
Preserving and Querying Histories of
XML-Published Relational Databases

Fusheng Wang and Carlo Zaniolo

Department of Computer Science, University of California, Los Angeles,
Los Angeles, CA 90095, USA

{wangfsh, zaniolo}@cs.ucla.edu

Abstract. There is much current interest in publishing and viewing
database-resident data as XML documents. In fact, such XML views of
the database can be easily visualized on web browsers and processed
by web languages, including powerful query languages such as XQuery.
As the database is updated, its external XML view also evolves. In this
paper, we investigate the problem of representing the evolution history
of such a view as yet another XML document, whereby the complete
history of the database can also be visualized on web browsers, processed
by web languages, and queried using powerful query languages such as
XQuery. We investigate various approaches used for publishing relational
data, and identify and select those which are best for representing and
querying database histories. We show that the selected representations
make it easy to formulate in XQuery temporal queries that are difficult to
express using SQL on database relations. Finally, we discuss briefly the
storage organization that can be used to support these queries efficiently.

1 Introduction

There is a much current interest in publishing database-resident data as (concrete
or dynamic) XML documents, which can then be viewed on web browsers, and
processed by various web-based applications, including queries written in lan-
guages such as XPath and XQuery [4]. As the underlying database is updated,
its external XML view also changes (continuously for dynamic documents and
at refresh time for concrete ones). Most users who are interested in viewing and
querying the current database are also interested in viewing and querying its past
snapshots and evolving history—preferably, using the same browsers and query
languages. In fact, in many applications, (such as inventory control, supply chain
management, surveillance, etc.) changes in the database being monitored are of
critical interest. To address this need, web data warehouses have been proposed
recently [25]; these detect changes in web sites of interest, preserve their past
contents, and answer continuous queries for subscribing users [25]. As in the case
of more traditional warehouses, changes can be monitored in two ways:

1. the site publishing the database sends to the web warehouse the log of its
recent updates (either continuously or at regular intervals), or

2. the web warehouse downloads from the site frequent snapshots of the XML-
published data, and then computes the delta between the new version and
the previous one.

The second problem can be reduced to the first one, by computing the delta
between the two versions and then deriving an edit script that shows how one ver-
sion can be transformed into the other; algorithms to support this computation
were proposed in [25, 17]. Since we are dealing with XML-published relational
data, the order of the tuples is immaterial and we can also use the change
detection algorithm for semistructured information proposed in [9]. All these al-
gorithms represent the deltas between the documents as edit scripts and return
minimum deltas that will transform the old version into the new one. As dis-
cussed in [6], for elements that are logically identified by keys, it is semantically
preferable to detect changes between elements denoted by the same key. The
X-Diff algorithm proposed in [33] applies in this situation; this algorithm was in
fact designed for detecting changes in unordered XML documents with keys, as
in the case of our XML-published relational data. By utilizing node signatures
and node XHash values, the algorithm tries to find the minimum-cost match-
ing. The algorithm can reach a high matching accuracy, and has complexity
O(n2) [33].

The additional step of computing the edit script is avoided when the publish-
ing site communicates the changes directly to the web warehouse. Thus in the
rest of the paper, we assume that the update log is given. Moreover, we will not
go into details about the particular form in which the corresponding updates to
the XML document are represented. While somewhat different representations
have been used in the past, these differences are not significant in our study,
and they are bound to disappear once a standard XML update language will
emerge [30]. Moreover, the use of the database update log avoids the temporal
indeterminacy problems that instead occur when the remote database is sam-
pled at regular intervals and the edit script is reconstructed using various diff
algorithms.

All the approaches previously discussed focus on the preservation and re-
trieval of past versions of web documents; in this paper, we instead focus on
relational tables and discuss how to preserve their content and support complex
historical queries via XML and XQuery. Thus, we examine alternative ways to
represent the history of XML-published relational tables as XML documents,
and show that some of these representations allow the expression of powerful
historical queries in a natural fashion. The conceptual and practical interest
of this conclusion is underscored by the fact that expressing temporal queries
directly on relational databases had instead proven to be a difficult problem
that required major extensions to SQL [16, 35, 36, 26]. Thus viewing the history
of relational tables as XML documents could provide an appealing venue for
supporting historical queries on databases. Observe that the publication of the
current database as an XML document is actually not required for representing
the database history as an XML document, since this can be constructed directly
from the update log of the database.

2 Preserving the History of Documents

Traditional schemes for version management, such as RCS [32] and SCCS [28],
are widely used in applications such as software configuration control and sup-
port for cooperative work; version-control techniques have also been proposed
for databases, often in the context of O-O systems and CAD applications [24].
The emergence of web information systems and many new web-based applica-
tions has generated a flurry of interest and research activities, at first focusing
on semistructured information [9], and now on XML [13, 25, 14, 6]. This interest
is due to the fact that (i) traditional version management applications are now
migrating to a web-based environment [3], (ii) there is an increasing realization
that e-permanence must be achieved and the broken link problem must be fixed
[23], and (iii) very interesting queries can now be answered (using XQuery or
XPath) on the preserved history of multiversion documents.

The e-permanence problem has motivated a significant amount of previous
work. In particular the Wayback machine crawls the whole web [23], preserving
the past content, but without much support for queries (temporal or otherwise).
Transaction-time web servers were instead proposed in [18] to archive previous
versions of web resources to support transaction timeslice requests by remote
browsers. As further enhancement was proposed in [19], where it was shown
that the XPath data model and query language can be naturally extended to
support transaction time semantics.

The problem of efficiently storing and querying the history of versioned XML
documents was discussed in [12, 13, 25, 14]. The reference-based model proposed
in [13] unifies the logical representation and the physical one, but can only han-
dle simple queries; in fact, different storage representations are needed for more
complex queries[14]. An extension of the SCCS scheme [28] was recently used for
representing versions of hierarchically structured documents [6]. Here, we will use
a similar version scheme to represent and query the history of XML-published
databases at the logical level. Since many different XML-based representations
can be used for publishing [29, 30] the same database tables we will also study
alternative representations and determines which are most suitable for support-
ing temporal queries. We will also show that still different representations are
needed at the physical level.

3 Publishing Relational Data History as XML Documents

Table 1 and 2 describe the history of employees and departments. These transaction-
time tables are shown here for illustration and they are not stored in the actual
database. Instead, our database only contains the evolving snapshots of these
relations—e.g., a single tuple for the employee in the example.

Therefore, we propose to represent and preserve the evolving history of these
database relations by means of the XML documents shown in Figure 1 and Fig-
ure 2. We will call these H-documents. Each element in a H-document is assigned
two attributes tstart and tend, which represent the inclusive time-interval of the

element. The value of tend can be set to now, to denote the ever-increasing
current time.

Our H-documents use a temporally grouped data model [16]. Clifford, et al.
[16] show that temporally-grouped models are more natural and powerful than
temporarily-ungrouped ones. Temporal groups are however difficult to support in
the framework of flat relations and SQL. Thus, many approaches proposed in the
past instead timestamp the tuples of relational tables. These approaches incur
into several problems, including the coalescing problem [35]. TSQL2’s approach
[35] attempts to achieve a compromise between these two [16], and is based on
an implicit temporal model, which is not without its own problems [10].

Our model supports temporal grouping by taking advantage of the richer
structure of XML documents, and the expressive power of XQuery. An advan-
tage of our approach is that powerful temporal queries can be expressed in
XQuery without requiring the introduction of new constructs in the language.
We next show how to express temporal projections, snapshot queries, joins and
historical queries on employees and departments. These queries were tested with
Quip [2] (SoftwarAG’s implementation of XQuery) and can be downloaded from
http://wis.cs.ucla.edu/~wangfsh/ecdm02/.

Table 1. The snapshot history of employees

Name Salary Title Dept DOB Start Stop

Bob 60000 Engineer QA 1945-04-09 1995-01-01 1995-05-31

Bob 70000 Engineer QA 1945-04-09 1995-06-01 1995-09-30

Bob 70000 Sr Engineer RD 1945-04-09 1995-10-01 1996-01-31

Bob 70000 Tech Leader RD 1945-04-09 1996-02-01 1996-12-31

Table 2. The snapshot history of departments

Name Manager Start End

QA Johnson 1994-01-01 1998-12-31

RD Joe 1992-01-01 1996-12-31

RD Peter 1997-01-01 1998-12-31

Sales Frank 1993-01-01 1997-12-31

3.1 Each Table as an XML Document: Columns as Elements

A natural way of publishing relational data is to publish each table as an XML
document by converting relational columns into XML elements [29]. Figure 1
shows the history of the table employee and Figure 2 shows the history of
the dept table. Thus the history of each relation is published as a separate
H-document.

<employees tstart="1995-01-01" tend="1996-12-31">
<employee tstart="1995-01-01" tend="1996-12-31">

<name tstart="1995-01-01" tend="1996-12-31">Bob</name>
<salary tstart="1995-01-01" tend="1995-05-31">60000</salary>
<salary tstart="1995-06-01" tend="1996-12-31">70000</salary>
<title tstart="1995-01-01" tend="1995-09-30">Engineer</title>
<title tstart="1995-10-01" tend="1996-01-31">Sr Engineer</title>
<title tstart="1996-02-01" tend="1996-12-31">Tech Leader</title>
<dept tstart="1995-01-01" tend="1995-09-30">QA</dept>
<dept tstart="1995-10-01" tend="1996-12-31">RD</dept>
<DOB tstart="1995-01-01" tend="1996-12-31">1945-04-09</DOB>

</employee>
</employees>

Fig. 1. The history of the employee table is published as employees.xml

<depts tstart="1992-01-01" tend="1998-12-31">
<dept tstart="1994-01-01" tend="1998-12-31">

<name tstart="1994-01-01" tend="1998-12-31">QA</name>
<manager tstart="1994-01-01" tend="1998-12-31">Johnson</manager>

</dept>
<dept tstart="1991-01-01" tend="1998-12-31">

<name tstart="1991-01-01" tend="1998-12-31">RD</name>
<manager tstart="1991-01-01" tend="1996-12-31">Joe</manager>
<manager tstart="1997-01-01" tend="1998-12-31">Peter</manager>

</dept>
<dept tstart="1993-01-01" tend="1997-12-31">

<name tstart="1993-01-01" tend="1997-12-31">Sales</name>
<manager tstart="1993-01-01" tend="1997-12-31">Frank</manager>

</dept>
</depts>

Fig. 2. The history of the dept table is published as dept.xml

Based on the published documents, we can specify a variety of queries in
XQuery:

Query 1: Temporal projection: retrieve the salary history of employee “Bob”:

element salary_history{

for $s in document("employees.xml")/employees/employee

[name="Bob"]/salary

return $s }

Query 2: Snapshot queries: retrieve the departments on 1996-01-31:

for $d in document("depts.xml")/depts/dept

[@tstart <= "1996-01-31" and @tend >= "1996-01-31"]

let $n := $d/name[@tstart<="1996-01-31" and @tend>="1996-01-31"]

let $m := $d/manager[@tstart<="1996-01-31" and @tend>="1996-01-31"]

return(element dept{$n,$m })

Query 3: Find employees history from 1995-05-01 to 1996-04-30:

for $e in document("employees.xml")/employees/employee

let $ol:= overlap($e/@tstart, $e/@tend, "1995-05-01","1996-4-30")

where not (empty($ol))

return ($e/name, $ol)

Here overlap($v1s, $v1e, $v2s, $v2e) is a user-defined function that returns
an element overlap with overlapped interval as attributes (tstart, tend). If there
is no overlap, then no element is returned which satisfies the XQuery built-in
function empty(). The next query is a containment query:

Query 4: Find employee(s) who worked in the “QA” department through the
history of that department:
for $d in document("depts.xml")/depts/dept[name="QA"]

for $e in document("employees.xml")/employees/employee[dept="QA"]

where $e/@tstart = $d/name/@tstart and $e/@tend = $d/name/@tend

return $e/name

Query 5: Find the manager of each employee:
for $e in document("employees.xml")/employees/employee

for $d in document("depts.xml")/depts/dept[name=$e/dept]

for $m in $d/manager

let $ol :=overlap($m/@tstart,$m/@tend,$e/@tstart,$e/@tend)

where not (empty($ol))

return ($e/name, $m, $ol)

This query will join employees.xml and depts.xml by dept, and the overlap()
function will return only managers that overlap with the employee with the
overlapped version timestamp intervals.

Query 6: Find the history of employees in each dept:
element depts{

for $d in document("depts.xml")/depts/dept

return

element dept { $d/@*, $d/*,

element employees {

for $e in document("employees.xml")/employees/employee

where $e/dept = $d/name and

not(empty(overlap($e/@tstart, $e/@tend, $d/@tstart,$d/@tend)))

return ($e/name, $e/dept,

overlap($e/@tstart, $e/@tend, $d/@tstart,$d/@tend))

}

}

}

This query will join depts and employees document and generate a hierarchical
XML document grouped by dept(Figure 5).

3.2 Multiple Tables as a Single XML Document: Flat Structure

Another way to publish relational data is to publish multiple relational tables
into a single XML document(Figure 3), but still with the flat structure as shown

<company tstart="1995-01-01" tend="1996-12-31">
<employees tstart="1995-01-01" tend="1996-12-31">

<!-- <employee>... see Fig. 1 ...</employee> ... -->
</employees>
<depts tstart="1992-01-01" tend="1998-12-31">

<!-- <dept>... see Fig. 2 ... </dept> ... -->
</depts>
</company>

Fig. 3. The history of the employee and dept tables is published as company.xml

in Figure 2. Essentially there is not much difference between this approach and
the previous one.

Queries on this representation are similar to those described in the last sec-
tion.

3.3 Multiple Tables as an XML Document: Flat Structure with IDs

To facilitate query processing, when multiple relational tables are published as
XML document, tuples can be assigned IDs, which can be referred by IDREF
from other elements. For example, in Figure 4, the IDs assigned to dept element,
are referred to from employee.

<company tstart="1995-01-01" tend="1996-12-31">
<employees tstart="1995-01-01" tend="1996-12-31">

<employee ID="emp1" tstart="1995-01-01" tend="1996-12-31">
<!-- name,salary,title,DOB ... -->
<dept IDREF="dept1" tstart="1995-01-01" tend="1995-09-30">QA</dept>
<dept IDREF="dept2" tstart="1995-10-01" tend="1996-12-31">RD</dept>
<DOB tstart="1995-01-01" tend="1996-12-31">1945-04-09</DOB>
</employee>

</employees>
<depts tstart="1992-01-01" tend="1998-12-31">

<dept ID="dept1" tstart="1994-01-01" tend="1998-12-31">
<name tstart="1994-01-01" tend="1998-12-31">QA</name>
<manager tstart="1994-01-01" tend="1998-12-31">Johnson</manager>

</dept>
<!-- more dept... -->

</depts>
</company>

Fig. 4. The history of the employee and dept tables is published as company2.xml

This representation supports queries similar to those discussed in the previous
sections, but simplifies joins:

Query 7: Retrieve the dept Bob worked on 1995-10-15:

return document("company2.xml")/company/employees/

employee[name=’Bob’])/dept/@ID=>dept/name

[@tstart<= "1995-10-15" and @tend >="1995-10-15"]

3.4 Multiple Tables as a Single XML Document: Hierarchical
Structure

Another approach is to generate a hierarchical XML document from multiple
relational tables(Figure 5). This approach is also taken by XPERANTO [8]
through grouping in XML views and SQLX [21] through extended aggregate
functions.

<depts tstart="1991-01-01" tend="1998-12-31">

<dept tstart="1994-01-01" tend="1998-12-31">

<name tstart="1994-01-01" tend="1998-12-31">QA</name>

<manager tstart="1994-01-01" tend="1998-12-31">Johnson</manager>

<employees tstart="1994-01-01" tend="1998-12-31">

<employee tstart="1995-01-01" tend="1995-09-30">

<name tstart="1995-01-01" tend="1995-09-30">Bob</name>

<salary tstart="1995-01-01" tend="1995-05-31">60000</salary>

<salary tstart="1995-06-01" tend="1995-09-30">70000</salary>

<title tstart="1995-01-01" tend="1995-09-30">Engineer</title>

<DOB tstart="1995-01-01" tend="1995-09-30">1945-04-09</DOB>

</employee>

</employees>

</dept>

<dept tstart="1991-01-01" tend="1998-12-31">

<name tstart="1991-01-01" tend="1998-12-31">RD</name>

<manager tstart="1991-01-01" tend="1996-12-31">Joe</manager>

<manager tstart="1997-01-01" tend="1998-12-31">Peter</manager>

<employees tstart="1991-01-01" tend="1998-12-31">

<employee tstart="1995-10-01" tend="1996-12-31">

<name tstart="1995-01-01" tend="1996-12-31">Bob</name>

<salary tstart="1995-10-01" tend="1996-12-31">70000</salary>

<title tstart="1995-10-01" tend="1996-01-31">Sr Engineer</title>

<title tstart="1996-02-01" tend="1996-12-31">Tech Leader</title>

<DOB tstart="1995-10-01" tend="1996-12-31">1945-04-09</DOB>

</employee>

</employees>

</dept>

<!-- ... -->

</depts>

Fig. 5. The history of employee and dept is published as depts3.xml

This approach simplifies some queries but complicates others. For example,
if we want to retrieve employees in each department (containment query), we
can simply write:

Query 8: Find employee(s) who worked in the QA department through the
dept’s history:
for $d in document("depts3.xml")/depts/dept[name=’QA’]

let $e := $d/employees/employee

let $e_all := document("depts3.xml")/depts/dept

/employees/employee[name=$e/name]

where count ($e_all) = 1

and $e/@tstart = $d/name/@tstart and $e/@tend = $d/name/@tend

return $e/name

However, coalescing is needed for other queries in the hierarchical represen-
tation.
Query 9: Find the salary history of employee “Bob” in the company:

for $s in document("depts3.xml")/depts/dept/

employees/employee[name=’Bob’]/salary

return coalesce($s)

Here we rely on a user-defined function coalesce() (Figure 6) to coalesce the
employees. This function can also be defined in standard XQuery, as follows:

define function coalesce(xs:AnyType $e) returns xs:AnyType {

if (count($e) =1) then $e

else

if($e[1]/text() != coalesce(subsequence($e,2)) [1]/text())

then ($e[1], coalesce(subsequence($e,2)))

else

if(string($e[1]/@tend) <

string(coalesce(subsequence($e,2))[1]/@tstart))

then $e

else (element {name($e[1]) }

{$e[1]/@tstart, coalesce(subsequence($e,2)[1]/@tend),

$e[1]/text()},

subsequence(coalesce(subsequence($e,2)), 2)) }

Fig. 6. A coalescing function defined in XQuery

3.5 Relational Tables as XML Document: Columns as Attributes

A relational table can also be published as XML document as attributes (Fig-
ure 7), e.g., the FOR XML statement in Microsoft SQL Server 2000 [7]. The
published XML document is essentially a flat structure that corresponds to the
tuple snapshots.

This approach is similar to that of timestamping the whole tuple in the rela-
tion. Temporal queries tend to be more complex and most queries require coa-
lescing. Thus, in general, we recommend against this approach when publishing
the history of relational tables.

In summary, XML representations that map columns as elements are prefer-
able, and hierarchical representation can only be justified for special cases.

<employees>

<employee name="Bob" salary="60000" title="Engineer" dept="QA"

DOB="1945-04-09" tstart="1995-01-01" tend="1995-05-31"/>

<employee name="Bob" salary="70000" title="Engineer" dept="QA"

DOB="1945-04-09" tstart="1995-06-01" tend="1995-09-30"/>

<employee name="Bob" salary="70000" title=" Sr Engineer" dept="RD"

DOB="1945-04-09" tstart="1995-10-01" tend="1996-01-31"/>

<employee name="Bob" salary="70000" title="Tech Leader" dept="RD"

DOB="1945-04-09" tstart="1996-02-01" tend="1996-12-31"/>

</employees>

Fig. 7. History of employee published as employees2.xml by mapping the table
columns into attributes

4 Efficient Implementation

In the previous sections, we have shown how it is possible to preserve the history
of XML-published data as XML documents, and to express complex queries on
such documents using XQuery. However, the design of an efficient archival and
querying system for such documents present many difficult challenges, due to
the need to satisfy multiple competing performance requirements. In fact the
design must achieve good performance on

– storage utilization,
– maintaining the archive (i.e. storing the latest changes),
– querying the archive (e.g., to reconstruct past snapshots of a database table,

or the salary history of an employee).

For instance, the approach based on the SCSS [28] and recently used in [6]
incurs in excessive costs when retrieving a snapshot of a database table—as
needed to, e.g., support a query such as ‘find the count of employees in each
department on 1999-01-01’. In fact, in the SCCS storage scheme, the successive
elements of the snapshot table tend to be scattered uniformly throughout the
document history. Thus retrieval of a snapshot normally requires reading the
whole document history. When the number of pages in the snapshot grows larger
than the number of elements in the document, a temporal index can be used to
identify which pages contain elements for a given snapshot. Even so, the number
of page reads can be equal to the number of document elements, whereas page
reads can be significantly reduced using temporal clustering schemes such as
those proposed in [13, 14].

In the archival scheme used in RCS [32], the changes to the document are
appended at the end of the current history. Thus the cost of maintaining the
archive is minimal with this scheme; the reconstruction of a snapshot, however,
can require the traversal of the whole document history. This situation can be
greatly improved (at the cost of some additional storage) with the usefulness
based clustering approach discussed in [11, 14], which is briefly discussed next.

Usefulness-based Clustering. The usefulness-based clustering scheme (UBCC)
[11, 14] clusters the objects of a version into a new page if the percentage of
valid objects in a page(i.e., its usefulness) falls below a threshold. When a page’s
usefulness falls below a minimum, all the valid records in that page are copied
to a new page. Since the records for a given version are clustered, reconstructing
the document at a version only requires to retrieve the pages that were useful
at that version [15]. The usefulness-based clustering techniques can also play an
important role in managing XML-published database histories.

Document Shredding. This technique is often used to manage efficiently XML
documents stored in relational databases. Basically, the original XML document
is decomposed into pieces that because of their more regular and simpler struc-
ture can be efficiently supported with current database engines. Each document
piece is identified by an unique ID that then facilitates the reconstruction of the
original document through various joins and outer-joins queries [31, 14]. A nat-
ural way to shred XML published documents, is to decompose them along the
attribute of the original relation—thus, e.g. the history of the employee relation
might be shredded into a salary table, a position table, and a department table.
No special new ID is here needed, since the relation key or the tuple ID can be
used in this role.

Support for Complex Queries. Efficient indexing schemes [15] and query pro-
cessing algorithms [14] can be used to support complex queries on multiversion
documents. For instance, multiversion B-Trees (MVBT) [5] indexing is used to
support complex queries. The MVBT is a directed graph with multiple roots,
and each root is associated with a consecutive version interval.

Finally, while complex operators such as coalesce can be expressed directly in
XQuery, much faster execution can be achieved by their direct implementation
as built-in primitives.

5 Conclusions

In this paper, we have shown that XML-based representations and query lan-
guages provide effective ways for representing and querying the database his-
tory. In particular, we have concentrated on a situation where relational data
is published using XML: we have shown that the history of the database can
be represented as an XML document and queried using XQuery. The resulting
XML representation is quite natural, and similar to the temporally grouped data
models that were proposed in the past as the most natural approach to dealing
with historical data [16]—but one that is difficult to realize in the context of the
flat relational data model. In this paper, we studied alternative XML represen-
tations and identify those that best support temporal queries. We have shown
that XQuery without any modification can express complex temporal queries on
such representations. We have briefly discussed the physical representations and
indices that are needed to ensure a more efficient execution of these queries.

The historical representations and queries discussed here find applications in
data warehouses that archive and collect data from sites of interest to assure the

e-permanence [1] of critical information and support complex queries on changes
[25]. Efficient support for archiving warehouse data is already supported in some
commercial systems, and various techniques have been proposed for supporting
complex queries on such historical data warehouses [34, 27]. Many of the prob-
lems that considered in this paper are similar to those that occur in the context
of transaction-time web servers and XPath extensions along the transaction time
axis [18, 19]. An integration of the web-server and web-warehouse functions on
the historical axis is possible and desirable and represents an interesting topic
for future investigations.

In this paper, we have focused on how to preserve through XML the change
history of the database. But similar representations and queries could, respec-
tively, be used to capture valid-time information in XML documents, and to
support temporal queries on such documents. This is a very interesting problem
[22] that can be expected to become the focus of much future research. Various
techniques developed in the valid-time context [20] can also be effective for deal-
ing with the temporal indeterminacy problems that occurs in warehouses that
periodically crawl remote web sites.

References

1. National Archives of Australias policy statement Archiving Web Resources: A Pol-
icy for Keeping Records of Web-based Activity in the Commonwealth Government.
http://www.naa.gov.au/recordkeeping

2. Software AG’s XQuery prototype Quip. http://www.softwareag.com/tamino.
3. WebDAV, WWW Distributed Authoring and Versioning.

http://www.ietf.org/html.charters/webdav-charter.html
4. XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/
5. Becker, B., Gschwind, S., Ohler, T., Seeger, B., Widmayer,P.: On Optimal Mul-

tiversion Access Structures. Proc. of Symposium on Large Spatial Databases, Vol
692 (1993) 123-141

6. Buneman, P., Khanna, S., ajima, K., Tan, W.: Archiving Scientific Data. Proc.
ACM SIGMOD (2002)

7. Burke, P.J., et. al.: Professional Microsoft SQL Server 2000 XML. Wrox Press
(2001)

8. Carey, M., Kiernan, J., Shanmugasundaram, J., et al.: XPERANTO: A Middleware
for Publishing Object-Relational Data as XML Documents. VLDB (2000)

9. Chawathe, S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change Detection
in Hierarchically Structured Information. Proc. ACM SIGMOD (1996)

10. Chen, C. X., Zaniolo, C.: Universal Temporal Extensions for Database Languages.
ICDE (1999) 428-437

11. Chien, S. Y., Tsotras, V.J., and Zaniolo,C.: Version Management of XML Docu-
ments. WebDB 2000 Workshop, Dallas, TX (2000) 75-80

12. Chien, S.Y., Tsotras, V.J., and Zaniolo,C.: Copy-Based versus Edit-Base Version
Management Schemes for Structured Documents. 11th RIDE Workshop (2001)

13. Chien, S.Y., Tsotras, V.J., and Zaniolo,C.: Efficient Management of Multiversion
Documents by Object Referencing. Proc. VLDB (2001)

14. Chien, S.Y., Tsotras, V. J., Zaniolo, C., and Zhang, D.: Efficient Complex Query
Support for Multiversion XML Documents. EDBT (2002)

15. Chien, S.Y., Tsotras, V. J., Zaniolo, C., and Zhang, D.: Storing and Querying
Multiversion XML Documents using Durable Node Numbers. WISE (2001)

16. Clifford, J., Croker, A., Grandi, F., and Tuzhilin, A.: On Temporal Grouping. Proc.
of the Intl. Workshop on Temporal Databases (1995)

17. Cobena, G., Abiteboul, S., Marian, A.: Detecting Changes in XML Documents.
Proc. ICDE (2002)

18. Dyreson, C.: Towards a Temporal World-Wide Web: A Transaction Time Web
Server Proc. of the Australian Database Conf. (2001)

19. Dyreson, C.: Observing Transaction-time Semantics with TTXPath. WISE (2001)
20. Dyreson, C.E., Snodgrass, R.T.: Supporting Valid-Time Indeterminacy. TODS

23(1) (1998) 1-57
21. Eisenberg, A., Melton, J.: SQL/XML and the SQLX Informal Group of Companies.

http://www.sqlx.org
22. Grandi, F., Mandreoli, F.: The Valid Web: an XML/XSL Infrastructure for Tem-

poral Management of Web Documents. Proc. of ADVIS (2000)
23. Kahle, B., Alexa et al.:The Internet Archive–The Wayback Machine–Surf the Web

as it was. http://www.archive.org/index.html
24. Katz, R.H., Chang,E.: Managing Change in Computer-Aided Design Databases.

Proc. of VLDB (1987)
25. Marian, A., et al.: Change-centric management of versions in an XML warehouse.

Proc. of VLDB (2001)
26. Ozsoyoglu, G., and Snodgrass, R.T.: Temporal and Real-Time Databases: a Survey.

IEEE Trans. on Knowledge and Data Engineering, 7(4) (1995) 513-532
27. Papadias, D., Tao, Y., Kalnis, P., Zhang, J.: Indexing Spatio-Temporal Data Ware-

houses. ICDE (2002)
28. Rochkind, M.J.: The Source Code Control System. IEEE Trans. on Software En-

gineering, SE-1, 4 (1975) 364-370
29. Shanmugasundaram, J., et al.: Efficiently Publishing Relational Data as XML Doc-

uments. Proc. of VLDB (2000) 65-76
30. Tatarinov, I., Ives, Z.G., Halevy, A.Y., Weld, D.S.: Updating XML. Proc. of SIG-

MOD (2001)
31. Tian, F., DeWitt, D. J., Chen, J., and Zhang, C.: The Design

and Performance Evaluation of Various XML Storage Strategies.
http://www.cs.wisc.edu/niagara/Publications.html

32. Tichy, W.F: RCS–A System for Version Control. Software–Practice&Experience
15, 7 (1985) 637-654

33. Wang, Y., DeWitt, D.J., and Cai, J.: X-Diff: A Fast Change Detection Algorithm
for XML Documents. ICDE (2003)

34. Yang, J.: Temporal Data Warehousing. Ph.D. Dissertation, Stanford University
(2001)

35. Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R.T., Subrahmanian, V.S., and
Zicari, R.: Advanced Database Systems. Morgan Kaufmann Publishers, (1997) 97-
160

36. The TSQL2 Language Design Committee: TSQL2 Language Specification, ACM
SIGMOD Record, 23(1), (1994) 65-86

