METHODS OF LOGIC IN COMPUTER SCIENCE 1, 61-76 {(1994)

Declarative Semantics for Pruning
Operators in Logic Programming

Fosca Giannotti

CNUCE-CNR
vis S. Maria 36, 56100 Pisa, ltaly

Dino Pedreschi

Dip. di Informatica, Univ. di Pisa
Corso Iltalia 40, 56125 Pisa, Italy

Carlo Zaniolo

Computer Science Dept.—University of California
Los Angeles, California 90024, U.S.A.

ABSTRACT

Stable models, a concept from autoepistemic logic, have been recently pro-
posed to define the semantics of logic programs with negation. A program
may have several stable models, and this multiplicity can be exploited to
characterize "don’t care” nondeterminism, such as that arising from pruning
operators. In the {bottom-up) context of deductive databases, a semantics for
the nondeterministic choice construct was given by Sacca and Zaniolo. In
this paper, we extend their approach to handle the cut-like pruning operators
in the top-down evaluation context, inciuding the ene-of and commit opera-
tors. The goal is accomplished by means of a series of program transforma-
tions. The transformed program is shown to have several stable models,
each corresponding to a set of solutions obtained by top-down evaluation
augmented with a nondeterministic pruning operator.

61

62 GIANNOTTI, PEDRESCHI & ZANIOLO

1 TOP-DOWN PRUNING OPERATORS AND BOTTOM-UP
CHOICE OPERATORS

We can distinguish two main computational approaches to Horn clause logic. One is the
top-down, resolution-based style of evaluation of Prolog-like languages. The other is the
bottom-up, fixpoint-based style of evaluation of deductive databases and their Datalog-
like languages.

Logic languages, both in the Prolog and Datalog families, provide different notions of
nondeterminism which can be grouped into two different categories, “don’t know™ and
“don’t care” nondeterminism. The former notion is related to the fact that queries to a
logic program may have many alternative answers, corresponding to alternative ways of
proving the theorem represented by the query. In Prolog-like languages, this is usually
accomplished by means of backtracking mechanisms, whereas in Datalog-like languages,
“don’t know” nondeterminism is usually concealed by the default “all solutions™ behavior
of the bottom-up evaluation.

“Don’t care” nondeterminism is related to the fact that some answers to a query can be
deliberately discarded. This form of nondeterminism is accomplished by pruning opera-
tors in logic programming and by choice operators in deductive databases.

The effect of top-down pruning operators is to cut off portions of the search space of the
program. Examples of such operators are Prolog’s cut, the committed choice operator of
the parallel logic language PARLOG (see Clark and Gregory [1]), and the one-of construct
proposed by Debray and Warren [2].

The effect of bottom-up choice operators is to arbitrarily extract, from the set of all
answers to a query, some subset satisfying a given property. Examples of such operators
are the choice construct proposed by Krishnamurti and Naqvi [3] for the Logic Data
Language (LDL; see Naqvi and Tsur [4]), and the witness operator proposed by Abiteboul
and Vianu [5]. For instance, the effect of LDL’s choice is to choose from all the solutions
to a query a maximal subset satisfying some functional dependency constraints among
program variables. The following is an LDL program which uses the choice construct:

pX,Y) «—q(X,Y), choice((X), (¥)).
qla.l).
gla.2).
q(b.1).

The query «<p(X,Y) has two alternative sets of answers with respect to the above pro-
gram, {p(a,1), p(b.1)} and { p(a,2), p(b, 1)} corresponding to the two maximal subsets of
the extension of ¢ which satisfy the functional dependency X — Y. The evaluation of such
a query will return nondeterminstically one of those sets.

From the point of view of declarative semantics, “don’t know” nondeterminism corre-
sponds to the existence of a (the) model of the program, that is, a set from which answers
can be drawn. On the other hand, there were no declarative characterizations for “don’t
care” nondeterminism until the recent proposal by Sacca and Zaniolo [6] for bottom-up
choice operators. In their proposal, a program with choice constructs is modeled by an
equivalent program with negation, which is shown to have several stable models. Thus,

DECLARATIVE SEMANTICS 63

“don’t care” nondeterminism corresponds to selecting one of these possible models as the
one where answers will be drawn. In other words, “don’t known” means choosing from a
model, whereas “don’t care” means choosing a model.

However, no such declarative characterization is known for pruning operators of top-
down languages, such as Prolog. Thus, the goal of this paper is to show how the stable
model approach can be extended to deal with the various pruning operators of these
languages.

We first consider a pruning construct /!, analogous to the one-of operator [2], and
define a program transformation which eliminates !/ using a refinement of the technique
of Sacca and Zaniolo [6]. It will turn out that the stable model semantics of the trans-
formed program faithfully characterizes the information which can be inferred using
leftmost SLD-resolution augmented with the pruning mechanism. On this basis, it is
possible to model the behavior of several top-down pruning operators like the committed
choice construct and Prolog’s if-then-else, up the full cut.

2 STABLE MODELS AND CHOICE OPERATORS

Stable model semantics has been introduced to deal with negation in logic programming
by Gelfond and Lifschitz [7], with roots in the autoepistemic and default approaches to
non-monotonic reasoning. Quoting from Moore [8], stable models correspond to “possi-
ble sets of beliefs that a rational agent might consistently hold.”

The definition of stable model is based on that of positive version P, of a logic program
P with respect to an interpretation f. P, is obtained from the ground version of program P
by deleting:

1. each rule that has a negative literal =B in its body, with B € [, and
2. all negative literals in the bodies of the remaining rules.

An interpretation I is a stable model of P iff I is the minimal model of P,. It is worth
noting that such a minimal model always exists, as P, is a negation-free program.

Logic programs may have zero, one, or many stable models. The program p «~ —p is
the simplest example of a program with no stable models. Negation-free and stratified
programs have exactly one stable model, as well as some nonstratified programs [7].
Other programs exhibit a multiplicity of stable models, like the following,

p—q
g < -p

which has two stable models: one where p is true and ¢ is false, and the other where p is
false and g is true.

The basic intuition of [6] is to exploit such multiplicity as a declarative counterpart of
“don’t care” nondeterminism. Let us illustrate the approach by an example, while techni-
cal details are fully described in [6]. Consider again the LDL program:

64 GIANNOTTI, PEDRESCHI & ZANIOLO

pX,Y) « g(X.Y), choice((X), (¥)).
gla,l).
qla,2).
g(b,1).

and transform the clause for predicate p as follows:

p(X,Y) < g(X,Y), chosen(X,Y).
chosen(X,Y) < g(X.Y), —diffchoice(X,Y).
diffchoice(X,Y) < chosen(X,Y1),Y # ¥Y/.

Notice that this is equivalent to:
chosen(X,Y) < g(X,¥), =(3 Y!.chosen(X.YI),Y # Y1)

which is a logical specification of a functional dependency on the relation g.
The transformed program turns out to have two alternative stable models with the
following p-facts:

{pla,1), p(b, 1)} and {p(a,2), p(b,)}.

These correspond to the two possible sets of answers satisfying the functional dependency.
The above transformation can be suitably generalized to consistently replace the choice
construct with negation, as shown in [6]. Moreover, a constructive definition for stable
models is provided by the same authors, with the introduction of a procedure called
backmracking fixpoint, that nondeterminstically constructs a stable model, if one exists.
It is worth noting that choice and pruning operators are closely related. In fact, the
LDL choice operator captures the local pruning effect of the Prolog cut, that is the fact that
only a solution of the goal preceding the cut is retained. For instance, a clause like

pX.Y) < ¢(X),L.r(Y).
can be rephrased as
PX.Y) < g(X),r(¥), choice(().(X)).

exploiting a special case of functional dependency to constrain X to be uniquely deter-
mined. On the other hand, LDL choice does not model the global pruning effect of Prolog
cut, that is the pruning of the remaining clauses, and the dynamic pruning effect, that is
the fact that different calls to the same clause may operate different choices. The following
example illustrates the latter issue.

q(a).
q(b).
q(c).
pX) —q(X).!.
r <—pla),p(b).

DECLARATIVE SEMANTICS 65

With respect to this program, the goal < r has a top-down derivation, whereas it cannot
be deduced by bottom-up evaluation replacing cut with choice((), (X)) without violating
the functional dependency. This observation highlights an intrinsic characteristic of
bottom-up choice operators, which perform a single global nondeterministic choice over
the extension of a relation, whereas top-down pruning operators may perform different
choices at different calls, depending on query instantiations.

3 STABLE MODELS AND PRUNING OPERATORS

This section proposes an approach to the definition of a declarative semantics for top-
down pruning operators. The technique is an extension of the one in [6], and as such it is
based on stable model semantics and program transformation. The goal is establishing the
following result. Assume that P* is the program obtained via transformation from P, and
that M, is the set of atoms which can be inferred from the evaluation of a query G with
respect to P using SLD-resolution augmented with some pruning mechanisms. Then M; is
a stable model of P*. As a consequence, alternative evaluation trees for the same query
due to different cuts operated by the pruning mechanism correspond to alternative stable
models of the transformed program.

In our approach, the transformation plays a central role and is performed in two steps.
First, each predicate in the program is extended with two extra arguments which gather
information about the history of the top-down evaluation. In the second step, the pruning
operators are replaced with appropriate functional dependency constraints among such
histories. The next subsections show the technical details of the proposed construction.

3.1 Pruning and Top-down Evaluation

The Prolog cut operator has two distinct effects: a global one that affects a predicate
definition as a whole, and a local one that affects the clause where it occurs. The global
effect is that a cut prunes all program clauses below it. The local effect is that a cut prunes
all alternative solutions for the conjunction of goals to the left of the cut. Thus, a
conjunctive goal followed by a cur will produce at most one solution.

We will study logic programs containing the symbol /!, which denotes the one-of
construct. This construct retains only the local behavior of Prolog cuz.

The following definitions introduce SLD-resolution with the leftmost selection rule,
termed LD-resolution, and its modification to handle the one-of construct, which is termed
LD!!-resolution.

Definition 3.1. An LD-derivation for a given goal G is a SLD-derivation for G in
which each resolvent G, is derived from the previous one G,_, by selecting the leftmost
atom in G,_,. Analogously are defined the notions of LD-refutation and LD-tree for a
given goal.

The introduction of the pruning operator /! affects the definition of the tree of the
derivations, as in certain points all derivations but one are pruned. The following presen-
tation closely follows the style of Hill, Lloyd and Shepherdson [9].

66 GIANNOTTI, PEDRESCHI & ZANIOLO

AG3
/

node GO:

AT

®
G1,1,G2,G3

1.G2,G3

® G:,G3

Figure 1. A pruning step.

Definition 3.2. An LD!l-tree T!! for a given goal G with respect to a program P that
contains // is an LD-tree T for G with respect to P where !/ is viewed as an atom that
always succeeds.

Definition 3.3. Let S be a subtree of an LD!!-tree. We say that the tree §’ is obtained
from S by a pruning step on § at G, if the following conditions are satisfied.

1. G, is anode of the form (G,,!!.G,.G;) which is a child of the node (A,G3), such that
there exists a branch B from G, to (G,,G3) in §;

2. H is a descendant of G, not on B;

3. S8’ is obtained from S by removing the subtree of § rooted at H.

G, is referred to as a pruning node.

With reference to the above definition, Figure 1 represents a pruning step applied onto
an LD!!-tree.

1.G2,G3

®Gc2.G3

Figure 2. A final tree.

DECLARATIVE SEMANTICS 67

Definition 3.4. Let S be an LD!!-tree and §’ a subtree of §. We say that §” is a pruned
subtree of § if there exists a sequence of pruning steps which transforms S into §'. A
pruned subtree S’ of § is final if no further pruning steps can be applied to §'.

With reference to the above definition, Figure 2 represents a pruning sequence applied
onto an LD!!-tree, yielding a final LD!!-tree.

It is worth noting that a final subtree S’ of an LD!!-tree S satisfies the following
property: For each node (B, G) in S with a child node (G, !!, G;, G), there exists at most
one derivation leading to the node (G,, G) in §'.

To illustrate the above points, consider the following program TC, expressing the
transitive closure of relation g, modified by using the pruning mechanism:

Py pX.Y) < qX,Y)
p; i pX.Y) < g(X.2), !, p(Z.Y).

4, : q(a,b).
q, : gla.c).
9. : q(b.d).
q; 1 g(c,e).

Figure 3 represents the LD!!-tree associated with the query < p(X,Y), while Figure 4
represents a final LD!!-tree for the same query, obtained by applying a sequence of
pruning steps to the tree of Figure 3. Observe that, in the rightmost part of the final tree,
only one of the possible bindings is selected among those that solve the g-subgoal
preceding !!. As a consequence, the fact p(a.d) is the only one that can be inferred by
transitivity, while p(a,e) is discarded by the pruning mechanism.

p(x,y)

q(x,z),!,p(z,¥)

p(z,¥)

Q(bIY) . q(c.y) . Q(d-.'/) . q(e,y) .

=d y=e

O 1

Figure 3. The LD!!-tree for the query pix,y).

68 GIANNOTTI, PEDRESCHI & ZANIOLO

p(x.y)

a(x,z),!",p(z,¥)

X=a

1,p(z,y)

q(by) @ alcy) ady) @qley) @

y=d
[

Figure 4. A final LD!!-tree for the query plx.y).

y=e

3.2 Augmented Programs

The next step of this construction introduces a program transformation aimed at keeping
track of top-down evaluation inside the program itself. For this purpose, each predicate
symbol is augmented with two extra arguments, in and our. The former represents the
partial history of the evaluation preceding a predicate call; the latter represents the global
history from the call to its success node. In and our are lists of new constant symbols
which uniquely identify the program clauses.

The following notation will be adopted: Given an atom A = p(t;, . . ., &), let Ay, o0
denote the atom p(t,, . . . , Iy, in, out). Analogously, givenagoal G = A,, . . . , A, let
G[in.our] denote the goal Al[in,out‘,]’ AZ[aut,,autzl! oo An[oulﬂ;,.autl'

Definition 3.5. Given a program P we define its augmented version P;, as the follow-
ing collection of clauses:

e If P contains the clause
r:Ap—A, ... A,
then P,, contains the clause

L 4

r 2 Aoyn.ou) < Allirin],0u,)> AZ[Our,,Ourz]’ ces Ao 0un
e If P contains the fact clause

r:A

then P,, contains the fact clause

A

We now introduce some lemmas which point out the relationships between the original
program and the augmented one. Lemma 3.1 states that a resolution step can be performed
with respect to P iff it can be performed with respect to P;,. Lemma 3.1 is a straightfor-
ward consequence of Definition 3.5.

DECLARATIVE SEMANTICS 69

Lemma 3.1. The following two statements are equivalent:

* The goal G, is derived from G,_, in an LD-step with respect to program P by rewriting

the leftmost atom A with A,, . . . , A, using clause r;
* The goal Gyjj,jsn), 0u) 18 derived from G;_ ;. o4 in an LD-step with respect to program
P,, by rewriting the leftmost atom Ay, 0wy With A im0y - - - > Anjow, 0w

using clause r.

Lemma 3.2 states that P and P,, are operationally equivalent and highlights the role of
In and Our arguments in keeping track of the history of the refutation. Lemma 3.2 is a
direct consequence of Lemma 3.1. Its proof is a routine induction on the length of the
refutation for goal G, and is omitted.

Lemma 3.2. Suppose that the goal G has an LD-refutation with respect to program P

using clauses r;, . . ., r, with computed answer substitution . Then the goal G, .,
has an LD-refutation with respect to P;, using the same clauses r;, . . . , r, withc.a.s. ¥’
such that:

+ ' = & with respect to the original variables of G,
o In¥ = In,
o Ouwtd =1[r, Futr. .., 1Nl

Finally, Lemma 3.3 points out that the /n list of each node in an LD-tree uniquely
determines such a node. Lemma 3.3 follows from the observation that a node G in an LD-
tree is determined by the sequence of clauses used in the derivation from the root node
to G.

Lemma 3.3. Let S be the LD-tree for the goal Gg|; o, With respect to P,. Then, cach
node in § has the form Gir,....r1.0urhs and the value {r,, . . . , r,] is unique in §.

With reference to the program TC of Section 3.1, the following augmented version
TC,, is obtained:

Po : PX.Y,In,0ut) < q(X.Y,[pylin].Ou).
p; : PXYin,0un) — g(X,Z,[p,In],0ut)),!!, p(Z,Y,0ut,,Qur).

9o : q(a,b,In,[q,|In]).
q; : qla,e.In [q,lIn]).
4z : q(b.d.In,[g,|In)).
g : g(c,e,In,[g;|n]).

The LD!!-trees of Figures 3 and 4 can be now turned into trees for 7C,,, as shown in
Figure 5. Following the rightmost derivation in the final LD!!-tree of Figure 5, the query
— p(X,Y,[],0ut) succeeds with answer: X = a, Y = d, Out = [q..py.q4.P;], where Out
represents the sequence of clauses used in the derivation (in reverse order).

70 GIANNOTTI, PEDRESCHI & ZANIOLO

q(x,y,[p0],0ut)

(x,y,[},0ut)

q(x,z,[p1],0ut’),!,
{z,y,0ut’,0ut)

1,p(z,y)
Out’=[q0,p1] Out’=[42,p1]
1) Out=[q0,p0] Out'=[al,p1] Out’=[q3,p}]
2) Out=[q1,p0] 5 @ 6 @ @ s @
3) Out=[q2,p0)] y=d y=e
4) Out=[q3,p0]] 0[]

5) q{b.y,[p0,q0,p1],0ut)
8} q(c,y,[p0,q1,p1],0ut)
7) q(d,y,[p0,q2,p1],0ut)
8) a(e,y,[p0,q3,p1],0ut)
9) Out=[q2,p0,q0,p1]

10) Out=[q3,p0,41,p1]

Figure 5. A final LD!!-tree for the query p(x,y.[], Out) with respect to 7C,..

3.3 Removing the Pruning Operator

This section is aimed at introducing a declarative counterpart for programs with the //
construct. This is accomplished by a further transformation step from P,, which relies on
the use of negation. The rationale behind the transformation is to replace the pruning
operator with a relation that satisfies an appropriate functional dependency constraint

among the possible histories of the program.

Definition 3.6. Given programs P and P,, as in Definition 3.5, we define the cui-free
version P* as the following collection of clauses:

1. If P,, contains the clause

r Ay oun < Olrmy,oue s Y Hiowr 0w,
then P* contains the clauses:

F i Alnow < Glirin.our. chosen,([r|1n],0ut’), H 6w om
chosen, ([r]In],0ut) < G ,m1.0u» Tdiffchoice([r|In],0ur)
diffchoice (In,0Our) «— chosen(In.Out"), Out' # Out,

2. If P,, contains the fact clause

DECLARATIVE SEMANTICS 71

Ayt

then P*

contains the clauses:

T LAl Ay < call (In)
call (In) < —uncall (In)
uncall (In) < —call (In)

The idea behind this definition is that under the stable model interpretation of P* the
following properties hold.

* The extension of the relation chosen, is a set of pairs of histories satisfying the
functional dependency between the first and the second argument.
* The extension of the relation call, is an arbitrary set of histories.

The driving intuition is that the models of such a program precisely correspond to final
L.D!!-trees with respect to the original program, where pruning has been performed. The
functional dependency on the chosen, relation guarantees that in each choice point (i.e.,
pruning node) at most one choice is operated. More precisely, for each history reaching
clause r, there is at most one continuation of such a history that verifies the part of the
body which precedes the pruning operator. The situation is depicted in Figure 6.

On the other hand, call, captures the possibility that fact clauses with arbitrary incom-
ing histories may be reached during evaluation.

With reference to the program TC of Section 3.1 and its augmented version TC,, of
Section 3.2, the following cut-free version TC* is obtained:

Po i PX.YIn,Out) < q(X.Y,| polin],Out).
Py pX.Y 00, 0ur) < q(X.Z,[p,In),Out’) chosen, (| p,lIn),Out'),p(Z,Y,0ut’ ,Out).

chosen,, (1 p,|In],Qut) < q(X,Z,[p,|In],Oun), ~diffchoice, (| p,|In],Out).
diffchoice,, (In,Out) «— c'hosenpl(ln,Out'),Out' # Out.

2y

y
"H,. @

Figure 6. The functional dependency [r|/n] — Out,

72 GIANNOTTI, PEDRESCHI & ZANIOLO

4o : 9(a,b,in.lq |In]) < call, (In).
q; : gla.c.In,|g,lin]) < call_ (In).
q, : q(b,d,In,[g,|In]) « call, (In).
q; : g(c.e.In[q5lin]) < call, (In).

The definition of call,, is as in Definition 3.6.2.

3.4 Stable Model Semantics for LD!!-Resolution

The next step in our construction is to define how to gather a set of facts from a final LD!!-
tree such that this set is a stable model of P*. Informally, this corresponds to collecting the
facts associated with refutations in the final LD!!-tree for a given query.

Definition 3.7. Let G be a goal with respect to program P with associated final LD!!-
tree S. Consider the LD!!-tree §,, associated to the goal G|, o, With respect to P;,,. Define
M, to be a set of atoms associated to S, in the following way. For all refutations < G,
G,,....G,_;,,3>inS, with G, = G and associated computed answer substitution &

1. AdEM forallatoms AinG, i=0,...,n—1;
if G, is a pruning node of the kind Hl[rlln].ow’]’”9H'I0m’,0m}’ where r is the clause
used to resolve G,, then chosen,([r|In], Out')d € M and diffchoice ([rlin],Out")® €
M for all histories Our” # Out' ¥,

3. if G,,, is obtained from Gy, o, using the fact clause r, then call (In)9 € M.

Finally uncall (In) € M; iff call (In) ¢ Mg.
With reference to the final LD!!-tree of Figure 5 for the goal
G =< p(X.Y)
from program TC, the set M; is constructed as follows.

» The following facts are included in M by Definition 3.7.1, that is, by observing the
successful derivations in the tree:

pa,b,Llgy.pol). gla,b.lpol.lge.Pel),
pla.c.ll.lg,.pe)). gla.c.[pollg; pol)
pth.d,[1.1g:.p01), q(b.d.{ pollg:.ps1)
ple.e.(],lg5.061) glc.e.l polulgs.p0])
pla.d.|1.1¢2.P590.P:1)s

gla,b.l p,1.190.P,1:

pb.d 1900, 4:192:P6:90:P 1)),

a(b.d.| ps-90:21:192:P0: G021 1)

* The following facts are included in M by Definition 3.7.2:

DECLARATIVE SEMANTICS 73

chosen, ([p,;].lg0.0,]):

diffchoice,, (1 p,1.19;.0,]).
diffchoice,, (1 p,;):1qz.0,1),
diffchoice, (L p,1.195.0,1)-

* The following facts are included in M by Definition 7.3:

call, ([poD), i =0,3,
eall, ([p/1).
call, (| po.40.P:1)-

Moreover, uncall (in) is included in Mg if call ,(in) ts not in the above list.

We are now ready to characterize the correspondence between final LD!!-trees with
respect to P and stable models of P*. This is accomplished by the two following results
that conclude the construction of the previous subsections.

Theorem 3.1. Given a program P and a goal G with respect to P, M; is a stable model
of P*.

Proof. To establish the theorem we show that the least fix point of the positive version
Py of P* with respect to M,; coincides with M. Py, is defined as follows. All the
ground instances of the original clauses of P, are in PM(The fact call,(in) is in Py, iff
uncall,(in) is not in M, that is iff call (in) is in M. Analogously, the fact uncall (in) i isin
Py, iff uncail (in) is in M ;. Finally, the rule instances chosen ([rlin],out) < G\ irliny our) A1
in PM(, iff the fact diffchoice([rlin],out) is not in Mg, while the rule instances dif-
fchoice (in,our) < chosen,(in,out’) are in M iff out" # out. The proof is composed by
the two following steps.

Lo fix(Py) C Mg (by induction on the fixpoint iterations.)
Base case. The only facts in the program Py, are the call, and uncall, ones, and
hence they belong to M by construction of PM
Inductive case. Let A be an atom inferred at the n* fixpoint iteration. The following
cases arise.

(a) A is inferred using the clause
2 Ap fing) < call (in)
corresponding to a fact rule in P, with cafl,(in) in the previous fix point iteration.
Hence, by induction hypothesis call (in}) € M. By Definition 3.7.3, the fact
clause 7 has been used in a refutation from the goal G with entry history in.
Hence, Ay, ;) Occurs in a refutation, and by Definition 3.7.1 it belongs to M.

(b) A is inferred using the clause
7 Anow) < G“,V,,l_o”,:],chosenr([r\ln],Out’), Houw ouns
corresponding to a //-rule in P, whose body belongs to the previous fixpoint
iteration. Hence, by induction hypothesis each atom in the body belongs to M.

74 GIANNOTTI, PEDRESCHI & ZANIOLO

By Definition 3.7.2 the body corresponds to a pruning node in a refutation from G
and it has been generated using the clause r with entry history in. Hence, A5, 0.
occurs in a refutation and by Definition 3.7.1 belongs to Mc;.

(c) A is inferred using a clause
chosen (in,outy < G pun
With Gy o in the previous fixpoint iteration. Hence, each atom of Gin.oml
belongs to M; and then G, ;) OCCUTS N @ refutation. Since G;, .. is the portion
of the body of rule r preceding //, by Definition 3.7.2 chosen,(in,our) € Mg.

(d) A is inferred using a clause
diffchaice, (in,out) «— chosen (in,out’),
with out # out'. Then, chosen,(in,out’) € Mg and, by Definition 3.7.2, diff-
choice,(in,out) € Mg.

2. ﬁx(PMG) D M, (by contradiction)

Suppose A € M and A & fix(Pyy). Then clearly A is not an instance of a fact rule in
P,,, otherwise A would be inferred in the second fixpoint iteration, according to
Definition 3.6.2. Hence A is an instance of the head of a rule as in Definition 3.6.1,
and each (instance of) atom in the body of such a rule also belongs to M;. Clearly, at
least one such atom does not belong to ﬁ'x(PMG), otherwise A would also belong to the
fix-point. This construction can be repeated indefinitely, eventually generating a
contradiction, since every refutation is finite.

Theorem 3.1 provides a notion of soundness of LD!!-resolution with respect to the
stable model semantics of P*. In fact, Theorem 3.1 establishes a strong notion of sound-
ness, in that it states not only that the information deduced using L.D!!-resolution is
justified by the presence of a suitable stable model, but also that such a model completely
characterizes the computation.

On the other hand, many alternative stable models of P* exist and it is natural to
wonder whether all such models can be computed using LD!'-resolution. The simple
result below (Theorem 3.2) states that for each fact which is true in an arbitrary stable
model, a suitable LD!!-tree exists, which allows one to deduce such a fact. Thus Theorem
3.2 provides a (weak) notion of completeness of LD!!-resolution with respect to the stable
model semantics of P*.

Theorem 3.2. Given a program P and a stable model M of P¥, for each A € M there
exists a goal G with respect to P such that A € M.

Proof. The theorem is easily established by the following observations.
Consider an atom A, y,, ., rlinl) € My . that is, the minimal model of the positive
program P;, (notice that M, is the unique stable model of P,,). By Lemma 3.2 we have
that A has an LD-refutation ‘which uses clauses r;, . . . , 7.
Consider next the relationship between Mp and an arbitrary stable model M of P*. Asa
consequence of Definition 3.6, M corresponcllas to (the atoms in) a subset of the refutations
which are represented in Mp (actually, it corresponds to a maximal subset of Mp which

satisfies the given functional dependency among histories [6].) This implfes that

DECLARATIVE SEMANTICS 75

Alinlr ... rlinll has an LD-refutation in P,,, and hence A has an LD-refutation in P by
the above observation. We can choose such a refutation as the LD!!-refutation for the goal
—> A,andhence A EM_,,. O

4 OTHER PRUNING OPERATORS

In this final section we briefly outline how the proposed framework can be adapted to deal
with other priuning mechanisms. A notable example is the committed choice operator of
concurrent logic languages like PARLOG [1], also adopted by Hill, Lloyd and Shep-
herdson [9] in a sequential language.

Informally, the behavior of committed choice at clause level is the same as that of the
one-agf operator, whereas it has also the global effect of pruning all the other matching
clauses.

The treatment of the committed choice derives directly from that of the one-of operator.
To cope with the latter, in a clause:

. 1"
re Alln.Om] - Gl[rllnl.om’;v"!H[()uf"Our]

the functional dependency [rifn] — Our’ was adopted. To cope with committed choice,
denoted by *|”, in a clause

r A own < G[[r\ln].()u:’]'”lom'.()u:]

the functional dependency In — Out’ is sufficient. This expresses the fact that for each
history reaching the parent of clause r there is at most one continuation of such history
which verifies the part of the body preceding the commitied choice. This situation is
depicted in Figure 7.

It is natural to extend the approach to deal with Prolog if-then-else and (red) cut, since
these mechanisms can be rephrased in terms of the one-of operator and negation. For

Figure 7. The functional dependency /n — Out.

76

GIANNOTTI, PEDRESCHI & ZANIOLO

instance, an if-then-else goal: (A — B; C) can be replaced by a new goal ite defined by the
two clauses

ite «— AN.B
ite «— —AC.

The treatment of cuz requires a bit more drudgery, in as much as negation must be used to
represent the textual clause ordering in the program. Appealing, but still in progress, is the
investigation of how these principles may apply to the form of nondeterminism present in
production systems, which is the bottom-up equivalent of that of commirted choice lan-
guages.

(1]
121
(3]
(4]

151

(6]

(7

(8]
(9}

REFERENCES

K.L. Clark and S. Gregory, “PARLOG: Parallel Programming in Logic,” ACM Transactions
on Programming Languages and Systems, Vol. 8, No. 1, 1986, pp. 1-49.

S.K. Debray and D.S. Warren, “Towards Banishing the Cut from Prolog.” IEEE Transactions
on Software Engineering, Vol. 16, No. 3, 1990, pp. 335-349.

R. Krishnamurthy and S.A. Naqvi, “Non-Deterministic Choice in Datalog.,” Proceedings of
the Third International Conference on Data and Knowledge Bases, 1988, pp. 416-424.
S.A. Naqvi and S. Tsur, A Logical Data Language for Data and Knowledge Bases, Computer
Science Press, New York, 1989.

S. Abiteboul and V. Vianu, “Fixpoint Extensions of First-Order Logic and Datalog-like
Languages,” Proceedings af the Fourth Symposium on Logic in Computer Science (LICS),
1989, pp. 71-89.

D. Sacca and C. Zaniolo, “Stable Models and Non-Determinism in Logic Programs with
Negation,” Proceedings of the Symposium on Principles of Database Svstems: PODS 90,
1990, pp. 205-217.

M. Gelfond and V. Lifschitz, “The Stable Model Semantics for Logic Programming,” Pro-
ceedings of the Fifth International Conference and Symposium on Logic Programming, 1988,
pp. 1070-1080.

R. Moore, “Semantical Considerations in Nonmonatonic Logic,” Artificial Intelligence, Vol.
25, No. 1, 1985, pp. 75-94.

P.M. Hill, J.W. Lloyd, and 1.C. Sheperdson, Properties of a Pruning Operator, Technical
Report, TR-89-18, Computer Science Department, University of Bristol, Bristol, UK, 1989.

