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Abstract

Much of the current work in non-monotonic logic pursues the generaliza-
tion of concepts such as well-founded models and stable models using
three-valued logic. This approach is also effctive in dealing with incom-
plete and undefined information that is frequently found in knowledge
bases. However, it also suffrs from drawbacks, including the fact that, in
multi-valued logic, there is more than one meaningful way to assign a
meaning to rules in a program, In this Paper, we present a reconstruction
of theory of negation in logic rules which deals with incompleteness and
undefinedness using the standard two-valued logic. Simple extensions of
the notion of unfounded sets are used to define the concept of partial
models and the notions of partial well-founded models and partial stable
models. We prove that the partial stable models so defined are equivalent
to the three-valued stable models proposed by Przymusinski, On semantic
grounds, however, these models suffer from serious drawbacks caused by
with their inability to enforce the principle of minimal undefinedness and
thus we argue for the need of a stricter semantics,

1. Introduction

The problem of providing a formal semantics to programs where
rules contain negated goals represents a key of research issue in areas such
as logic programming, non-monotonic reasoning and deductive databases.
Significant progress has been made recently on this topic, largely as a

T This author’s work was done in part under contract by MCC and was also sup-
ported by the Itelian National Research Council as part of the project "Sistemi Infor-
matici e Calcolo Parallelo".
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result of a renewed interest in deductive databases. For instance, the con-
cept of stratified programs that was introduced only a few years ago
[ABW, CH, N, V1] is now regarded as a standard notion, efficiently sup-
ported in systems such as NAIL! [Ul and LDL [Ceta), as part of their
"bottom-up" execution strategy. However, to remove the limitations of
stratified programs, the more general notions of well-founded models [VRS,
V2] and stable models [GL] were proposed.

While these concepts were initially defined for the domain of total
interpretations, current research is focusing on partial models, where facts
need not be classified as either true or false, but, rather, can be left
undefined. Thus, partial models are capable of dealing with incomplete or
locally inconsistent information and provide a very powerful and flexible
device for generalizing the formal semantics of logic programs with nega-
tion. Thus, generalized concepts of stable models and well-founded are
proposed in [P3], such that these kinds of models exist for all programs.
These approaches, however, rely on three-valued logic for their formal
developments, and, therefore, have been the object of criticisms [YoYu],
which, e.g., point out that there there is no unique way to generalize the
notion of logical implication in multi-valued logic.

In this paper, we present a reconstruction of the theory of negation
in logic rules that deals with incompleteness and undefinedness using the
standard two-valued logic. Simple extensions of the notion of unfounded
sets are used to introduce the concept of partial model, and then, to
refine this notion into well-founded models and stable models.

2. Preliminary Definitions

Let us start by defining our language (Horn clauses plus negated
goals in rules) and basic concepts and notation [L,U],

A term is a variable, a constant, or a complex term of the form
FQ@n ... -4, ), where £, ... ,t, are terms. An atom is a formula of the
language that is of the form p(t) where p is a predicate symbol of a finite
arity (say n) and t is a sequence of terms of length n (arguments). A
literal is either an atom (positive literal) or its negation (negative literal).
An atom A, and its negation, i.e., the literal —4 , are said to be the com-
plement of each other. In general, if B is a literal, then —B denotes the
complement of B .

A rule r is a formula of the language of the form

Q(_Ql"'-’ in‘

where Q is a atom (kead of the rule) and @4, ..., @, are literals (goals
of the rule), Let & (r)and 8 () represent, respectively, the head of r and
the set of all goals of r. Whenever no confusion arises, we shall also see
B (r) as a conjunction of goals.

A term, atom, literal or rule is ground if it is free of variables. A
ground rule with no goals is a fact. A logic program is a set of rules, A
rule without negative goals is called positive (a Horn clause); a program is
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called positive when all its rules are positive.

Given a logic program P, the Herbrand universe for P, denoted Hp,
is the set of all possible ground terms recursively constructed by using
constants and function symbols occurring in P . The Herbrand Base of P,
denoted Bp, is the set of all possible ground atoms whose predicate sym-
bols occur in P and whose arguments are elements of the Hp. A ground
instance of a rule r in P is a rule obtained from r by replacing every
variable X in r by ¢(X ), where ¢ is a mapping from all variables occur-
ring in ~ to terms in the Herbrand universe. The set of all ground
instances of r are denoted by ground (r); accordingly, grourd (P) denotes
U ep ground (r).

Let X be a set of ground literals; then —X denotes the set
{-A | A eX), X* (resp., X7) denotes the set of all positive (resp.,
negative) literals in X . Finally, X denotes all elements of the Herbrand
Base which do not occur in X ,ie., X = (A | A € Bp and neither A nor
—A isinX ).

Definition 1. Interpretation: Let P be a logic program. Given a sub-
set I of Bp U—Bp, I is a (partial) interpretation of P if it is consistent,
i.e., it does not contain two elements which are the complement of each
other. Moreover, if It w—I"=Bp, the interpretation 7 is called total. O

A ground rule r is made true by a total interpretation I, if H(r} is
in I'* or if B (r) is not contained in I.

Definition 2. Total Model: Let P be a logic program. A total model,
M of P is a total interpretation of P that makes each ground instance of
each rule in P true. O

Definition 3. Minimal Model: A minimal model M of P is a total
model for which there exists no other total model N such that N *isa
proper subset of M*. O

It is well-known that a positive program has a unique minimal model
which represents its natural meaning. In this case, the set of positive
literals in the minimal model can be determined using a least fixpoint
computation. This computation i based on the immediate consequence
transformation Tp: A N 28r V=8P here for each X in 2°7 b
TpX)>= (A1 A =H(@F)re ground(P) and B(r) < X }. The transfor-
mation Tp is monotone and continuous in the complete lattice
< 287 Y~%r 5 and, then, the least fixpoint of Tp, denoted by Tp (@),
exists and coincides with ;> oTp(D), where Tp(D)= & and
Ti(@)=TpTp@) [T, L] Let Mi = Tp (@) K P is a positive pro-
gram then My = Mf U—(B8p — M) is the minimal model of P. (Note
that if P is not positive then My is an interpretation but not necessarily
a model)

In case of non-positive programs, the existence of a unique minimal
model is not guaranteed. Therefore, the issue of what model to base the
semantics of the program becomes much more complex. The stable model
semantics, introduced in {GL] and defined next, represenis an interesting
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solution to the problem which is based on a particular usage of Tp.

Given a program P and a total model M for P, the positive version
of P wrt. M, denoted Py, is the positive program obtained from
ground (P) by deleting (a) each rule that has a negative goal —4 such
that —A is not in M~, and (b) all negative goals from the remaining rules.

Definition 4. Stable Total Model: Let M a total model for a program
P.ThenifTp, (@)= M*, M is said to be a stable model for P. O

The condition Tp, @)=M *, is called the stability condition for P
w.rt. M. It is easy to see that if My is a model then My is both a stable
model and the unique minimal model, thus stable model semantics is an
immediate extension of positive program semantics. The following impor-
tant property is proven in [GL}

FACT 1. Stable models are minimal models O

We point out that a stable model is not necessarily the unique
minimal model of a program or even the unique stable model.

Example 1. Consider the following program having O-arity predicate
symbols:

U & =y,
V & -l
There are three total models: My = {u, —v}, My= {v, —u h M3= {u,
v}. Only M, and M, are stable; furthermore, they are the only minimal
models. O
The issue of multiple stable models was discussed in [SZ1] and [GPZ]

where it was shown that this is a manifestation of the non-determinism
that is implicit in the stable model semantics.

3. Partial Models, Stable Models and Well-Founded Models
We begin with some useful definitions;

Definition 5: Blocked and Inapplicable rules: Given X ¢ 2°7 V™%
and a rule r in ground(P), r is

(a) blocked w.rt, X if there exists an element A in B (r) such that —A
isin X ;
(®) inapplicable w.rt. X ifB(r) c X doesnot hold. O
Thus, while a blocked rule contains a goal with is false (wrt. X) a
inapplicable rule contain some goal that is not true. In the case that X is
an interpretation, the predicates which do not occur in X (i.e., those in
X') are not known to be true or false and, then, they can be thought of as
"undefined facts"; therefore, 2 non-blocked inapplicable rule can become
applicable after some assignment of values to undefined facts.

Let us now define the important notion of unfounded set [VRS], and
the related notion of assumption set,
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Definition 6. Unfounded Sets and Assumption Sets. Let

X2V and ¥ B,

(@) Y is an unfounded set w.r.t. X if either (i) ¥ is empty or (ii) for
each A in Y, every rule r with head A in ground(P) is either
blocked wrt.X orB(r)nY & @.

(®) Y is an assumption set w.r.t. X if either (i) Y is empty or (ii) for
each A in Y, every rule » with head A in ground (P) is either inap-
plicablewrt. X orB(r)nY # &, O
Obviously, if X is an interpretation, every unfounded set is an

assumption set but the converse is not true. Moreover, for total interpre-

tations, the two concepts coincide.

Example 2. Consider the program of Example 1:
U € -V,
Ve U

and its interpretation M = (1, —v}. We have that {} is not an assump-
tion set w.r.t. M, since the goal of the first rule is in M, — {u }. Note that
{u,v} is an assumption set (but not an unfounded set) w.r.t. the empty
get. Finally {-v } is an unfounded set w.rt. M,. O

Let us now extend the definition of model to the domain of partial
interpretations.

Definition 7. Partial Models and T otal Models: An interpretation M
of a program P is a model of P if M~ is an unfounded set w.rt. M.
Moreover, if M is a total interpretation then M is called a total model. O

We next show that Definition 7 is consistent with Definition 4 and
that partial models have the the following intuitive properties:

PROPOSITION 1. T he following properties hold:

(@) An interpretation M of P is a model of P if and only if for each —A
in M~, every rule r in ground(P) with H(rY= A is blocked w.r.t. M ;

(b) for total models Definitions 4 and 7 are equivalent;
(c) every model of a program P is a subset of some total model.

PROOF. (a) Suppose first that M be an interpretation of P such
that for each —A in M~, every rule r in ground(P) with H(r)= A is
blocked w.r.t. M. Then, by Definition 6(a), M~ is an unfounded set w.r.t.
M. Suppose now that M is a model of P, thus M~ is an unfounded set
w.r.t. M. Then, by Definition 6(a), for each —A in M~, every rule r in
ground(P) with H(r)= A is either (1) blocked w.ort. M or @
B{r)n—-M~ # . It is easy to see that also in the case (2) r is blocked
wrt. M.

(b) Suppose that M is a total interpretation of P. Hence, for each
rule r in ground(P ), if H(r) not in M* then —H (r) is in M. Therefore,
Part (a) of this proposition can be rephrased as follows: M is a total
model of P (according to Definition 7) if and only if for each rule r in
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ground(P), either H(r) is in M* or r is blocked w.rI.tl. M. But, by
Definition 5(b), if r is blocked w.rt. M then B (r) is not contained in M ;
s0, in both cases, r is made true by M, thus Definitions 4 and 7 are
equivalent.

(c) Let M be 2 model of P. Consider the set N = M U M. In order
to prove the proposition it is sufficient to show that N is a total model.
By construction, N is consistent and every element of Bp occurs in N ;
therefore N is a total interpretation of P. By Definition 7, M~ is an
unfounded set w.r.t. M; therefore, as M < N, M~ is an unfounded set
also wrt. N.But N~ = M~; so, by Definition 7, N is a total moedel of
P. O

Note that the previous definition of partial model M is stricter than
that used in [VRS], which would accept any subset of some total model.

Example 3. Consider the following program:
pa) « —p(b).
plc) e p®).
pld) e p(c).

p@), —p@), -pc)}is a partial model and is 2 subset of the total
minimal model {p(a), —p (), —p(c), —p(d)). Note that {p(a), -p(c)}is
also a subset of that above total model but is not a partial model since,
by assigning the value "true” to p(b), we get a contradiction with =p(c).

As a logic program may have several models, it is crucial to intro-
duce some criteria to recognize desirable models — i.e., models which are
closer to the "intended” meaning of the program. As discussed in [YoYu),
the three key properties considered highly desirable by researchers in this
area are

(1) consistency,
(2) Jjustifiability,
(3) minimal undefinedness.

The first principle is guaranteed by our definition of partial model.
The second principle is found under several names in the work of several
authors {e.g., the notion justifiability used in [YoYu] is similar to that of
‘genuine supportedness’ [Do] or that of ‘foundedness’ [SZ)]. Basically it
prescribes that every positive conclusion be demonstratable by reasoning
that follows the orientation of the rules. The third principle says that the
number of undefined facts should be reduced as much as possible. The
definition of stable models, in the domain of total interpretations, can be
viewed as a direct implementation of these principles.

We can now introduce the concept of partial stable models (or P-
stable model for short), according to the principles above and following
observations:
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(1) adding the complements of facts from an unfounded set to a model,
reduces undefinedness while preserving consistency and justifiability,

(2) adding facts from an assumption set to a model might violate the
justifiability principle; adding their complements might compromise
consistency.

Definition 8. P-Stable Models. Let P be a program and M a model
of it. Then M is P-stable if
(a) no non-empty subset of M* is an assumption set w.rt. M;

(b) every non-empty subset of M is an assumption set w.r.t. M, whileit
is not an unfounded set w.rit. M. U
Example 4. Consider now the following program:

a €« —a.

b e -c,d
c « d

d « b

We have that the M = {~b,~c,~d} is the unique P-stable model. Note

that M= (a ) is an assumption set w.r.t. to M but not an unfounded set,

as neither the first rule is blocked nor a is one of its goals.

For the program of Example 1, we have three P-stable models: on¢ is
the empty set, the others are {#,—~v) and {~x.,v}. O

As far as the principle of justifiability is concerned, the next result
shows that the stability condition as for total stable models holds for P-
stable models as well.

LEMMA 1. Let P be a program and M be a model of it. If the sta-
Gility condition, Tg, (@)= M™, holds then (a) every non-empty subset of
M* is an assumption set w.r.t. M and (b) every subset of M is an assump-
tion set w.r.t. M. Viceversa, if (a) and (b) hold, so does the stability condi-
tion.

PROOF, Let M be a model and Py, be the positive version of P We
first prove the following technrical result:

CLAIM 1. If every subset of M is assumption set w.r.t. M then for
each A in Tp: (@), A is in M and there exists a rule v in ground (P ) such
that Hry= A andB(r)c M,

PROOF. Let T%= @ and T* = Tp (T* ", k > 0. By definition of
Tp, (@), A is in Tp, (D) if and only if A is in T*, for some k > 0.
Therefore, in order to prove the claim, it is sufficient to show that for
each k, k 2 0, and for each A in T*, A is in M and there exists a rule 7
in ground(P) such that H(r)= A and B(r) c M. We proceed by induc-
tion on k. The claim trivially holds for k = O (basis of the induction). Let
k>0 and A be any clement in T*, By definition of immediate conse-
quence transformation, there is a rule r in Py such that A = H(r) and
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B(r)c T*"1. By inductive hypothesis, T¥"! ¢ M*; so B(r) = M* as
well. Let 7 be the rule in ground (P) from which r has been derived. By
definition of positive version, H(?) = A, B(*)* = B(r) and B Py eM™;
s0 B{(?) ¢ M. Hence, F is not inapplicable w.r.t. M. We observe that: ()]
—A can not be in M~ by Part (a) of Proposition 1, and () A can not be
in M because {A } is not an assumption set w.r.t. M. It follows that A4 is
in M*, thus Tz, (@)= T* ¢ M*. But we have also shown that there
exists a rule P in ground(P) such that H(?)= A and B (F) g M. So also
Part (b) of the claim is proved. {1

{If part) Suppose that no non-empty subset of M* is an assumption
set wort. M and every subset of M is an assumption set w.ri. M. By
Part (@) of Claim 1, Tp,(@)cM*, Let X = M* - Tp, (D). We prove
that X is empty by contradiction. Let A be an element in X . Since X is
not an assumption set w.r.t. M by hypothesis, there exists at least one
rule r in ground(P) with H(r)= A such that both r is not inapplicable
(e, B(r)aM) and B{r}nX = . Hence, B(ryo M-X). As
B(r) < M, by definition of positive version, the rule # obtained from r
by removing negative goals is in Py, and B(P) ¢ (M*-X)= Tp, (D).
Therefore, by definition of immediate consequence transformation,
A=H({)isin Tp.:’ (D) (a contradiction). It follows that X is empty and,
then, M* = Tp, (D).

{Only-if part) Suppose now that M* = Tp, (D). Let X be any non-
empty subset of M and A be any element in X. Let r be any rule in
ground (P ) with H(r)= A. We show by contradiction that r is inappli-
cable w.r.t. M. Suppose then that B(r) c M. By definition of positive
version, the rule # in Py, corresponding to 7 is such that B (*) ¢ M*. So
A isin TP,(M"')- But M* = TP.(M*') by definition of fixpoint; hence, by
definition of Tp, A is in M* (a contradiction). It follows that r is

indeed inapplicable w.r.t. M and, then, X is an assumption set w.rt. M.
Hence, every non-empty subset of M is an assumption set w.r.t. M. Let
us now prove by contradiction that every non-empty subset of M* is not
an assumption set w.r.t. M. Suppose then that X = M* is an assumption
set w.r.t. M. Let A be any element in X . Since A is in M™, by Part (5)
of Claim 1 there exists a rule r in ground(P) such that h(r)= A and
B(r)c M - a contradiction with the assumption that X is an assumption
set w.r.t. M. This concludes the proof. O

THEOREM 1. Let P be a program and M be a P-stable model of it.
Then the stability condition, Tg, (@) = M*, holds.

PROOF. By definition of P-stable model, every non-empty subset of
M?* is not an assumption set wrt. M and every subset of M is an
assumption set w.r.t. M. Hence, by Lemma 1, the stability condition holds
for M. O

Considering Lemma 1 and Theorem 1, P-stable models can be also
redefined as follows:
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FACT 2. Let P be a program and M be a mode! of it. Then M is P-
stable if and only if both the stability condition holds for P w.r.t.. M and no
non-empty subset of M is an unfounded set w.or.t. M. O

We next show that P-stable models have an interesting fixpoint char-
acterization. To this end, we observe that, given a program P and
X c 2 U—'B’, the union of all unfounded sets wrt. X, denoted by
Up(X), is also an  unfounded set wrt. X. Let
WpX)=TpX)u-UpX). As both Tp and Up are monctonic and
continuous, Wp is a monotonic, continuous transformation in the com-
plete lattice < 2Pr e and, then, the least fixpoint of Wp exists,
coincides  with U, Wp'(@),  where WpU@)=0 and
Wpi(@)= Wp(Wpi~1(@)), for i > 0, and is denoted by Wp™(D).
Moreover, Wp = (@) = Wp (Wp = (D). As it will be discussed later in this
section, the least fixpoint is called the well-founded mode! [VRS] and is
actually a P-stable model.

LEMMA 2. Let P be a logic program and I be an interpretation of it.
Then I is a fixpoint of Wp if and only if I is a model of P such that both
I* = Tp(l) and every non-empty subset of I is an assumption set w.r.t. I
but not an unfounded set.

PROOF. (If part) Let I be a model of P such that I* = Tp (/) and
no non-empty subset of 7 is an unfounded set w.r.t. /. By Definition 7,
I~ g Up(I). Consider now any subset X of M*. Let A be any element in
X. Since I* = Tp(l), there exists a rule r in ground(P) such that
B(r)ygc I. Therefore, X is not an unfounded set w.r.t. /, thus
I*'NnUp(I)=3. Also T nUp()= @ by hypothesis. It follows that
I = Up(l)and, then, I = Wp(l).

(Only-if part) Let I = Wp(I). Then I* = Tp(l) and I” = Up(i).
From the latter equality, we derive that both /= is an unfounded set
wrt, I and T nUp(I)= &. It follows that [ is a model of P by
Definition 7 and no non-empty subset of I is an unfounded set w.r.t. /.
Consider now any non-empty subset X of M. Let A be any element in X .
Since A is not in Tp (), every rule in ground (P ) with H(r) = A is either
inapplicable w.r.t. M or one of the goals of r, say B, is in X . But alsc in
the latter case 7 is inapplicable w.rt. M for B is in M. Therefore, X is
not an assumption set w.r.t. / and this concludes the proof. O

THEOREM 2. Every P-stable model of a logic program P is a
Jixpoint of Wp.

PROOF. ILet M be a P-stable model for P. Consider
WpM)= Tp(M) w=Up(M). Since no non-empty subset of M is an
unfounded set w.r.t. M, M~ = Up(M). We first prove that M* = Tp (M)
by contradiction. Suppose first that A is an element in T, (M) — M*, By
definition of Tp, there exists a rule r in ground (P ) such that H(r)= A
and B(r) g M; so {4 } is not an assumption set w.r.t. M — a contradic-
tion with the hypothesis that M is P-stable (see Condition & of Definition
8). It follows that Tp(M) < M*, Suppose now that A be an element in
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M*' —~ Tp(M). By definition of T'p, every possible rule in ground (P ) with
H{r)= A is inapplicable. Hence, {A } is an assumption set w.rt, M —
again a contradiction with the hypothesis that M is P-stable (see Condi-
tion g of Definition 8). So we also have M* ¢ Tp(M) and, then,
M?* = Tp(M). We now observe that every non-empty subset of M is an
assumption set w.r.t. M but not an unfounded set, by definition of P-
stable model. Therefore, by Lemma 2, M is a fixpoint of Wp, O

Theorem 2 states that no other (positive or negative) fact can be
added to a P-stable model using the transformation Wp; so a P-stable
model seems to fulfill the principle of minimal undefinedness. But, as
pointed out in Example 4, a given program might have several P-stable
models, some of which are subsets of others. Thus, P-stable models do
not fully respect the principle of minimal undefinedness.

Well-founded models were introduced in [VRS]

Definition 9. Let P be a program. The well-founded model of P is the
least fixpoint of Wp. O

THEOREM 3. Let P be a program. The well-founded model of P exists
and has the following properties:

(a) it is P-stable,

(b) it is the intersection of all P-stable models for P

PROOF, Since Wp is monotonic in a lower semi-lattice, the least
fixpoint of Wp exists; so does the well-founded model of P, that will be
denoted by M.

(a) Since M is a fixpoint of Wp, by Lemma 1 M is a model of P
and every non-empty subset of M is an assumption set w.r.t. M but not
an unfounded set. Using an argument similar to that of the proof of
Lemma 2, it is easy to show that no subset of M* is an assumption set
w.r.t. M It follows that M is P-stable.

{b) Given an arbitrary P-stable model N, N is a fixpoint of Wp by
Theorem 2 and, then, M ¢ N for M is the least fixpoint of Wp. It fol-
lows that, since M is P-stable, M is the intersection of all P-stable models
forP. O

COROLLARY 1. There exists a P-stable model for every logic pro-
gram. O

4, 3-Valued Models

We will next show that the definition of P-stable model (Definition B)
is equivalent to the definition of strongly-founded model [SZ] as well as to
that of 3-valued stable model as given in (P3, P4]. To this end, following
[P3, P4), we define a 3-valed logic with T (true), F (false), and
U(undefined), ordered as F < U < T. Given a program P, an interpre-
tation /, and a ground literal A, value;(A)isT ifA isin /, F if -4 is
in f and U if neither A nor —A is in /. Moreover, the value of a
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conjunction C of ground literals is the minimal value of the literals in the
conjunction, i.e., value; (C) = miny 3 ¢ (valuer(A)). If C is empty the we
assume that value;(C) = T . Finally, a ground rule r is satisfied by I if
value; (H{r)) 2 value; (B (r)).

Definition 10. 3-Valued Model: Let P be a program and I be an
interpretation of it. Then / is a 3-valued model of P if every rule r in
ground (P ) is satisfied by M. OO

We next show that 3-valued models are a subclass of partial models.

LEMMA 3. Let P be a program and I be an interpretation of it.
Then, I is a 3-valued model of_ P if and only if I is a partial model of P
and every non-empty subset of I is an assumption set w.r.t. I,

PROOF. (If-Part). Supposc that 7 is a partial model of P. If I is
empty then obviously I is 3-valued. Let us then assume that T is not
empty and that every non-empty subset of T is an assumption set w.r.t.
I.Let r be an arbitrary rule in ground(P)and A = H(r). IfA isin e
then cbviously value;(A ) 2 value; (B (r)). Moreover, if —A is instead in
I", then, by Part (a) of Proposition 1, the rule is blocked w.r.t. I. Thus,
at.least one of the goals of 7 has value F; so value;(B (r)) = F and, then,
value;(A ) = value;(B (r)). Finally, suppose that that A is in T, ie.,
value;(A )= U. Since {A ) is an assumption set w.r.t. J, r is inapplicable
wrt. I, ie, valug;(B(r)) < T. It follows that value;(A ) Z value; (B (r))
also in this case and, therefore, / is a 3-valued model of P .

{Only-If-Part). Suppose that [ is a 3-valued model of P. Let r be
an arbitrary rule in ground (P) such that —A isin I, where A = H(r).
Since value;(A) = F, by Definition 10 valug; (B ()} = F as well. Hence,
at least one of the goals of r has value F, ie., r is blocked w.r.t. I.
Therefore, by Part (a) of Proposition 1, [ is a partial model of P, We
prove by contradiction that every non-empty subset of I is an assumption
set w.rt. /. Suppose then that X ¢ 7 is not an assumption set w.r.t. f.
By definition of assumption set, there exists a rule r in ground (P) with
head A such that &4 isin X, B(r) < I (ie., r is not inapplicable w.r.t. 7)
and none of the goals of r is in X. Hence, B(r)c (I — X}, so,
valugg(B(r))=T. Since value,(A )= U, we derive that
value;(A) < value;(C) — a contradiction with the hypothesis that I is
3-valued. Therefore, every non-empty subset of J is an assumption set
w.r.t. I and this concludes the proof. O

Example 4. Consider the following program:
a.
bée- —c, c.
¢ «b
d «e

Here we have that the total model {a,—&,~c,~d,—e} is both stable and
3-valued. The partial model {a,c } is 3-valued but not P-stable; the empty
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set is a partial model but is not 3-valued. O
In [SZ1], strongly-founded models are defined as follows

Definition 11. Strongly-Founded Model: A partial model M is
strongly-founded if the following three conditions hold:

a) nosubset of M* is an assumption set w.rt. M;
b)  no subset of M is an unfounded set w.r.t. M:
¢) M isa 3-valued model for M. O

We next prove that the notions of ‘strongly-founded model and P-
stable model coincide,

THEOREM 3. Definition 11 and Definition 8 are equivalent.

PROOF. By Lemma 3, a model M is 3-valued if and only if every
norn-empty subset of M is an assumption set w.r.t. M. It follows that
Conditions (b) and (c) of Definition 11 can be replaced by Condition (b)
of Definition 8, thus the two definitions are equivalent. J

Let us now introduce the notion of 3-valued stable model as given in
[P3, P4]. To this end we first introduce some preliminary notations and
results,

A 3-valued program is a program where the constants T , Fand U
may occur as goals of the rules. Such goals can be thought of as already
interpreted ground literals. Obviously, the notion of 3-valued model also
holds for 3-valued programs,

Let P be a positive 3-valued program. A 3-valued model M of P is
minimal if for each 3-valued model M, of P, (a) M* < M{ and (b) if
M* = M{ then also M{ < M~. In [P3, P4] it has been proved that P
has a unique 3-valued minimal model. We next show that this model has
an interesting characterization in terms of the notions of immediate ¢conse-
quence transformation Tp of P and of unfounded set. Let us first
rephrase the definition of Tp as follows:

Tpd)={A | r e ground(P), A = H(r), value; (B (r)) = T )

where I is an interpretation of P. We also recall that Up (7) denotes the
greatest unfounded set w.r.t, /.

LEMMA 4. Let P be a positive 3-valued program. Then
Tp' (@) U Up (T5 (D)) is the unique minimal 3-valued model of P .

PROOF. Consider the interpretation M, where M* = Tp (@) and
M~ = -Up(M7¥). Let r be any rule in ground(P) and A = H(r). If
valuey (A )= T then r is trivially satisfied by M. If valuey; (A )= F, then
vaiuey (B (r)) = F by construction of M and by definition of unfounded
set; 50, also in this case, r is satisfied by M. Finally, if valuey, (A)= U
then A is not in M¥; s0 valuey (B(r)) < T by definition of Tp. It fol-
lows that r is satisfied by M also in the last case, thus M is a 3-valued
model of P: Let us now prove that, given any 3-valued model N of P,
M* = Tg(@) < N. To this end, as Tp (D)< T (N) because Tp is
monotonic, it is sufficient to show that T(N) < N By definition of least



99

fixpoint, T5°(N ) is equal to T*(¥), for some k20, where 7%= N and
T'= Tp(@iY), t20. We show that for each {, 0<i<k, T' c N. We
proceed by induction on i. Obviously, N ¢ N; so the basis of the induc-
tion trivially holds. Consider now any i, 1<i< k. By inductive hypothesis,
Ti 1< N. Consider any A in T¢. By definition of Tp, there exists a
rule 7 in ground (P) such that value,1(B(r))= T . Since T'"! < N, also
valuey (B(r))= T, Therefore, H(r) is also in N because otherwise
valuey (H(r)) < valuey (B (r)) (a contradiction with the hypothesis that
N is a 3-valued model). Hence, T/°(N)=T*c N and, then,
MY =T ({@)=T*c N. Let N be any 3-valued model of P such that
N*=M?* Let X = N~ — M~, By definition of 3-valued model, for each
A in X and for each rule r in ground(P) with H(r)= A,
valuey (B (r)) = F. Hence, there exists at least on goal of r, say B, such
that valuey(B) = F. There are three possible cases: (1B = F, (2) =B is
in both M~ and N~, and (3) B is in X. In the first case, value,. = F,
thus r is blocked wrt. M*. In the other two cases,
Br)n(=M" uX)# &. Hence, since -M~ is an unfounded set w.r.t.
M?* by construction, =M~ UX is also an unfounded set w.r.t. M*. But
—M"~ is the greatest unfounded set w.rt. M¥; so X = &. It follows that
M is the unique minimal 3-valued medelof P. O

Let us now consider an ordinary logic program P. Given an
interpretation I of P, the GL-transformation of P wur.t. I is the pro-
gram GL (P ), obtained from ground(P) by replacing in every rule all
negative goals —~4 with @) T if —-A isin /™, (b) with F if A isin [/, or
(c) with U if A isin I'. Obviously GL (P); is 3-valued positive program.

Definition 12. 3-Valued Stable Model: A 3-valued model M is stable if
M is the minimal 3-valued model of GL(P ). O

We conclude by showing that P-stable models also coincide with 3-
valued stable models.

THEOREM 4. Definitions 12 and 8 are equivalent.

PROOF. Let P be a program, We first observe that, by Lemma 3, a
necessary condition for an interpretation of P to be a P-stable model of P
according to both definitions is that it is that it is 3-valued model. There-
fore, Fact 2 can be rephrased as follows: "a 3-valued model M of P is P-
stable (according to Definition 8) if and only if 75, (@)= M* and no
subset of M is an unfounded set w.r.t. M in P". On the other hand, by
Lemma 4, Definition 12 can be rephrased as follows: "a 3-valued model
M of P is P-stable (according to Definition 12) if and only if
Tore)y(@) = M?* and no subset of M is an unfounded set w.rt. M in
GL(P)". But, considering the definitions of positive version and GL-
transformation, it is easy to see that (a) Tp: @)= TérLep)y(@) and () &
subset of M is an unfounded set w.r.t. M in P if and only if it is an
unfounded set w.r.t. M in GL(P). It follows that Definitions 12 and 8
are equivalent. O
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5. Conclusion

It is therefore possible to develop a complete formal theory of partial
models using only two-valued logic. In doing so in this paper, we have
unveiled important properties of well-founded and stable models, and
shown that the parallel interpretation using three-valued logic produces
the same results. Therefore, it follows that 3-valued logic is not needed
for the treatment of logic programs with negation, although it can be
expedient in many situations,

It also follows that the key issue in dealing with logic programs with
negation is not the use of two-valued or multi-valued logic, as some
authors seem to suggest; rather, the key issue is what design principles
should be achieved by the intended semantics.

For instance, while P-stable models enforce the principle of
justifiability, they do not obey that of minimal undefinedness, inasmuch
as a program can have several P-stable models, some of which are subsets
of others. Our claim, therefore, is that the minimal undefinedness princi-
ple should be enforced by restricting our attention to the class of P-stable
models that are maximal, and that these maxima! models should be
regarded as the natural generalization of the notion of total stable models
to the domain of partial interpretations. A detailed treatment of this
approach is presented in [SZ2].
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