked in M, and its body does not contain any "assumptions’. So, M,
is the greatest assumption set w.r.t. M, which means that M, is a pure model of P,. In
much the same way, one can show that also M,={q} is a pure model. And that’s it;
Ms={p . q} is not a pure model as the greatest assumption set w.r.L. M, is M, itself.

Consider P, consisting of only one rule.
Notp — p

The empty set is the only pure model of P, since B{P,/={p] is an assumption set w.r.L
& (as U(LJ )= ) and also w.r.t. (p].
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The following logic program P (two copies of P )

Notp — ¢
Notq — p
Nota — b
Notb — a

has nine pure models: &, {a}, {b} , {p}.{q}, {p.a}, {p . b),{q,a},and {q, b}.

Consider P,.

Notb — a
Nota — b
Notc — a
Nota Notb — ¢

This program has two pure models: {a} and the empty set.

Consider P (basically two copies of P,4).

Notb — a
Nota — b
Notc —» a
Nota ,Not b - ¢

Notp — ¢
Not g —» p
Notr — ¢
Not g , Notp — r

a,q > s

P 5 has four pure models: the empty set, {a)}, (¢} and {a, ¢q, s}.

4. Relation to Other Approaches

The stable model semanticsCe!88b js not universal. Some logic programs such as P, do
not have any stable model. The main difference between the stable and the pure semantics
is that - although both are based on positive interpretations - they are actually two-valued
and three-valued respectively. Indeed, a rule r is applicable in a stable model M if
pos(B(r)) ¢ M and neg(B(r)) " M= ,ie. B(r) < M U Not M; whereas r is appli-
cable in a pure model M if B(r) ¢ M U Not U(M). In other words, the set of atoms that
are considered false w.r.t. M is M in the case of a stable model M and U (M) in the case of
a pure model M. So B[P]-(M v U(M))=M-U(M) is the set of atoms that are
undefined w.r.t. a pure model M. It is then intuitively clear that the pure models that are
two-valued or total (ie. M u UM)=B[P] or ATI—U(M)=®) are exactly the stable
models,

Definition. Given a logic program P, a positive interpretation I of P is called total iff
I'u U)=B[P]. O



Theorem 2. The total pure models of a logic program P are identical to the stable
modelsCel88b of p.

Proof (sketch). This theorem follows immediately from Theorem 4 (b) (which is proved
independently). O

Further relationships between the pure model semantics and other model-theoretic
approaches will be described in terms of ‘equivalences’ between interpretations and posi-
tive interpretations.

Definition. Let P be a logic program. We say that a positive interpretation A of P is
equivalent with an interpretation / of Piff [=A © Not U(A). O

Theorem 3. Let P be a logic program. The pure models of P are equivalent with the
three-valued stable modelsP2902 of P, i.e.

(a) If M is a three-valued stable model of P, then pos(M) is a pure model of P; and

(b) If M is a pure model of P, then M U Not U{M) is a three-valued stable model of
P.

Proof (sketch). {a) One can showl2¢?12 that three-valued stable models of P are fixpoints
of Wp and that assumption-free fixpoints of W p are equivalent with pure models of P. So,
if pos(M) is assumption-free, then we can infer that it is a pure model of P. It is easy to
see that M-A(pos(M)) is a model of P/M. But, by definition, M 1s the least model of
PIM so M m A(pos(M))=@ . Hence, pos(M) is indeed assumption-free and part (a) of
the theorem follows.

(b) It is straightforward to show that M L Nor U{M) is a three-valued modelPr28%2 of
PI(M U Not U(M)).

Suppose that M’ is the least three-valued model of P/(M u Not U(M). Then
M c M U Not U(M). One can show that for each p € M—~M" and for each rule r in
ground{P) with H(r}=p either B(r) ¢ M U Not U(M), or B(ry nNot M # &, or
B(ry n (M-M") # @ . In other words, M—M’ is an assumption set w.r.t. M. So M—-M’
must be empty as M is a pure model and thus assumption-free. Therefore M=pos(M").
Moreover, as M’ is a three-valued stable model of P, it is a fixpoint of Wp and thus
M’=pos(M’) L Not U(pos(M’)) 1291 So we find M'=M U Not U(M) which
proves part (b) of the theorem. O

This result is significant, since it clarifies the significance of the three-valued model pro-
posed inPr290a 55 follows:

o complications, such as three-valued logic and negative literals in the model, arc
unnecessary, and, in fact obscure, the fundamental conceptual shift described next.

. the transition from total stable models to partial stable models tantamounts to the
relaxation of the CWA, whereby only atoms that belong to the greatest unfounded
set arc now assumed to be false.

We now consider for a given logic program P the partially-ordered set of pure models of
P where " ¢ " (set inclusion) is the partial order, and tumn our attention to its maximal



for P. Indeed, the notions justifiable for regular models and founded for stable models are
equivalent and clearly the principle of minimal undefinedness for regular models
corresponds to the maximality of stable partial models.

stable partial models

maximal
¥ deterministic
modcl

deterministic models

well-founded
g partial model

Fig. 3.

(c) Int2e912 we show that the greatest lower bound in <, < > of all maximal pure
models of P exists, by proving that for every two pure models, M ; and M, that are con-
tained in the deterministic setS2¢9%8 (j.e. the intersection of all maximal pure models),
pos(Wz (M, U M5,)) is again a pure model that contains M; w M, and which is a sub-
set of the deterministic set. So, the glb G of all maximal pure models is the maxima! pure
model that is contained in the deterministic set. Since the pure models of P arc
equivalent with the strongly-founded models of P, G is equivalent with the maximal
strongly-founded model that is contained in the deterministic set, which is exactly the
definition of the maximal deterministic medel. O
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So, <L, < > provides us with a dag structure (directed acyclic graph) of which

. the root, i.c. unique node without incoming arcs, represents the well-founded
model,

. the leafs, i.e. nodes without outgoing arcs, represent the stable partial models,

. the glb of the leafs represents the maximal deterministic model, and

. the "ancestors’ of the glb of the leafs represent the deterministic models.

This is depicted in Figure 3.

From Figures 1 and 2 we learn for instance that:

. P has four stable partial models; its unique deterministic model is the well-
founded model;

. P has a single stable partial model which therefore coincides with its maximal
deterministic model; its well-founded model is a different deterministic model;

. etc.

5. Conclusion

Much of the current research aims to provide semantics which is universal and deals
cffectively with incompleteness. The contribution of this paper is to simplify and unify
previous approaches by eliminating the need for three-valued logic and negated literals in
defining partial models. Morcover, it shows that the conceptual transition from total
model scmantics to partial model semantics boils down to a simple relaxation of the
CWA.

The 'purification’ of traditional logic programming semantics as presented in this paper
also clarifies the meaning of negation as failure. Inl2922 | the pure semantics for extended
logic programs is shown to be a natura! extension of the pure semantics for general logic
programs.
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