
Dynamics of Active Database Rules:

Models and Refinements

Carlo Zaniolo

Computer Science Department
University of California
Los Angeles, CA 90024

zaniolo@cs.ucla.edu

Abstract Semantics represents a major problem area
for active databases inasmuch as (i) there is no formal
framework for defining the abstract semantics of active
rules, and (ii) the various systems developed so far have
ad-hoc operational semantics that are widely different
from each other. This situation contributes to the diffi-
culty of predicting the run-time behavior of sets of rules:
thus, ensuring the termination of a given set of rules is
currently recognized as a major research issue. This situa-
tion hampers the applicability of this powerful technology
in critical application areas.

In this paper, we introduce a durable change seman-

tics for active database rules; this semantics improves

Starburst’s deferred activation notion with concepts taken

from Postgres and Heraclitus and the semantic founda-

tions of deductive databases. We provide a formal logic-

based model for this transaction-oriented semantics, show

that it is amenable to efficient implementation, and prove

that it solves the non-termination problem.

1 Introduction

Several active database languages and systems have
been developed so far — a very incomplete list include
[?, ?, ?]. Furthermore, active rules are now becom-
ing a part of several commercial databases and of the
SQL3 proposed standards. Indeed, active databases
represent a powerful new technology that finds im-
portant application in the market place. However,
this new technology is faced with several technical
challenges; among these the lack of uniform and clear
semantics stands out as one of the most and press-
ing and difficult problems [?]. The lack of formal
models for characterizing the abstract semantics of
active systems is a first facet of this problem. The
second facet is represented by the differences between
the many operational semantics proposed and imple-
mented by the various systems in an ad-hoc fash-
ion, with little progress towards unification and con-
vergence. The result is that the behavior of com-
plex rule sets is very difficult to predict, and critical
questions such as confluence and termination are ex-
tremely hard to answer. These questions must be
answered before active rules can be trusted with crit-

ical functions in an information system. Improved
semantics and formal models for active databases,
will solve these problem, and foster generalizations
and simplifications that enhance the implementabil-
ity, generality and intuitive appeal of active rules.
The results presented in this paper illustrate the fea-
sibility of achieving many of the desiderata of such
an ideal scenario.

Let us consider the typical ECA rules of active
databases:

Event, Condition → Action

The basic structure of these rules make them dif-
ferent from those used in in expert systems shells
such as CLIPS and OPS5 (which follow a Condi-
tion → Action pattern) or those used by deductive
databases (that follow a Condition → Condition
pattern). But in addition to these differences, active
rules are also unique inasmuch as their meaning is in-
tertwined with the concept of database transactions.
Therefore, an active database system must specify,
whether the Action part of the rule is to fired in
the same transaction as the Event (coupled seman-
tics) or as a separate transaction (decoupled seman-
tics) [?]. Most systems adopt the coupled seman-
tics, inasmuch as this is more effective at enforcing
integrity constraints via active rules, and this frame-
work will be adopted in this papers as well. Further-
more, while in the immediate interpretation of cou-
pled semantics, rules are fired as soon as Event is
detected, the deferred semantics used in Starburst is
more transaction-conscious [?], inasmuch as it takes
into account the fact that individual actions might
be of no consequence before the transaction com-
mits. For instance, the insertion of a record r, fol-
lowed by the deletion of the same r within a trans-
action is ephemeral, inasmuch as the net effect of
these two opposite actions (i.e., their composition)
is null. Inasmuch as ephemeral actions leave no trace
once the transaction completes, they should be dis-
regarded by transaction-conscious ECA rules, which
should instead be triggered only by actions that are
durable, i.e., persist till the end of the transaction.

1

Thus, a critical contribution of Starburst is the no-
tion that rules should be deferred until a rule pro-
cessing point, which, by default, occurs at the end of
the transaction, after regular actions have completed
but before the transaction commits. At rule process-
ing point, the net effect of all accumulated actions
is computed using composition rules; for instance the
net effect of an insert followed by an update on the
same tuple is a modified insert [?].

While the basic idea of deferred semantics is both
elegant and profound, there is the complication that
many competing rules are firable at once at rule pro-
cessing point. At this time, the many changes re-
quested by the transaction (often on several relations)
could trigger several rules with incompatible action
requests in their heads. The Starburst designers rec-
ognized the complexity of the situation, and the fact
that different firing orders might lead to different re-
sults or to non-terminating programs [?]. Their pro-
posed solution calls for a very smart designer, who af-
ter studying the rules to ensure termination steers the
system clear of problems through explicit assignment
of inter-rule precedence. This approach has several
drawbacks, including the fact that termination anal-
ysis is exceedingly difficult, and that rules cannot be
added or deleted independent of each other. There-
fore, in this paper we take deferred semantics a step
further and show that, with a simple extension, the
system can solve the rule termination and priority-
assignment problems for the designer.

2 An Example

Consider the following example. We have three rela-
tions:

Dept (D#, DName, Div, Loc)

EMP(E#, Ename, JobTitle, SAL, Dept)

HPaid(JobTitle)

HPaid is actually a derived relation, which stores
those job titles for which there are, or have been em-
ployees, who make more than $100,000. This con-
crete view is maintained via the rules emp insert
and emp update specified as follows:

Rules emp insert and emp update. Upon
an insertion into EMP or an update to EMP,
the new SAL is checked, and if it exceeds
$100,000, then the JobTitle of this em-
ployee is added to HPaid, assuming that it
was not there already.

There is also a foreign key constraint between EMP
and Dept. This is supported by a rule dept delete
that propagates deletions from Dept to EMP :

Rule dept delete: When a tuple is deleted
from Dept, then delete all employees who
were working in the deleted department.

Now assume that our transaction has executed the
following actions (in the order listed):

• Change the location of every department who
was in LA (Los Angeles) into SM (Santa Mon-
ica).

• Delete the department with D# = 1300 from the
database.

• Give a raise of $4,000 to all employees whose
Job Title is analyst.

Say that in the initial database there are only
two departments with location ’LA’, say, one with
D# = 1300 and the other with D# = 2500. Then, the
Starburst composition semantics prescribes that the
update on the Dept tuple with D# =1300 followed by
the deletion of the same is equivalent to the deletion
the original tuple. The update on the department
tuple with D# = 2500 instead remains till the end of
the transaction . Thus, the update on the tuple with
D# =1300, which does not persist until the end of the
transaction, will be called ephemeral while the second
will be called durable. Therefore, at rule processing
point only two change remain and the following two
rules can be activated:

• Rule dept delete can be triggered by the re-
sulting deletion of department with D# = 1300
(and Loc = ‘LA‘).

• Rule emp update can be triggered by the
+$4,000 salary update gotten by analysts.

The issue of which of the two rules above should
be fired first is left by Starburst up to programmer,
who can direct the system by assigning explicit prece-
dence to the rules. However, consider the situation
in which emp update is fired before, or even at the
same time as, dept delete. Say that there is only
one network specialist, Bob White who now makes
$98,000. Then, with the $4,000 raise the new salary
exceeds the $100,000 threshold and rule emp update
might add a new entry into HPaid. However, if Bob
White happens to work for department 1300, then
there is a problem. Once the rule dept delete fires
the Bob White tuple is deleted and the $4000 salary-
raise becomes ephemeral, and, therefore, the addition
of analyst to HPaid becomes totally unjustified— it
should never have happened.

Therefore, we propose a semantics whereby only
durable-change events can fire rules—ephemeral-
change events cannot. This restriction produces
a natural ordering between rules; in our case, the
dept delete rule must be fired before emp update.
Once the rules are processed in this order the update

Figure 1: Three entries in the delta tables at rule-
processing point

updDept0(2500, ims, 1000, ‘LA‘,
2500, ims, 1000, ‘SM’).

delDept0(1300, media, 1000, ‘LA‘).
updEMP0 (E2309,‘Bob White’,analyst,98000,1300,

e2309,‘Bob White’,analyst,102000,1300).

on of Bob White’s record will be removed, and the
second rule will not fire at all.

There is also an obvious implication upon the ter-
mination problem, since the composition rules have
the following property: every event that is followed by
a later event on the same tuple is ephemeral. There-
fore, each durable event on a tuple t is the final event
on t. Since only final events can trigger rules, the
computation cannot fall into an infinite loop.

In the rest of the paper we give a logic-based for-
malization to these simple concepts.

3 Active Rules as Deductive
Rules

We will now define a logic-based semantics for active
rules with priority assignment. We use the notion
of delta relations from Heraclitus [?], which we ex-
tend to handle updates along with inserts, deletes
(the term ”changes” will be used here to denote any
of these three). Thus, for each relation R(X) in the
database schema, where X denotes the attribute vec-
tor for R, we also keep three additional relations (delta
relations):

insR, delR, updR

The delta relations insR(X) and delR(X) have the
same attributes as the original R(X). However, updR
has an old-value and a new-value for each attributes
of R, and can therefore be viewed according to the
scheme updR(Xold, Xnew). A sample of the initial
value delta relations just before the rule-processing
point is shown in Figure 1. The same tuple cannot
appear in more than one delta table of the same re-
lation.

We will use Datalog1S to model the state changes
occurring in the various relations [?, ?]. In Datalog1S,
tables and predicates are allowed to have an addi-
tional argument or column called the stage argument.
The values in the stage argument are taken from the
domain 0, 0 + 1, 0 + 1 + 1, ..., i.e., the integers gen-
erated by using the postfix successor function +1;
thus, the integer 3 is represented as 0+1+1+1. Al-
ternatively using the normal functional notation, the
successor of J is denoted s(J)—this notation is at the
root of the name Datalog1S . The merits of Datalog1S

for modeling temporal and dynamic systems have
been described in several papers [?, ?, ?]. There-
fore, delta predicates with stage argument J have the
form insR(J, X), delR(J, X) and updR(J, Xold, Xnew).
For notational convenience, we will instead write the
stage argument as a superscript: insRJ(X), delRJ(X)
and updRJ(Xold, Xnew).

In addition to the delta relations, several auxil-
iary predicates are needed for each R in our database
schema. In particular we need:

• Initial Relation: iniR(X). This stores the value
of R at the beginning of the transaction. It does
not have a stage argument since it remains con-
stant during the whole transaction.

• Delta Relations: insRJ(X), delRJ(X),
updRJ(Xold, Xnew).

• Current Relations: curRJ(X) represents the cur-
rent content of relation R, as seen within the
transaction. It is computed from the initial re-
lation and the delta relations.

• Action Request Relations: rinR(X), rdeRJ(X),
rupRJ(Xold, Xnew). These contain the actions on
R produced by fired active rules. Their union
yields the change request relation chrRJ(X). The
union of these for all R in the schema produces
the request relation reqJ.

• Durable-change Relations: dinRJ(X), ddeRJ(X),
dupRJ(Xold, Xnew). These contain all the
changes assumed durable at step J.

• A Current Level relation: levlJ(Nr) with Nr the
name of a rule. This predicate is used to en-
force priorities between rules by denoting the
rules that are currently active. The priorities
between rules is represented by a binary prec
relation.

We begin by computing the current value of the
database as shown in Figure 2, using frame axioms.
The current value of relation for R(X) is obtained by
first subtracting from its initial value iniR the tuples
deleted and the old values of tuples updated, and
then adding the tuples inserted and the new values of
tuples updated (for both delta relations and durable-
change relations):

curRJ(X) ← iniR(X), levlJ(),
¬delRJ(X),¬updRJ(X, New),
¬ddeRJ(X),¬dupRJ(X, New).

curRJ(X) ← insRJ(X).
curRJ(X) ← updRJ(Old, X).
curRJ(X) ← dinRJ(X).
curRJ(X) ← dupRJ(Old, X).

The next set of rules, called action request rules, cap-
ture the behavior of the actual active rules in the
system.

Figure 2: The current state of the database via frame axioms

curDeptJ(D, N, Dv, L) ← iniDept(D, N, DvL), levlJ(),
¬delDeptJ(D, N, Dv, L),¬updDeptJ(D, N, Dv, L, , , ,),
¬ddeDeptJ(D, N, Dv, L),¬dupDeptJ(D, N, Dv, L, , , ,).

curDeptJ(D, N, Dv, L) ← insDeptJ(D, N, Dv, L).
curDeptJ(D, N, Dv, L) ← updDeptJ(, , , , D, N, Dv, L).
curDeptJ(D, N, Dv, L) ← dinDeptJ(D, N, Dv, L).
curDeptJ(D, N, Dv, L) ← dupDeptJ(, , , , D, N, Dv, L).

curEMPJ(Eno, N, Jt, Dno) ← iniEMP(Eno, N, Jt, Dno), levlJ()
¬delEMPJ(Eno, N, Jt, Dno),¬updEMPJ(Eno, N, Jt, Dno, , , ,),
¬ddeEMPJ(Eno, N, Jt, Dno),¬dupEMPJ(Eno, N, Jt, Dno, , , ,).

curEMPJ(Eno, N, Jt, Dno) ← insEMPJ(Eno, N, Jt, Dno).
curEMPJ(Eno, N, Jt, Dno) ← updEMPJ(, , , , Eno, N, Jt, Dno).
curEMPJ(Eno, N, Jt, Dno) ← dinEMPJ(Eno, N, Jt, Dno).
curEMPJ(Eno, N, Jt, Dno) ← dupEMPJ(, , , , Eno, N, Jt, Dno).
curHPaidJ(Jt) ← iniHPaid(Jt), levlJ(),¬delHPaidJ(Jt),¬updHPaidJ(Jt,).

¬ddeHPaidJ(Jt),¬dupHPaidJ(Jt,).
curHPaidJ(Jt) ← insHPaidJ(Jt).
curHPaidJ(Jt) ← updHPaidJ(, Jt).
curHPaidJ(Jt) ← dinHPaidJ(Jt).
curHPaidJ(Jt) ← dupHPaidJ(, Jt).

Figure 3: Translations of Active Rules

dept delete:
rdeEMPJ(En, E, JT, S, Dn) ← delDeptJ(Dn, N, V, L), curEMPJ(En, E, JT, S, Dn), levlJ(dd),

¬lchDeptJ(Dn, N, V, L).
emp insert:
rinHPaidJ(Jt) ← insEMPJ(En, N, Jt, S, Dn), S > 100000,¬curHPaidJ(Jt), levlJ(ei),

¬lchEMPJ(En, E, JT, S, Dn).
emp update:
rinHPaidJ(Jt) ← updEMPJ(En, , Jt, So, , En, , Jt, Sn,), Sn > 100000,¬curHPaidJ(Jt), levlJ(eu),

¬lchEMPJ(En, E, JT, S, Dn).

Figure 4: Changes assumed durable in firing the rules of Figure 3

dept delete:
ddeDeptJ(Dn, N, V, L). ← delDeptJ(Dn, N, V, L), curEMPJ(En, E, JT, S, Dn), levlJ(dd),

¬lchDeptJ(Dn, N, V, L).
emp insert:
dinEMPJ(En, N, Jt, S, Dn) ← insEMPJ(En, N, Jt, S, Dn), S > 100000,¬curHPaidJ(Jt), levlJ(ei),

¬lchEMPJ(En, E, JT, S, Dn).
emp update:
dupEMPJ(E, N, Jt, S, D, En, Nn, Jtn, Sn, Dn) ← updEMPJ(E, N, Jt, S, D, En, Nn, Jtn, Sn, Dn), Sn > 100000,

¬curHPaidJ(Jt), levlJ(eu),¬lchEMPJ(En, E, JT, S, Dn).

Obviously events are represented by the tuples of
the delta relations, while conditions must be evalu-
ated against the current relations. Finally the actions
in the head of active rules are modeled by action re-
quests. For instance, an immediate translation of rule
dept delete is:

rdeEMPJ+1(En, E, JT, S, Dn) ← delDeptJ(Dn, N, V, L),
curEMPJ(En, E, JT, S, Dn), levlJ(dd).

This rule specifies that all the employees working
in a certain department must be deleted once their
department is in the delta relation. The rule will
fire only if its proper level of precedence, i.e., only if
levlJ(dd) is true, where dd is just a shorter name for
dept delete.

To express the durable-change semantics we need
to add an additional goal ¬lchDept to ensure that
the event triggering the rule is a durable one and will
not be obliterated by later change requests (“later”
refer to stage values larger than the current ones).
Thus our original rule becomes:

rdeEMPJ+1(En, E, JT, S, Dn) ← delDeptJ(Dn, N, V, L),
curEMPJ(En, E, JT, S, Dn), levlJ(dd),
¬lchDeptJ(Dn, N, V, L).

This rule specifies that all the employees working
in a certain department must also be deleted if their
department is deleted. The translation of active rules
for the example at hand is shown in Figure 3.

At each step, the firing of active rules might gen-
erate several action requests on R. These have the
form rinR, rdeR, rupR, respectively for tuples in-
serted, deleted or updated. Thus we have three rules
as follows:

chrRJ(X) ← rinRJ(X).
chrRJ(X) ← rdeRJ(X).
chrRJ(X) ← rupRJ(X, New).

From these, we can now derive lchRI(X) for values
of I preceding the current stage value of J. (Say
that the < relation between stage values is part of
Datalog1S, or alternatively that we define recursive
rules to achieve the same effect.)

lchRI(X) ← chrRJ(X), I < J.

Now, we have to use the composition rules to com-
pose the action requests with old deltas yielding new
deltas (of course new and old deltas are denoted by
their respective stage values of J+1 and J). Basically
there are three cases:

1. The action request rinR(X), rde(X), rup(X,),
does not compose with any object in the delta

Figure 5: Change Requests and later changes

chrDeptJ(En, E, JT, S, DN) ← rinDeptJ(En, E, JT, S, DN).
chrDeptJ(En, E, JT, S, DN) ← rdeDeptJ(En, E, JT, S, DN).
chrDeptJ(En, E, JT, S, DN) ← rupdDeptJ(En, E, JT, S, DN, , ,).
lchDeptI(En, E, JT, S, DN) ← chrDeptJ(En, E, JT, S, DN), I < J.

chrEMPJ(En, N, Jt, S, Dn) ← rinEMPI(En, N, Jt, S, Dn).
chrEMPJ(En, N, Jt, S, Dn) ← rdeEMPI(En, N, Jt, S, Dn).
chrEMPJ(En, N, Jt, S, Dn) ← rupEMPI(En, N, Jt, Dn, S, , ,).
lchEMPJ(En, N, Jt, S, Dn) ← chrEMPI(En, N, Jt, S, Dn), I < J.

chrHPaidJ(Jt) ← rinHPaidI(Jt).
chrHPaidJ(Jt) ← rdeHPaidI(Jt).
chrHPaidJ(Jt) ← rupHPaidI(Jt,).
lchHPaidJ(Jt) ← lchHPaidJ(Jt), I < J.

tables. In this case the action request is simply
entered in the delta tables. Thus:

insRJ+1(X) ← rinRJ(X), ¬insRJ(X),
¬delRJ(X),¬updJ(, X).

delRJ+1(X) ← rdeRJ(X),¬insRJ(X),
¬delRJ(X),¬updJ(, X).

updRJ+1(X, Y) ← rupRJ(X, Y),¬insRJ(X),
¬delRJ(X),¬updJ(, X).

2. The second case concerns delta tuples that are
neither moved to durable-change tables nor af-
fected by the last action requests. These tuples
are simply copied into the next-state delta ta-
bles. We also have added a wt4J predicate to
ensure that these rules do not fire until the cur-
rent change-requests have been computed:

insRJ+1(X) ← insRJ(X), wt4J,
¬dinR(X),¬chrRJ(X).

delRJ+1(X) ← delRJ(X), wt4J,
¬ddeR(X),¬chrRJ(X).

updRJ+1(X, Y) ← updRJ(X, Y), wt4J,
¬dupR(X, Y),¬chrRJ(X).

3. This is the situation where an object in the delta
tables at stage J must be composed with action
requests to yield an entry in the delta table at
stage J + 1. In this case we have to apply the
composition rules as follows:

%null← insRJ(X), rdeRJ(X).
insRJ+1(Xnew) ← insRJ(X), rupRJ(X, Xnew).
error← insRJ(X), rinRJ(X).
error← delRJ(X), rdeRJ(X).
error← delRJ(X), rupRJ(X, Y).
%null← delRJ(X), rinRJ(X).
delRJ+1(X) ← updRJ(X, Y), rdeRJ(Y).
error← updRJ(, X), rinRJ(X).
updRJ+1(Xold, Xnew) ←

updRJ(Xold, X), rupRJ(X, Xnew).

Figure 7: Delta tuples copied into the next-state table without any change (Case 2)

insDeptJ+1(D, N, Div, L) ← insDeptJ(D, N, Div, L),¬dinDeptJ(D, N, Div, L),¬chrDeptJ(D, N, Div, L),
delDeptJ+1(D, N, Div, L) ← delDeptJ(D, N, Div, L),¬ddeDeptJ(D, N, Div, L),¬chrDeptJ(D, N, Div, L),
updDeptJ+1(Do, No, Dvo, Lo, Dn, Nn, Dvn, Ln) ← updDeptJ(Do, No, Dvo, Lo, Dn, Nn, Dvn, Ln),

¬dupDeptJ(Do, No, Dvo, Lo, Dn, Nn, Dvn, Ln),¬chrDeptJ(D, N, Div, L)
insEMPJ+1(En, N, Jt, Dn) ← insEMPJ(En, N, Jt, Dn),¬dinEMPJ(En, N, Jt, Dn),¬chrEMPJ(En, N, Jt, Dn),
delEMPJ+1(D, N, Div, L) ← delEMPJ(D, N, Div, L),¬ddeEMPJ(En, N, Jt, Dn),¬chrEMPJ(En, N, Jt, Dn),
updEMPJ+1(Do, No, Dvo, Lo, Dn, Nn, Dvn, Ln) ← updEMPJ(Do, No, Dvo, Lo, Dn, Nn, Dvn, Ln),

¬dupEMPJ(Do, No, Dvo, Lo, Dn, Nn, Dvn, Ln),¬chrEMPJ(En, N, Jt, Dn).
insHPaidJ+1(Jt) ← insDeptJ(Jt),¬dinHPaidJ(Jt),¬chrHPaidJ(Jt),
delHPaidJ+1(Jt) ← delDeptJ(Jt),¬ddeHPaidJ(Jt),¬rdeHPaidJ(Jt).
updHPaidJ+1(Jto, Jtn) ← delDeptJ(Jto, Jtn),¬dupHPaidJ(Jto, Jtn),¬chrHPaidJ(Jtn).

The set of rules for updating the delta relations for
the example at hand is shown if Figures 6, 7 and 8.

Finally, we have the prec table that describes the
(inverse) priority between rules and ensures that only
the rules at the correct precedence level will fire.
An entry prec(r1, r2) denotes that a rule at level r2
should fire only after all rules at level r1 have stopped
firing (if r2 is non-recursive, then it can only fire at
one stage value; if r2 is recursive, then it can fire
at successive stage values while keeping at the same
precedence level). Therefore, the first two rules in
Figure 9 specify that, if there has been some action
request we keep the same level; otherwise we move
to the rules at the next precedence level. Naturally,
reqJ is defined as the disjunction of all possible action
requests. When we reach the last level in prec, for
a stage value of say m, then, levlm+1 is never set to
true and we thus reached the end of the computation.
The third rule in Figure 9 specifies that at the first
step of the computation the precedence to be used
to select the rules should be the first (bottom) in the
prec tree.

For each database, D, the program containing the
rules so generated, augmented with the facts describ-
ing the content of the database at the beginning of
the transaction, will be called the durable-delta pro-
gram for D.

4 Declarative Semantics and
Operational Semantics

At this point, our reader is probably puzzled by the
many rules that our Datalog1S model has generated
starting from a rather simple example. It is there-
fore important to point out that most of these rules,
namely all those in Figures 2, 6, 7, 8 and 9 are needed
to express Starburst’s deferred evaluation with com-
position semantics using Heraclitus’ delta relation ap-
proach. Any complete formalization of these com-
plex operations is bound to be a lengthy one. For
instance, the usage of relational algebra or relational
calculus would lead to even longer formulas—and in
fact most topical papers only provide semi-formal
English-based descriptions of these. The examples
of active rules, normally expressed in SQL or QUEL-
like syntax in such papers, however, find a very simple
expression in our framework—Figure 3.

Finally, all rules but those that define action re-
quests and durable changes, can be generated directly
from the schema, and they obey highly repetitive pat-
terns. Therefore the use of a meta-level notation,
where variables represent relation names and their
attribute lists, would cut down dramatically in the
number of final rules generated. Nevertheless, we
have restricted ourselves to the basic Datalog1S rep-
resentation, because we want to apply the standard

Figure 9: Moving to the next level till no more

levlJ+1(X) ← levlJ(X), wt1J+1,¬reqJ,¬error.
levlJ+1(Y) ← levlJ(X), wt1J+1, reqJ,¬error,

prec(X, Y).
levl0(X) ← wt10, prec(nil, X).
reqJ ← chrDdepJ(, , ,).
reqJ ← chrEMPJ(, , ,).
reqJ ← chrHPaidJ().
wt4J ← wt3J. %same strtm as chrR
wt3J ← levlJ().
wt1J+1 ← wt4J. %a new stage value
wt10. %begin ruleprocessing

stable model semantics to the problem at hand.
Observe that all these rules, but the active rules

and the durable change rules, can be given a sim-
ple operational interpretation. These safe rules can,
for instance, be translated into equivalent relational
algebra expressions. Then the overall computation
proceeds in a bottom-up fashion from level J to level
J+1 (in fact, if we remove the lchRJ goals, the whole
program becomes XY -stratified and thus efficiently
computed [?]).

In our durable-changes policy, however, we use the
negation of lchRJ as a goal to predict the absence of
conflicting future events. This feature puts us beyond
the scope of any operational semantics, and in the
realm of declarative semantics based on the notion
of stable models (Definition 2). Therefore, we can
now define our durable-change semantics for active
databases as follows:

Definition 1 Let D = (S, C,A) be a database where:

• S denotes a set of schema relations
• C denotes the current content of the database
• A denotes a set of active rules on S

Let P denote the durable-delta program for D. If P
has a stable model semantics, then D is said to obey
a durable-change semantics.

For all its superior conceptual benefits this new
declarative semantics is bound to remain of little
practical consequence until we can translate it into
some efficient operational semantics. In general, sta-
ble models represent an egregious basis for efficient
implementation since computing stable models is NP-
hard [?]. Even more restrictive subclasses of pro-
grams, such as locally stratified programs or those
that have well-founded models, might not yield com-
putation procedures that can be realistically used for
active database applications. At this point, there-
fore, our reader might suspect of having being led
to the quagmire of current non-monotonic reason-
ing research whereby: ‘The semantics we like can-
not be implemented efficiently...’. Fortunately, in this

case, a careful assignment of priorities to rules and
events, will take us out that quagmire and to the
solid grounds of very efficient operational semantics.
As described more formally next, this can be done by
reconciling the stable model semantics with an effi-
cient inflationary-fixpoint computation.

Let r be a rule of a logic program P and let h(r),
gp(r) and gn(r), respectively, denote the head of r,
the set of positive goals of r and the set of negated
goals of r without the negation sign. For instance,
if r : a ← b,¬c,¬d, then h(r) = a, gp(r) = {b} and
gn(r) = {c, d}. In the following, P denotes a logic
program with negated goals, I and N are subsets of
P ’s Herbrand Base BP (here, I represents the set of
atoms that are true, and N represents those that are
false); ground(P) represents the Herbrand instantia-
tion of P .

Definition 2 Let P be a logic program, and let I
and N be subsets of BP . The immediate positive-
consequence operator for P given N is defined as:

ΓP (N)(I) =

{h(r) | r ∈ ground(P), gp(r) ⊆ I, gn(r) ⊆ N}

While Γ can also be viewed as a two-place function
(on I and N), in the following definition, we view it as
a function of I only, inasmuch as N is kept constant.
The following characterization of two-valued stable
models follows directly from the one given in [?]:

Definition 3 Let P be a logic program with Her-
brand base BP and M = BP − M . Then, M is a
stable model for P iff:

Γ↑ω
P (M)

(∅) = M

Thus M is a stable model if it can be obtained
as the ω power of the positive consequence operator,
where the set of false atoms is kept constant and equal
to the set of atoms not in M . Using this last defini-
tion, it is easy to check whether a model M is stable
in polynomial time, by simply letting the set of false
atoms to be M = BP −M . In actual computations,
however, the set of false atoms is not known a priori,
and educated guesses must be made in the course of
the computation when firing rules with negated goals.
For instance, it is customary to use a naive immediate
consequence operator, defined as follows (I = BP−I):

TP (I) = ΓP (I)(I).

T ↑ωP (∅) yields the least model for positive programs
where TP is continuous. However, for programs with
negated goals, this operator makes the naive closed-
world assumption that every atom that is currently
not in I is false. However, as successive powers TP are
computed, larger and larger sets I are constructed,

Figure 10: The EPG for the rules of Figure 3

%

$�-'

&
6.

EMP

EMP INSERT EMP UPDATE

DEPT DELETE

HPaid

Dept

and the original assumptions about negated facts are
frequently contradicted. Therefore, for most pro-
grams with negation, T ↑ωP (∅) does not yield a stable
model, or not even a minimal model. Fortunately, our
durable-delta programs offer a very useful exception
to this general rule. Let us begin with the concept of
Event Precedence Graph (EPG):

Definition 4 Let P be a durable-delta program. The
Event Precedence Graph (EPG) for P is a directed
labeled graph that has as nodes the relation names of
the database schema. The graph contains an arc from
relation R1 to relation R2 with label α iff there is an
active rule α having as goals either insR1, delR1, or
updR1 and having either rinR2, rdeR2, or rupR2 as its
head.

The EPG for the example at hand is shown in Fig-
ure 10. We will now discuss the treatment of acyclic
EPG graphs: the treatment of graphs with cycles is
discussed in the next section. The Canonical Rule
Precedence Assignment for an EPG graph is defined
as follows:
• Nodes with zero in-degree are assigned level 0
• The arcs departing from a node of level j ≥ 0

are assigned level j.
• Every node that is the end-node of one or more

arcs, is assigned the maximum level of such arcs,
plus 1.

Thus, in our example Dept (and the rules triggered
by its changes) are at level 0, EMP is at level 1 and
HPaid is at level 2. In order to avoid using integers
outside the stage argument, we will represent level
through a binary precedence relation prec. For the
example at hand, for instance, we have

prec(nil, dd) prec(dd, ei) prec(dd, eu)

Thus, prec is a graph having as nodes the abbrevi-
ated rule names. For each rule r at level 0 there is an
arc from a special node node nil to r; for each rule
r at level j there must be an arc connecting some

rule at level j − 1 to r. Then we have the following
theorem:

Theorem 1 Let P denote the durable-change pro-
gram, with acyclic EPG graph, and canonical rule
precedence assignment. Then, P has a stable model
which is equal to T ↑ωP (∅).

Proof. It suffices to show every lchRJ atom as-
sumed false to fire a rule instance r is not in T ↑ωP (∅).
Indeed , durable-change rules can fire only at their
canonical level—i.e., at a level where rules that could
affect their triggering events have already fired. Also
these rules can never fire again since the EPG is
acyclic. 2

Observe for example the computation for the ex-
ample at hand. The computation begins with the exit
rules in Figure 9, setting wt1J and then levl0(dd) to
true. Thus, the rules of Figure 2 compute database
state at level 0, by combining the database before the
transaction with the the net effect of all actions till
the rule-processing point. The durable changes are
also evaluated at this point, assuming as a default
that all ¬lchR goals are true. While this assumption
is incorrect, no arm follows from it, since only rules
enabled by levlJ can fire. For instance, for stage
value of 0, only the dd rule can fire, and its firing
event is entered in the durable-change table. The
action requested by dept delete rule is the dele-
tion of the last tuple in Figure 1 (the analyst tuple)
which is thus removed by the composition rules. As
the computation proceeds with a stage value of 1,
no rule fires; thus the delta relations are copied un-
changed to next stage value of 2, and levl2(ei) and
levl2(eu) are set to true and the first two rules can
fire; but with no change was left in the delta tables for
this level, the computation proceeds by setting level
levl3(ei). There is no candidate triggering event at
this level either, and we are now at the top of the EPG
graph. Thus w14 is set to true while levl4 remains
false. Thus the computation terminates yielding a
stable model for our durable delta program.

Upon successful termination, all remaining entries
in the delta relations and all the entries accumulated
in the durable-change relations, are written back into
stable storage as the transaction commits.

4.1 Recursive Rules

In the previous example, the durable-delta program is
recursive, but the EPG is acyclic. Let us now consider
the situation where the EPG is cyclic, which corre-
sponds to the situation where the set of active rules
alone are recursive. For instance, assume that we
have a hierarchy of organizations each identified by a
D#; the column Div in the Dept relation, now denotes
the organization to which the department is report-
ing. Then, we have an active rule dept del prop

which, once an organization is deleted, deletes all or-
ganizations reporting to it. The logical counterpart
of such a rule is:

dept del prop:
rdeDeptJ(Dc, N, Dp, Loc),← delDeptJ(Dp, , ,),

curDeptJ(Dc, N, Dp, Loc),
levlJ(ddp),¬lchDeptJ(Dp, , ,).

This last rule introduces a loop from Dept to Dept
the EPG graph of Figure 10. While, programs with
acyclic EPGs always have stable models, not all cyclic
programs have one. Take, for instance, the following
rule that reacts to a tuple with nil value being in-
serted in HPaid by deleting the same tuple:

counter action:
rdeHPaidJ+1(nil) ← insHPaidJ(nil),

levlJ(ca),¬lchHPaidJ(nil).
Say now that our delta

tables contain inHPaid(nil), and our durable-delta
program P has no active rule, but counter action,
affecting this entry in the delta relation. Then, if we
assume the insertion of HPaid(nil) to be durable,
we must fire counter action, requesting the dele-
tion of this delta tuple—making the original insertion
ephemeral. Conversely, if we consider the initial in-
sertion ephemeral, then we cannot fire the rule, thus
making the insertion of HPaid(nil) durable. This is
contradiction means that our program P (which also
include the durable change rules not listed above)
does not have a stable model, much in the way in
which a program containing the rule a ← ¬a cannot
have a stable model. The counter action rule is
therefore disallowed in our durable-delta semantics;
to provide the same operational effect as this rule we
propose the use of ‘instead’ rules from Postgres [?],
which are given a modified logical translation [?].

Therefore, durable-delta programs with cyclic EPG
might not have stable model semantics; moreover, de-
ciding if a given durable-delta program has a stable
model is as complex a problem as deciding whether
an arbitrary program has a stable model; 1

Therefore, it appears that cyclic EPG pose an
insuperable obstacle to the implementation of our
durable change semantics. Fortunately, we can take
advantage of the roll-back mechanism of transactions,
whereby a computation that has incurred in errors or
semantic constraint violations can be simply aborted,
while the database is returned to the initial consis-
tent state. We have already used error conditions in
composition semantics, where, e.g., an insert followed
by another insert on the same tuple produces an er-
ror. Once the error predicates becomes true then
the transaction aborts. For a cyclic EPG, therefore,

1It suffices to write active rules for an NP-complete
problem—e.g., to decide whether a graph has a Hamiltonian
circuit.

we can monitor the computation as it takes place,
and once we detect that this will not generate a sta-
ble model, we can simply abort the computation. As
we describe next, this policy can be implemented
efficiently—consistently with the fact that checking
that a model is stable is PTIME.

Let G be a directed graph, and S be a strong com-
ponent for G. The contraction of S in G yields a
new graph G′ obtained by (i) eliminating all the arcs
of S and merging the nodes of S into one node, say
NS , and (ii) replacing each arc A → B by NS → B if
A ∈ S, and by A → NS if B ∈ S. The graph obtained
from G by contracting all its maximal strong compo-
nents of G is unique and will be called the acyclic
contraction of G.

The canonical rule precedence assignment for a
cyclic EPG is then constructed as follows: first com-
pute the canonical assignment for its acyclic contrac-
tion, and then set all arcs (rules) in a strong compo-
nent S to the same level as NS .

For the example at hand, the addition of rule
dept del prop to those of Figure 4, adds a loop on
Dept; then dept del prop is assigned to level 0 and
the levels of the remaining rules does not change, al-
though the computation of T ↑ωP (∅) is changed by this
rule. Say, for instance, that the database contains the
following Dept tuples:

iniDept (2500, ims, 1000, ‘LA‘)
iniDept (1300, media, 1000, ‘LA‘).
iniDept (2300, prodc, 1300 , ‘LA‘).

Then, the computation begin with levl(dd)
and lev(ddp) being set to true and the rules
dept delete and dept del prop being triggered
by the first tuple in the delta table of Figure 1. The
rule dept delete triggers a deletion on EMP which
composes with the last entry from the delta table, and
removes it as in the non-recursive case. The recursive
rule dept del prop instead generates a new request
on Dept rdeDept(2300, prodc, 1300, ‘LA‘). This does
not compose with any current request, and it is en-
tered as delDept(2300, prodc, 1300, ‘LA‘) in the delta
relation. Now, the stage value is increased, but
the precedence level is not changed, and will re-
main the same until all the requests at this level
have been exhausted. At this point the request
delDept(2300, prodc, 1300, ‘LA‘) is assumed durable,
(the durable change rules have been omitted for
brevity). Next, the rule dept del prop can no
longer fire since the condition part of the rule fails.
Thus, and the computation moves to the next prece-
dence level where it continues as in the non-recursive
case.

From the various examples proposed in the liter-
ature, it appears that T ↑ωP (∅) succeeds in comput-
ing a stable model for most durable-delta programs

of practical interest. However, precautions must be
taken against rules such as the counter action rule
where there is no stable model, or even situations
where T ↑ωP (∅) cannot find it. To this end, we add the
following rules:

fail sc← dinDeptJ(X, Y, Z, W), lchDeptJ(X, Y, Z, W)
fail sc← ddeDeptJ(X, Y, Z, W), lchDeptJt(X, Y, Z, W)
fail sc← dupDeptJ(X, Y, Z, W),

lchDeptJ(X, Y, Z, W, , , ,).

We need to add a similar rule for each event in
a strongly connected component of the EPG, only.
Whenever any such a rule fires T ↑ωP (∅) is no longer a
stable model. In this case, fail sc the transaction
can be aborted using the following rule:

error← fail sc

Observe that, as per the rules of Figure 9, error
immediately terminates computation of the model M
and aborts the transaction. Then, M is a stable mode
iff and only iff fail sc 6∈ M, i.e., when the error has
been produced by the composition rules rather than
by a violation of the stability condition. Independent
of its cause, error always results in an immediate
transaction-abort.

5 Termination

When fail sc does not occur T ↑ωP (∅) produces a sta-
ble model. The main question that remains open is
whether it terminates after a finite number of steps,
or only an infinite computation to the first ordinal
can yield the stable model. Using the durable change
semantics, and the Datalog1S formalism, we can now
derive a simple a practical solution to this problem,
that is in normally of very intractable nature.

Since in Datalog1S functions symbols are confined
to an argument, T ↑ωP (∅) defines a computation that
either terminates or becomes ultimately periodic

Definition 5 A function f on natural numbers is
said to be ultimately periodic with period (n, k),
where n and k are non-negative integers, if for all
j ≥ n we have f(j + k) = f(j).

Let M = T ↑ωP (∅), and let MJ denote the set of
atoms in M with stage value equal to J . For a
Datalog1S program P , MJ can be viewed as a func-
tion that maps an integer J to the set of atoms in
T ↑ωP (∅) that have stage argument J . Then, we have
the following theorem [?]:

Lemma 1 Let P be a Datalog1S program. Then one
of the following two cases must hold:

1. [Finite Set of Stage Values] There exist an
integer n such that, for J > n: MJ = ∅

2. [Periodic Behavior] The set of stage values
is not finite, but there exist two integers n and k
such that for every J > n: MJ+k = MJ .

We now have the following theorem:

Theorem 2 Let P be a durable-delta program. If P
is Datalog1S, then there exists an integer n such that
for every J > n, MJ = ∅. Then M =

⋃
1≤j≤n MJ is

the stable model of P iff fail sc 6∈ M.
Proof: It suffices to prove that the computation

is not eventually periodic. Indeed, assume that the
computation becomes periodic after n with periodic-
ity k. Then if M contains a dinRj(X) with j > n
then it must also contain dinRj+k(X). Observe
that the latter requires a insRj+k(X) to in delta
relation—and this requires that M contains some
chrRj+h(X) for 0 < h ≤ k. Then, lchRj(X) is true,
and that is a contradiction, as error is generated and
the computation terminates. Similar considerations
hold for ddeRj+k(X) and dupRj+k(X). 2

Therefore, only a finite number of distinct stage
values is possible for durable-delta programs where
the computation can be stopped at the first n for
which levln is not set to true. If that occurs at the
m-step of the computation 2 of T ↑ωP (∅) then we have
that: M =

⋃
1≤j≤m T ↑jP (∅).

Therefore, the durable-change semantics solves the
difficult termination problem, whenever the durable-
delta program is Datalog1S. In practical terms, this
means that the original active rules must be free of
interpreted functions; i.e., the values of the rule head
are not constructed using arithmetic or aggregates.
This is the case for the majority of rules taken from
real-life examples. While space limitations prevent
us from discussing the more general case, it suffices
to say that termination can be ensured in the most
general terms by making the composition rules more
strict through the inclusion of key constraints. In
fact, the inclusion of these constraints suggest various
refinements on the basic durable change semantics,
including a greater role for non-deterministic compu-
tations. These will be discussed in future papers.

6 Conclusion

This paper presented several new results. A first nov-
elty is the notion of durable-change semantics, which
ensures termination of active rule programs by mak-
ing their behavior more consistent with transaction
semantics. This result, obtained using the Datalog1S

framework, provides a tangible proof that the power
of active databases, that was previously considered
impervious to formal treatment, can in fact be tamed

2It is easy to show that m = 5× n + 1.

and improved with the help of the semantics of de-
ductive databases. (Nor benefits flow in only one
direction, since this paper provides a rare example
of a successful derivation of efficient operational se-
mantics for a problem characterized by stable-model
semantics).

In my recent research, I have been pursuing the
thesis that a conceptual unity underlies the areas of
active databases, temporal databases and deductive
databases [?, ?, ?]. The results of this paper, bring
further support to this thesis, and, hopefully, will pro-
mote the confluence of these three areas of database
research.

Acknowledgments

Thanks are due to Antonio Brogi for many improve-
ments.

References
[1] M. Gelfond, V. Lifschitz, The stable model semantics

for logic programming, Proc. 5th Int. Conf. on Logic
Programming, MIT Press, 1988.

[2] M.L. Stonebraker, A. Jhingran, J. Goh, and
S. Potamianos. On rules, procedure, cacheing and
views in data base systems. In ACM SIGMOD Int.
Conf. on Management of Data, pages 281–290, 1990.

[3] J. Chomicki, Temporal deductive databases, Tempo-
ral Databases: Theory, Design and Implementation,
A. Tansel et al. (eds), Benjamin/Cummings, 1993.

[4] J. Chomicki, “Polynomial-time Computable Queries
in Temporal Deductive Database Systems,” PODS
1990.

[5] S. Ghandeharizadeh, R. Hull and D. Jacobs, “On
Implementing a Language for Specifying Active
Database Execution’ Models, Procs. Int. Conf. on
Very Large Databases, 1993.

[6] Widom J., “The Starburst Active Database Rule
System”, To appear in IEEE Trans. On Knowledge
and Data Engineering.

[7] U. Dayal, E.N. Hanson, and J. Widom Active
Database Systems, ”Modern Database Systems, W.
Kim (ed.), Addison Wesley, 1995.

[8] Y. Motakis, and C. Zaniolo, Composite Temporal
Events in Active Databases: a Formal Semantics,
submitted for publication.

[9] J.S. Schlipf, The expressive powers of logic program-
ming semantics, Proc. ACM-PODS, 1990, 196-204.

[10] Zaniolo, C., N. Arni, K. Ong, “Negation and Aggre-
gates in Recursive Rules: the LDL++ Approach”,
Proc. 3rd Int. Conf. on Deductive and O-O DBs,
DOOD-93, Phoenix, AZ, Dec 6-8, 1993.

[11] C. Zaniolo, “A unified semantics for active and de-
ductive databases”, In Procs. 1st Int. Workshop on
Rules in Database Systems, pages 271–287, Springer-
Verlag, 1993

[12] C. Zaniolo, “Active Database Rules with
Transaction-Conscious Stable-Model Semantics,”
Technical Report, UCLA CS Dept., May 1995.

