COMPILATION OF SET TERMS
IN THE LOGIC DATA LANGUAGE (LDL)
Oded Shmueli’, Shalom Tsur, Cario Zaniolo

MCC, Austin, Texas

ABSTRACT
We propose compilation methods for the efficient support of set term matching in Horn
clause programs. Rather than using general-purpose set métching algorithms, we take the
approach of formulating at compile time specialized computation plans that, by taking
advantage of information available in the given rules, limit the number of alternatives
explored. Our strategy relies on rewriting techniques to transform the problem into an
"ordinary” Homn clause compilatibn problem, with minimal additional overhead. The exe-
cution cost c;f the rewritten rules is substantially lower than that of the original rules and

the additional cost of compilation can thus be amortized over many executions.

1. Introduction

1.1. Overview

We propose compilation methods for supporting matching of set terms in Horn
clause programs efficiently. This approach is the basis for the implementation of set terms
as “first class” constructs in LDL. LDL is a Horn clause logic programming language
(HCLPL) intended for data intensive knowledge-based applications [TZ8, BNRSTS7].
The language m handle complex data as treated in [AB87, KV84, KRS8, O083] and it
supports various extensions to pure HCLPLs such as negation, arithmetic, schema facility
and sets. Since the language is intented for data intensive applications, it is assumed that

only fully instantiated answers are of interest. This makes it possible to use an execution

t Current address: Department of Computer Science, Technion, Haifa, Israel 32000.

1
model that is based on matching and fixpoint operators, rather than full unification and
SLD-resolution. Compile time techniques based on rule transformations are used to map
LDL programs into this simpler execution model, resulting in an efficient implementation
for the intended application domain [ZANBS]. Likewise, LDL’s approach to set matching
uses, at compile time, rewriting techniques that transform set matching into a sequeﬁce of
. ordinary matching problems. Thus, specialized computation plans are formulated that, by
taking advantage of information available in the given rules, tailor the solution to the situa-
tion at hand and limit the number of alternatives and blind alleys explored at run time.
As a result, the execution cost for rewritten rules is often substantially lower than that of
the original rules and the additional cost of compilation is thus amortized over many query

executions.

The techniques described in this paper are totally general and can be applied in any
situation involving support of set terms via matching. In particular, they are applicable to
the many cases where the execution is based od SLD-resolution, but matching can be
used instead of full unification [MK85].-

In this paper, we assume that set-objects are represented as terms whose main func-
tor is ser_of." For example, the set {1,3,2} may be internally represented as ser_of(3,1,2)
(actually, it will be represented as ser_of(1,2,3)). The characteristics of sets, in the
mathematical sense, are captured by extending the notion of equality of such terms to

account for the properties of commutativity and idempotence.

Example 1: Consider the rule:
john_friend(X) «— friends(set_of(X,Y,john)), X » john, nice(X).

Assume that the database® contains the following facts:

! As defined in Section 2.1, the word "term” refers to the elements of the Herbrand universe of the pro-
gram.

2 For notational convenience in defining the semantics, formally, the database is considered a part of the
program. Our results hold for the case where the database is a separate entity provided the facts in the database
are standardized (see section 3).

friends(set_of(john, jim, jack)).
nice(jim).
nice(jack).
The derived facts are john_friend(jim) and john_friend(jack).

The first answer comes from a={ X/jim, Y/jack}, and the fact that the set consisting of

jim, jack, and john is the same as the set consisting of john, jim, and jack.

The second answer comes from f={ X/jack, Y/jim}, and the fact that the set consisting

of jack, jim, and john is the same as the set consisting of john, jim, and jack. {]

The basic mechanism used in the implementation of LDL is matching; i.e. the
unification of a term with a ground term. Ir this paper, we concentrate on the mathemati-
cal principles underlying the efficient implementation of set matching. Versions of these

methods tuned for maximum performance are employed in the actual implementation.

We assume that the reader is familiar with the basic notation of Logic Programming
as presented, e.g., in [LLOY87]. For the purpose of this paper one can safely think of
LDL as a pure HCLPL (with the distiﬁguished, variable arity, functor set_of) whose
semantics is defined using the Tp operator by "bottom-up” repeatéd "firing" until fixpoint
[LLOY87] . The main difference between our Tp and the one in [LLOY&7] is that instead
of matching we use ci-matching® as deﬁned below. In addition we use the variable arity

functor ser_of.

The ser_of functor is used for the representation of traditional mathematical sets. As
such, the order of arguments in a ser_;of term is immaterial; this is captured by the con-
cept of permutation. Term r is a permurarion of term s if ¢ is obtained from s by a
sequeace of zero or more interchanges of arguments in set_of subterms of 5. Likewise,
repetitions of equal arguments should be ignored; this is captured by the concept of ele-
mentary compaction. Term ¢ is an elementary compaction of term s if it is obtained from

s by (i) locating a subterm A of s which has two identical arguments; say at positions i ,j

}In "ci-matching”, ¢ stands for commutative and | for idempotent.

3
such that { </, and (ii) deleting the j’'th argument from A. Terms ¢ and s are ci-equal,
denoted t=.s, if there is a sequence f=ry, ..., f=s such that fori=1,...,k-1, t;,, is
& permutation of #;, or ;, is an elementary compaction of ¢;, or f; is an elementary com-
paction of ¢, ;. Term r ci —unifies with term s if there exists a substitution & such that
fa=,sa. In case s is ground and ¢ ci-unifies with s » We say that ¢ ci~marches s. Let us

illustrate the above concepts.
Example 2: Consider again the rule:

john_friend(X) «- friends(set_of(X,Y, john)), X #john, nice(X).

Assume that the database contains the following facts:

friends(set_of(jim, john)).
nice(jim).

The only derived fact is john_friend(jim).

There are three substitutions that map set_of(X, Y, john) to set_of(jim, john).

One is o= {X/jim, Y/jim} since set_of(jim, jim, john) =, set_ofﬁiﬁ, john), it derives
john_friend(jim).

The second is f= {X/jim, Y/john} since set_of(jim, john, john) = set_of(jim, john), it
derives john_friend(jim).

The third is v= {X/john, Y/jim} since set_of(john, jim, john) =; set_of(jim, john); how-
ever, no fact is derived because of X john. []

If we modify the database in the above example to contain only the facts
fﬁends(seLof(io@n)) and nice(john), then the only applicable substitution is a= { X/john,
Y/john } and set_of(john, john, john) =, set_of(john). So, it is possible to specify a set
containing three elements that is instantiated into a set containing (mathematically) one

element. Again, no fact is derived because of X = john.

We now illustrate the usefulness of the "i" in ci-matching. Suppose that out of

experienced teams (old_ream) we need a team where the expertise of engineer, pilot and

medical doctor are represented. Then, we can use the rule:

ok_team(set_of(X,Y,Z))+ old_team(set_of(X,Y,Z)),
engineer(X), pilot(Y), medical_doctor(Z).

Thus, old_team (set_of (mark ,john)) would qualify as an ok_team if, for example, john is

2 medical doctor and mark is both a pilot and an engineer.

The meaning of an LDL program P is defined using ci-matching. In order to imple-
ment P efficiently we transform it into an equivalent program that employs only ordinary
matching (two programs are equivalent when they produce the same set of answer tuples
modulo ci-equality). Thus, the ses_of terms in the transformed program are treated as
ordinary terms, modulo a compaction and ordering operation which, when applied to
newly derived facts, eliminates components of ser_of terms so that no two subterms are

ci-equal.

To transform a program P requiring ci-matching into one which requires ordinary

matching, we expand the rules of P. The result for the rule in Example 1 is shown in
Example 3 below. We introduce new rules called "funnel-up” rules‘, and use a short hand
notation called multi-head-multi-body (MHMB) rules. In a MHMB rule, a comma is to
be read as "and”, and a semicolon as "or". For example the MHMB rule with two heads

(a and b) and three bodies (1) c,d , (2) e,f , and (3) g,h
ab+—c,d;ef;gh
represents the six rules:
ge—cd a+~—ef a+—gh becd be—ef begh

So, a rule with m bodies and n heads represents m xn ordinary rules, one for each body-

head combination.

*The term "funnel-up rule” stems from the role that these rules fulfiil: they funnel data from one format
(stored or alceady derived cesults) into another format, required by the structure of the original term in the body
of a rule.

wn

Example 3: Consider rule r; The rewritten rule is 7.
r: john_friend(X) + friends(set_of(X,Y,jobkn)), X #john, nice(X).
r’: john_friend(X) — funnel_up_friends(set_of(X,Y,john)), X # john, nice(X).

funnel_up_friends(set_of(Y,X,john)),

funnel_up_friends(set_of(X,Y,john)) «~ friends(set_of(john,Y,X));
friends(set_of(Y,john,X));
friends(set_of(Y,X,john)).

funnel up_friends(set_of(X,X,john)) +— friends(set_of(john,X));

friends(set_of(X,john)).
funnel_up_friends(set_of(john,john,john)) + friends(set_of(john)).
i

In the case 6f Example 3, we have three MHMB rules, each supporting the ci-matching of
the original term with instantiated set_of terms of cardinality three, two and one. The
body of a rule checks for "generic” appearances of terms with a certain cardinality in the
database. For example, in the second rule, friends(set_of (john,X)) and
friends(set_of (X ,john)) check for possible matches with a cardinality 2 instance. The
heads of a MHMB rule “transmit” the found bindings to the original term in the original

rule. In the second rule, bound values for

(1) funnel_up_friend (set_of (X ,X ,john)),

(2) funnel_up_friend (set_of (X ,john ,john)), and
(3) funnel_up_f riend (set_of (john X ,john))

need to be transmitted, in order to account for commutativity (see discussion in Section
4). A closer inspection reveals that (1) and (2) wili generate the same head tuples in
and that (3) will violate X # john in the original rule and hence (2) and (3) can be dis-

carded. In fact, for the same reason, one can also delete the rule:
funnel_up_friends(set_of(john,john,john)) « friends(set_of(john)).

(Elimination of redundant rules is discussed in Section 6.)

6

The msfomation result may seem bulky. However, run-time ci-matching on a per
tuple basis is replaced as a result, with an optimized compile-time "unfolding” of the
matching process. Qur compile-time analysis eliminates blind alleys in ci-matching as well
as redundant derivations; it also optimizes the ci-matching process in the context of the

particular program (see section 4).

1.2. Relationship to unification in equational theories

Over the last two decades, unification in equational theories has constituted an
extremely active research area; some, non exhaustive, references include [BHKSSTas,
BUTT86, HERO86, HERO86, FAGES87, LS76, RSSU79, STICKS81, SIEK89]. In partic-
ular, several papers have studiéc; unification for functions satisfying various combinations

of following three axioms:

(1) (A : associativity) f(x,f(y,z))=E(f(x,y),z) for an associative function f.
(2) (C: commutativity) f(x,y)=f(y,x) for a commutative function f.

(3) (f:idempotence) f(x,x)=x for an idempotent function f.

Siekmann provides an excellent review on work in this area [STEK89]. In particular, most
of the proposed ACI unification algorithms transform the unification problem into that of
solving a system of linear diophantine equations [FAGES87, LS76, STICKS1, LCs8].
These are of relevance to the problem at hand, inasmuch as the ACI framework has tradi-
tionally been viéwed as a natural model for properties of sets. Unfortunately, this frame-

work is not well-suited for our specific needs.

Consider for instance {a,b,c} and {X,Y}. According to LDL’s weli-defined seman-
tics [BNRST87, NATS89] these are not unifiable. Indeed the variables in {X,Y} stand for
set elements —although not necessarily distinct ones. Thus {X,Y} can only unify with sets
containing one element or with sets containing two elements, while {a,b,c} has three ele-
ments. If we represent our two sets using an ACI function f, we then obtain the two

terms f(a,f(b,c)) and f(X,Y). Hence, relative to ACI, these two terms are matchable;

2
with X=a and Y=f(b,c). Thus, Y plays the role of a subset, rather than an element as in

the LDL semantics.

One can encode the LDL set semantics in the context of ACI unification using the
following idea: each element is enclosed with a function symbol, say g, which has no
axioms associated with it. Then sets will be represented as f(g(a),f(g(b),g(c))) and
f(g(X),g(Y)), now matching with subsets is not possible as f and g do not match. Note

that, in essence, a very limited form of associativity is used in this encoding.

The fact that we look at a simplified version of ACI matching, and that we do not
reduce our problem to solving linear diophantine equations at run time, allows us to cast
the matching problem in a natural way within LDL. This in turn opens the way for con-

text related optimization of the matching process which is carried out at compile time.

Another techniqué for unification in equational theories is that of narrowing
[DERSHS87, FAY79, HULL80, RETY87]. Narrowing presents one possibility for con-
structing a universal unification algorithm [SIEK89]. Basically, narrowing transforms a pair
of terms (the unificands) using a term rewriting system. If no rule is applicable, a substitu-
tion is applied to the terms so that a subterm of one of them is unified with a left hand
side of a rewrite rule, the subterm is thén replaced by the right hand side of the rule. Nar-
rowing stops when, after a sequence of applications of substitutions and rewriting, the

current two terms are syntactically unifiable.

To use narrowing as a unification technique, one uses a canonical (namely a
confluent and terminating, i.e. noetherian) term rewriting system which represents the
equational theory.’ Qbtaining such a system from a given set of axioms for the theory is
called‘ completion. The basic vehicle in this area is the Knuth-Bendix completion pro-
cedure [KB70]. Unfortunately, this procedure does not always succeed. Improving tech-

niques for obtaining a confluent and terminating rewriting system is an area of active

¥ These concepts are defined in Section 2, see also [DERSHE7].

8
research [BDP87, CHRIS89, DERSHS7, PS81, JK&3, JK86]. (Some of these approaches
accept the fact that a theory has no completion as such, and provide rewriting rules that
assume that a unification algorithm exists for a theory represented by a subset of the

axioms.)

We have investigated the possibility of finding an equational theory with a comple-
tion for LDL sets. A natural representation for LDL sets was proposed by Jim Christian.
This representation uses a binary function symbol, say g; it represents set_of(x) as g(x,nil),
where nil is a constant that denotes the empty set. Then, set_of(x1, ... , xn) is represented

as g(x1,g(x2, ... g(xn,nil))). The equational theory is:

(1) (commutativit) glxg(r.2) = g(yg(x,2)

(2) (idempotence) 8(x.8(x,y)) = g(x.y)

Unfortunately, producing a confluent and terminating system for these equations appears
to be beyond our analytical skills and the state-of-the art in completion algorithms. For
instance, the HIPER system [Chris89], diverged on these equations, although it embeds

most of the known completion techniques [PS81, JK86] along with several refinements.

There may be other ways of modeling the LDL set semantics in the framework of
narrowing. However, the formalization proposed in this paper has some unique advan-
tages which are not easily replicated by other approaches. For instance, in our approach,
idempotence alone allows us to reduce a scheme set_of (....x,...,x,...) into
set_of (...,x,...). This allows us to break the overall "narrowing” into two stages, one in
which only commutativity is used and one in which only idempotence is used (Lemma
2.3). For example, in the equational framework above, we would need to use both the
commutativity and idempotence properties of the function g to obtain a similar

simplification involving non-adjacent terms.

In summary, we deal with a simpler theory than ACI. There are several similarities

between our techniques and "standard" narrowing, but there are also substantial

9
differences. First, we do not need a completion procedure and we utilize special properties
of the (simpler) theory we work in. Second, we compile, ahead of time, the matching
process that will be carried out at run time. Also, by casting the problem as a rule
transformation problem, we take advantage of many optimization possibilities that would
be difficult to detect by a general-purpose matching algorithm.

1.3. Paper organization

There are five sections. Section 2 discusses technical aspects of augmenting a
HCLPL with the ser_of functor. Section 3 presents two theorems. The first allows ci-
matching to be substituted by i-matching, the second allows i-matching to be substituted
for by ordinary matching. The fewrit'mg transformation is presented in section 3. Optimi-
zation techniques are discussed in section 4. Section 5 concludes and mentions possibili-

ties for future work.

2. Augmenting Logic Programming with CI-Matching

2.1. Hom clauses

A term ¢ is defined inductively as (i) a constant, (ii) a variable, (iii} a formula of the
form f(a, ,..., a,) where f is a function symbol and, fori=1,...,n, q; is a term
which is called the argument of t of index i. The height of a term ¢, denoted height (¢), is
defined inductively thus: the height of a constant is zero; the height of f (r,¢t,) is
1+max{height (t),... height (t,)}.

A rule is a formula of the form:

A«~B,,..., B,
where A and each B;, 0<i <n, are literals, i.e. a predicate symbol applied to as many

terms as indicated by its arity. Let arity (f) denote the arity of literal or term r.

In the rest of the paper, we will explicitly define various syntactic notions on terms
(e.g., ci-equality and ci-matching). We also implicitly extend the same notions to literals,

which have the same syntactic form as terms. Thus we will use the same terminology for

10

both terms and literals.

A substitution is a set of pairs = {X,/t|, ..., X,/1,} where X, ..., X, are dis-
tinct variables and ¢}, ...,t, are terms. Then 4, the instance of term t by 6, is the
expression obtained from ¢ by simultaneously replacing, for i=1, ..., n, each occurrence
of the variable X;, in ¢t by the term (. The composition fo¢ of two substitutions
8={X1/.‘r,, c o3 Xm/t} and o={Y /sy, . .., Y,/s,} is the substitution obtained from the

set

{lefld', [N ,Xm/fmﬂ', Y]_/Sb sy Y"/Sn}
by deleting every binding X;/f;¢c for which X;=f,c and each binding Y;/s; for which
Y; € {Xl; +++,X;n}. A substitution § is a generalization of a substitution & if there

exists a substitution o such that §=0a.

A.substitution 0={X/ty, ..., X,/t,} wheret,,...,t, are all ground , i.e., contain
no variables, is a binding. A term t, is said to be more general than (or a generalization
of) a term r, when there exists a substitution ¢ such that #,0=t,; in that case t; is a restric-
tion of ty; if t; is ground then ¢, is an instantiation of ¢,. If two terms are each a generali-
zation of the other, then they differ only by variable renaming and they are said to be vari-

ants of each other,

A substitution ¢ is said to unify (or, to be a unifier for) two terms ¢, and r, if
18 =1,8; then we also say that the unification equation ¢, =¢, is satisfiable and 8 is a solu-
rion for that equation. A set § of unification equations is sarisfiable if there exists a sub-
stitution 4 such that ¢ is a solution for each equation in §. From the existence of a most

general unifier of two terms [LLOY37], it follows that:

Proposition 2.1: Given a satisfiable finite set of unification equations U, there exists a

solution @ which is a generalization of every solution for U.]

A most general solution for U will be called a mosr general unifier (mgu) for U. So

far, our concepts of equality and unification are the standard ones where two terms are

11
equal iff they are (syntactically) identical, and are unifiable iff the unification equation for

them is satisfiable.

2.2. Cl-matching

We assume that sef_of is a distinguished function symbol that models mathematical
sets; as such, it does not have a fixed arity. With zero arity, i.e. ser_of (), it represents
the empty set. With non-zero arity, i.e. set_of {(ay, ..., da,), it represents the set whose
elements are ay, . . ., a, (not necessarily distinct). These intuitive notions are captured

formally as relations on terms.

The binary relation (on terms s,r) reduction by idempotence, denoted r ==>; s,
holds when s is ¢ with the exception that a subterm ; of ¢,
ty=set of (xy, ..., X%, ..., X;_1,X;,Xj41, . . ., X,), such that xj=x;, i <j, is modified by
deleting x; to obtain s;=ser_of (X1, ..., %, ..., %1 Xj4p ..., X,) in 5. We also say
that s is obtained from ¢ by an elementary compaction step. Qbserve that t ==> ;s does
not imply s ==> ;1.

The binary relation (on terms s,t) reduction by commutarivity, denoted ¢ —> s,
holds when s is r with the exception that a subterm ¢, of ¢,
fy=sef_of (xy, ...)Xy o oo X (X[, Xj4y - - - 4 X,), is modified by exchanging arguments
x; and x; to obtain sy=set_of (xy, ..., %, ..., X_,% X4 . .., X,) in 5. We also say

that s is obtained from ¢ by a permutation step. Observe thatf ==> .5 iff 5 => _t.

The binary relation (on terms s,r) reduction by commurativity and idempotence,
denoted t ==> ‘a 5, holds if either (i)t => ;5; or (ii) t => 5.

Each of =>,, =>; and ==> ; defines a binary relation on terms which may
contain the set_of distinguished functor. Let ==>_, ==>; and ==> _ denote the
transitive and reflexive closure of => _, =>; and => _;, respectively. Also, let

=, =, and =, denote the transitive, reflexive and symmetric closure of

=2 ., ==>; and == ., respec[ively‘

12

Properties of reducrions, binary relations on terms, have been extensively investigated
[HUETS0]. A reduction R is confluen: if, whenever tR"7; and tR"¢, then there exists ¢,
such that t,R*t; and ;R "¢, where R " is the reflexive and transitive closure of R. It can
be shown that both ==>, and =>; are confluent. This is straightforward for

==> ., it requires an induction on the height of a term for ==>,.

Another important property of reductions is termination. R ferminares if there is no
infinite sequence Rt Ry« - - . If IRt 1Rt + + Rt,, is such that there is no s such that
tm Rs, then t,, is called a normal form for t. It can be easily seen that while ==> i is
terminating, ==> _, and hence also —> ci » is non-terminating. We note that a
relevant coﬁcept is that of a term rewrifing system, such a system is a finite set of rewrire
rules of the form { ——r, where ! and r are terms. Fach of =—> er =>; and =>
can be thought of as defining a "generalized" rewrite rule, “generalized” because the objects
related by the rules are specified by "patterns” rather than by terms (manifested by the use
of "+« + "in defining => . and ==>).

Next, we extend equaliFy based unification and matching. A substitution 8 i-unifies,
c-unifies, ci-unifies terms ¢y and ¢; if £9 = t,0, 18 = 18, 1,8 =, 1,8, respectively. Wheh
ty is ground the word unifies is replaced by matches; we then speak of i-matching, c-

maiching and ci-matching.

Term ¢ is compact if itb contains no ser_of subterm with two syntactically identical
arguments. Equivalently, t> is compact if ¢ ==>; 5 implies t=s. For example,
f(22,5et_of (1,2,3),22)
is compact, while
[(R,set_of (1,2,1,3),22)
is not compact, Term ¢ is strongly compact if for ail terms s such that r ==> 8,8 is
compact; intuitively, one cannot permute the arguments of ser_of subterms of ¢ and pro-
duce two identical ones. For example,

set_of (set_of (X ,a),set_of (a X))

13
is compact but not strongly compact since
set_of (set_of (X ,a hiset_of (@, X)) => cSet_of (set_of (a,X)},set_of (a,X)).
Term s is a strong compact form for term ¢ if s is strongly compact and f =, s.
Strong compact forms are not unique in general. But, it can be shown that ifr; and r, are

both strong compact forms of ¢ then ty=t,.

A substitution, {X/t,, ... » Xn/ty} is called compact, or strongly compact, when

each #;, 1<1<n, is compact or strongly compact, respectively.

Since ==>; isa terminating reduction, starting with a term ¢ and repeatedly carry-
ing out rewriting applications one must reach a normai form. Clearly, this normal form is
compact. Furthermore, since ==>; is confluent, this normal form is unique (HUETS80).
Thus, given a ¢, there exists a unique ¢’ such that t =%=> ¢’ and ¢t'is compact; ' will be

called the compact form of ¢, denoted com (¢).

In this paper, we will use derivations ==> i Where, informally, the inner terms are
reduced before the outer cnes. That is to say that x; =x; being compact is a precondition
for reducing set of Xy, ...,%,.. XXX ey X)) to
set_of (xy,...,x;,... 1 Xj~1sXj41 « - ., %,). Reduction sequences satisfying this con-

straint will be called botrom —to ~top compactions.
The proof of the following Lemma follows directly from the definitions.

Lemma 2.1: If / is compact and + =%> ;[then I can be obtained from f via a bottom-

to-top compaction.
Clearly, Lemma 2.1 holds when [is strongly compact.

The following Lemma states that if ¢ =; I and [is compact then there is a sequence
of duplicate elimination operations on set_o f subterms of ¢ that leads from r to I. Note

that this is not always the case if [is not compact.

Lemma 2.2: Let be compact. ¢ = [ifft =2>],

14
Proof: (if) Obvious. (only if) By Lemma 2.1 in [HUET®0], ¢ =; I iff there exists s such
that t ==> ;5 and] ==>,s. But, since [is compact, s=I, i.e.t =Z>,;[.]|

Clearly, Lemma 2.2 holds when] is strongly compact.

Next, we show that if [is strongly compact and ¢ =, [then I can be obtained from
t by first permuting some arguments of some set_of subterms of ¢ and then performing a
sequence of duplicate elimination operations from set_o f subterms.
Lemma 2.3: Let I be strongly compact. =, [iff there exists w such that
f ==> . w ==> [,
Proof: (if) Obvious. (only if) t =, I implies there exists a sequence =Ty ..., Tp=/
such that for j=0,...,k—1, T) ==> ,T;,, or Tj =>,;Tjy or T, ==>; T;. The
proof is by induction on k, the length of the sequence.
Basis: (k =1) Obvious.
Induction: (£ >1).
Case (i) To ==> _ T,, obvious by the induction hypothesis.
Case-(_ii) Ty =>; T,. We show that, intuitively, this "deletion” can be delayed. Sup-
pose this step treats a set_of subterm v of ¢ and it deletes argument B of v because of a
lower index argument 4 in v. By hypothesis, there is a sequence S of steps establishing
Ty ==>,w' ==>;[. Modify § to create a new sequence S that "operates” on T,. For
each permutation step in Ty ==> , w’ which modifies a subterm of the term originating in
A, add a new step that does the same to the corresponding subterm of the term originat-
ing in B. Thus, in the resulting w”, the terms A’, B’ which originate in 4 ,B, respectively,
are identical. Hence, before the sequence corresponding to w' ==> 7, add a step

w' ==>,;w'. The resulting overall sequence proves the claim with w=w".

Case (iii) T, ==>; T,, by adding a subterm B because of a subterm 4. We show that,
intuitively, this "addition” is unnecessary and will induce a corresponding deletion later on ;

thus we can ignore it and its related operations altogether and end up with the same final

15
term. By hypothesis, there exists w' such that T, ==> ,w’ ==>, . Furthermore, there
is a sequence of bottom-to-top compaction steps establishing w' ==> ;[by Lemma 2.2,

Let A" and B’ be the terms in w’ originating in A , 5, respectively, Each step in establish-

ing w" ==> ; I is applied to a set_of subterm such that all its arguments are compact.

There must be a step deleting (a subsequent version of) A" or B". Otherwise, both
“survive” contradicting / strongly compact. If (a subsequent version of) B’ is deleted, we
can modify the whole sequence by not adding it to Begin with and deleting any step refer-
ring to a subterm of the term originating in B. Therefore we have a shorter sequence, by

the induction hypothesis we are done.

If no subsequent version of B "is deleted, we can produce a moedified sequence estab-
lishing ¢ =; I, of length less than or equal to k£, which, instead of “adding" B, starts ’with
permuting A to B’s position (of addition), and deleting any reference to A or subterms
thereof in the original sequence. So, this is Case (i). []

2.3. The standard representation of facts

A fact is a ground term. We start by defining a total order on facts.

(1) There is a total order on constants and function symbols (e.g., lexicographic order-
ing).

(2) Ife=f(ty...,tn)ands=g(sy,...,s,)and f precedesg, then precedess.

() I t=f(ty...,tn) and s=f(sy,...,s,) then r precedes s if there exists
i <max(m,n) such that s and ¢ are equal on positions 1, . . .,i—1 and either 4

precedes 5; or there is no position i in¢.

A fact is in sorted form if in each ser_of subterm of the fact, the arguments are in sorted

order according to the total order defined above on facts.

We make the following two assumptions concerning stored facts. First, facts are
always in strongly compact form. Second, facts are always in sorted form (see above).

These two assumptions together constitute the srandard representation assumprion. A fact

16
obeying this assumption is said to be srandard. A binding 6 <{X /T, ..., X, /T:} is

standard if for i=1,....k , T; is standard (recall that for a binding, all T; are ground).

Given a fact ¢, the standard form of r, denoted standard (), is obtained from ¢ by
sorting each set_of subterm of r and eliminating duplicates in such a way that a subterm
is handled only after all its ser_of subterms have been handled. It can be shown that

standard (¢) is unique and that r ==> ; standard (¢t) which implies ¢ =,; standard ().

To iilustrate the importance of the standard representation assumption, let us assume
that we admit in the database the péir of facts p(ser_of(1,2)) and g(set_of(2,1)) thereby
violating this assumption. Then, by the semantics of sets, the conjunct p(X),q(X) must
succeed, but that cannot be accomplished with ordinary matching — a direct contradiction
to our basic tenets. Fortunately, this problem can be solved by assuming that database

facts obey the standard representation assumption as defined above.

2.4. Semantics

The semantics of LDL sets is defined formally in [BNRST87]. Here we limit atten-
tion to a subset of LDL that is comprised of Horn clauses, the distinguished function sym-
bol ser_of , and two built-in predicate symbols = and # which are of arity two and are
written in infix notation. As mentioned, for simplicity, we view the database as part of
the program. Binding # satisfies rule h ¢y, . .., 1, in a set of facts S, if (i) it assigns
(ground) terms to all the variables appearing in the rule; and (ii) fori=1, . . ., , either ;
is 5,=5, and ;8 =, 5,0, or #; is 555, and 5,0, 5.8, or there exists 5; €S such that
t;0 = 5;. The model of a program P, denoted M(P) is defined thus. Let My=(j. For
i >0 define:

Mi=M;_ U { ho|binding 6 satisfies r:h «—1ry, ...,t, in M;_;}.
M@P)=U M.

In the sequel we shall refine components in both the model and rule satisfaction

definitions. Qur goal will be to show that each modification "preserves” the model.

17
Preservation is captured formally as follows. Two sets of facts § and T are ci-equivalent,
denoted § =,; T, if for all s € § there exists ¢ e T such that s = ¢ and vice versa.
We show that if § is restricted to be standard, the resulting set of facts is =, to
M(P).
Lemma 2.4: Let M (P) be defined like M (P) except that M; is defined as:
M;{=M/_; U { h¢ |standard binding ¢ satisfies r: # —¢,, . ..,¢, in M/},

Then, M'(P) =, M{(P).

o
Proof: Certainly M'(P) C M (P). Each fact in the U _Mi is added by some S;. There-

fore, it suffices to show that for each k¢ added to M;_, to form M;, there exists A 8= k8
added to M; to form M;, where ¢ is standard and the prime indicates construction of
M (P) under the Claim's restrictions. The proof is by induction on i, the basis, i =0, is
obvious as M(P)=M(P)=@. Suppose 0={ X/T,... , X, /T.}. Consider
h ety ..., t, whichis satisfied by ¢ in M;_,. The argument for f; of the form a=b or
of the form a # b is similar to the one that follows; so, w.l.0.g. the predicate symbol of f;
isnot=or#, 1<i<n.
Therefore, for j=1,...,n there exists a fact a; € M;-1 such that 1,0 =;a;. By
hypothesis, for j=1,...,n, there exist b; € M;_, such that a;=;b;. Let
0={X/standard (Ty), . . ., X;/standard (T)}. By construction, for j=l,...,n,
tj0=,; t;8 =.; aj =y b;. Thus, in forming M; k7 is added; furthermore #§=,; k6. []

The set of facts obtained when in addition each derived fact is standardized before

being added to the model, is also =, to M (P).

Lemma 2.5: Let M (P) be defined like M (P) except that M, is defined as: M;'=M,", U {
standard (h6) | standard binding @ satisfies r:h «—ry,...,t, in M,_;}. Then,

M'(P)=c M (P).

18
Proof: It suffices to show that for i >0, M; =; M, where the double prime indicates con-
struction of M (P) under the Claim’s restrictions and the single prime indicates construc-
tion under the restrictions of Lemma 2.4. The proof is by induction on i , the basis (i =0)
is obvious. For the induction step it suffices to show that a fact ¢ is added to form M, iff

a standard form " is added to form M, where ¢ =, ¢".

(=>) Consider h +—ty, ...,t, which is satisfied by § in M;. Therefore, for
j=1....,n there exists a standard form fact a; € M;~1 such that tj9 =5 a;. By
hypothesis, for j=1,...,n, there exist b; € M, such that a, =, b;. Thus, for
f=1,...,n, ;8 =4 a;=,b;. It follows that standard (h §) is added to form M,". Since
standard (t) =; t, the claim follows. (<=) A similar argument applies in this direction. 1
Let P be a program and q a literal. The correct result for query q against P is
{q 0 |there exist 4, s € M (P) such that g6 = s}
It can be shown that if M (P) above is replaced with any set § such that § =, M(P), then
the same set of result facts is obtained. This indicates that we deal with mathematically
identical sets of complex objects. In prﬁctice, a set of answers is most probably infinite,
eg. if 8={ Xserof (1)} then #={ X /ser_of (1)} will do as well as §=({
X/set_of (1,1,1)} and so on. So, in practice, one might be satisfied with any set that is

=.; to the answer set defined herein.
Using Lemma 2.4 and Lemma 2.5 we obtain:

Theorem 1: Suppose in the definition of M(P) each added fact is standardized, and at
least all standard substitutions are considered (and perhaps some non-standard ones are

considered as well); let M,(P) be the resulting model. Then, M,(P) =, M(P). []

Intuitively, Theorem 1 states that if generated facts are standardized, all standard
substitutions are considered, and some additional substitutions are considered as well, the

result is still =; to M (P).

19

2.5. The C-decomposition Theorem

The following Theorem is the basis of the first step in program rewriting, replacing
ci-matching with i-matching by considering all permutations of a term for i-matching. This

depends on being able to commute substitutions and permutations.

Theorem 2: Let I be a standard fact and 4 a standard substitution; 1§ =_; [iff there exist
fysuchthatt = ryand 18 = I.

Proof:

(<=)Ift = t, then t§ =, r,0 with the same ==> c sequence. Sincefd = [, 0 =, [.
(=>) Let .s'v=t8, by Lemma 2.3 5=, I implies there exists 5; such that s =, s, and
§) ==>; [where by Lemma 2.1 5; ==> ; I can be shown via a bottom-to-top compac-
tion. Consider variable X', which is replaced by 6 with term T,. Let T, be the subterm
in s, corresponding to an occurrence of Tyins. Since [is standard T,, must be standard
as well. This is because T;, cannot be compacted any more and some trace of it, i.e. an
equal subterm if T, is deleted in 5, ==> i I, must equal a subterm of /. Thus T =T,
A similar argument holds for all X;. In other words, the ==> c Ssteps leave each sub-
term originating in a ¢ replaced variable as is; it follows that all ==> ¢ Steps operating
on such subterms may be dropped without affecting the outcome. Let ¢, be the term
obtained from ¢ by the remaining steps. Observe that ,0=s,. It follows that there is

f1=, ¢ such that t,f =s,=; [, []

Note that the above theorem would not hold if ¢ is not required to be standard. For
example, if t=set_of (X,Y), I=set_of (ser_of (1,2)) and

8 ={X/set_of (1,2),Y /set_of (2,1)}, then 8 =, I, but there is no t, such that r =, ¢, and

2.6. The I-decomposition Theorem

The second main step in the rewriting presented in this paper is replacing i-matching

with ordinary matching. This is done by determining a priori the possible identification of

20
subterms that could be made by run-time substitutions. Essentially, this tantamounts to
considering each possible bottom-to-top compaction and solving a set of (ordinary)
unification equations implied by the bottom-to-top compaction. We need some machinery

to carry out this task.

We need a mechanism to refer to subterm positions independent of their "current”
content, this is analogous to the distinction between a variable and its content. Any sub-

term of a term ¢ can uniquely be identified by its rerm address, defined as follows:
(i) ~is a term address whose content is the whole term t,

(ii) if I is the term address in + whose content is the subterm f (ry, .. ., t,) then Lj,

1<j<n, is a term address in ¢ whose content is 5.

We use ¢.I to denote the sﬁbterm of + whose address is I (e.g., r. v=t}. For exampfe, if
t=f (g(..s'l,sz),h (X)) then 1. 4.2=h (X') and 1. v.1=g (51,57) and £. 7. 1.2=5, in ¢.

An E—eniry on term ¢ is of the form Li=Ij where I is the address of a sef_of
subterm of ¢, i <j and i and j are addresses of arguments of +.J. For example, let
t=f (set_of (a,X),set_of (b,Y,b),X) then 7.2.1=+.2.3 is an E-entry on ¢. Intuitively, an
E-entry means that during a bottom-to-top compaction on ¢4 for some 4 the subterms at
these addresses will be equal. In the last example, indeed b =¢. 1.21=t.4.23=b and a
bottom-to-top compaction could delete the second 6. As another example consider the
E-entry 7.1.1=1.1.2. This E-entry means that during a bottom-to-top compaction on ¢4,
for some 4, the subterms originating with @ and X will be equal. This implies a

unification equation, namely a =X .

An E-sequence E on t is a sequence of E-entries on ¢ such that for all A =B appear-
ing in the sequence no address of the form A.« or of the form B.a appears later on in the
sequence. Intuitively, an E-sequence depicts a bottom-to-top compaction on ¢ ¢ for some
§. Continuing the example, E=(y.2.1=4.2.3, 7.1.1=9.1.2) is an E-sequence on !.

Observe that an E-sequence defines a sequence of unification equations and also a "final

result” and an mgu, these are formally defined below.

We adopt the convention that for an equation ¢ 1=f2, the mgu is produced by the
unification algorithm in [LLOYS87]. Thus, such an mgu only assigns to variables that
appear in ¢, or f,, and furthermore, it only assigns terms built out of the constants, func-
tion symbols and variables appearing in ¢, or f;. In our example, the final compacted

result is f (ser_of (a),set_of (b,Y),a)) and the mgu is {X/a}.

In general, an E-sequence E=E,, . . ., E, defines a set Q(E) of unification equa-
tions and a term obtained from ¢ denoted E(r) which are obtained using algorithm

sequence_application below.

algorithm sequence_application(E, t);
begin
Q:=@;
Ji=t,
fork:=1ton do
begin
let Eg be ‘Li=l;’;
i€Li or I.j is not an address in 5 then
abort; i
add to Q the equation s.L.i=s.l.j;

/* the added equation is an equation between real terms nor
addresses */

update s by deleting subterm s.7.]
end;
let E(t) bes;
let Q(E) be Q

end.

An E-sequence is executable in ¢ if the above algorithm does not abort on input r and F .
Intuitively, if an E-sequence is not executable it definitely does not describe a bottom-to-
top compaction on . However, even if an E-sequence is executable it does not neces-
sarily describe a bottom-to-top compaction since the unification equations may not be
satisfiable. Furthermore, even if the unification equations are satisfiable, say with mgu w,
it still might be that E (r)w is not strongly compact, and hence cannot depict the applica-

tion of a binding followed by a bottom-to-top compaction ending up with a standard fact,

22
An E-sequence E is satisfiable in ¢ if it is executable in ¢ and Q(E) is satisfiable. If
E is satisfiable in ¢ with w an mgu for Q(E), and E (t)w is strongly compact, then E (¢t)w

is calted the generic term for ¢ defined by E. If E defines a generic term g for r then g is
a variant of any other generic term defined by E for ¢ .5

A substitution {X,/T1, - ,X,/Tn} is sirongly compact.if for 1<i<n, T; is 2
strongly compact term.
Claim 1: Let g be a generic term for r defined by an E-sequence £ with mgu w for Q(E).
Then, (i) tw=; g, and (ji) w is strongly compact.

Proof: (i) Since w satisfies Q{£) one can carry on fw the elementary compaction steps

defined by E. These operations relate to addresses in t. We thus end up with E (¢)w=g.

(ii) Consider the elimination steps in producing £ {¢). The result is E (t) such that E {¢)w
is strongly compact. Consider now fw. Suppose the elimination steps in forming E (¢)
are applied, in the same order, to the same term addresses in tw. Clearly, the result is
E (f)w. Suppose now that w is not strongly compact, i.e. to some variable X it assigns a
term T which is not strongly compact. Consider the subterm T corresponding to an X
occurrence in f which appears in fw. No elimination step has an address within T, these
addresses did not exist in ¢. Each elimination step, eliminates one of two equal terms, as
w is a solution to the uniﬂcatipn equations. Thus, the final result, E (¢ kv must contain a
subterm equal to T. But since T is not strongly compact, this contradicts E(t)w being

strongly compact. []

Theorem 3: Let ¢ be a term and [be a standard fact. The following two statements are

equivalent:

(1) There exists a substitution 4 such that t4 =; [and & is standard.

§ In the actual implementation, we are using improved algotithms for obtaining the set of generic terms as-
sociated with a given term. While these algorithms are heuristically effective, their worst case behavior remains
cxponential in the size of /. This is not surprising as set matching is NP-hard [KN85],

23
(2) There exist a substitution & and an E-sequence E with w an mgu for Q(E), defining

a generic term g =E(T) w for ¢, and such that g 6=/ and w6 is standard.

Proof:

(1)<=(2) By above Claim fw=,; g, hence twé=; gb=I. Thus, rwé=; I and wé is a stan-

dard substitution as required, i.e. # =wé satisfies (1).

(1)=>(2) By Lemma 2.1 there is a bottom-to-top compaction of ¢4 into I. Let E be the
E-sequence induced by this bottom-to-top compaction. Consider an E-entry Li=Ij in E.
We claim that the subterm at address A has not originated in a T such that X;/T is a pair
in 4, this is because such a T is ground and strongly compact. Thus E is actually an E-
sequence oﬁ t as well. Let Q(E) and E(r) be the set of unification equations and term
obtained by algorithm sequence_application on input £ and ¢. First, Q(E) is satisfiable,
simply observe that ¢ is a solution. Let w be an mgu for Q(E); thus there exists § such
that §=w§ [LLOY87]. Second, E(r)d=I. This is because E is an E-sequence on ¢ and
hence I=E(r6)=E (t)é. Third, E (¢)w is strongly compact. Suppose not; since E(t)wis
not strongly compact, certainly E (¢)w§ is not strongly compact, but E (¢)ws=E (£)8 =1, 1 is
strongly compact and hence a contradiction. Thus, g=E (f)w is a generic term for .
Also, gé=E (t)ws=E (t)o=I. []
3. The Rewriting Transformation

Let G(¢) denote the set of all possible pairs (g,w) such that g=E (t)w is a generic
term for ¢ induced by some E-sequence E. In this section we will use G () to transform
the original rules, which assume ci-matching, into an equivalent set of rules that use only
ordinary match%né. Note that G (t) is finite as there are only finitely many E-sequences for
aterm!¢.

3.1. The first step

We now explain the transformation. A rule r of the form head ¢, . . ., , where,

w.L.o.g., | contains set_of subterms is transformed into a rule r of the form:

head «—funnel_up_¢,,t,5, ..., t,.
and a set of permutation rules:

funnel_up_t+—permute_1_t,.

Jfunnel_up_t +—permute_m_t,.

where permute_1_ty, . . ., permute_m_t, are all the permutations of term #,. Each such
permutation is obtained from ¢ by exchanging positions of arguments of some ser_o f sub-

terms of r. The number of such permutations is obviously finite.
For the rule in example 2 we get:

john_friend(X) «— funnel_up_friends(set_of(X,Y,john)), X # john, nice(X).

funnel_up_friends(set_of(X,Y,john)) «— friends(set_of(X,Y,john)).
funnel_up_friends(set_of(X,Y,john)) «— friends(set_of(X,john,Y)).
funnel_up_friends(set_of(X,Y,john)) «— friends(set_of(Y,X,john}).
funnel up_friends(set_of(X,Y,john)) « friends(set_of(¥,john,X)).
funnel_up_friends(set_of(X,Y,john)) « friends(set_of(john,X,Y)).
funnel_up_friends(set_of(X,Y,john)) + friends(set_of(joha,Y,X)).

Let P+funnel be the program resulting by transforming rule » in P as above. For a set of
facts S, let S/P be the set of facts in § whose predicate symbol appears in P. Refine the
notion of rule satisfaction as follows. Binding # satisfies rule h«t,, .. .,¢, in a set of
facts S, if all the variables appearing in the rule are assigned by 4 and for i=1, . . ., n, (i)
if t; is of the form a =b then af = b4, (ii) if ; is of the form a=b then a6, b0; other-
wise, there exists 5; € S such that (a) £;,6=s; if r; is a funnel_up literal, (b) ;4 =; 5; if 1; is

a permute_j literal, and otherwise 1,6 =; s;.

Lemma 4.1: Suppose in the definition of M (P) only standard substitutions are considered,
the refined notion of rule satisfaction is used, and each added fact, which is not with
predicate name prefix funnel_up_, is standardized. Let M (P) be the resulting model.

Then, M (P +funnel /P =.; M (P).

Proof: By Theorem 1, it suffices to show that P +funnel derives a fact via refined satisfac-

tion using rule 7’ during model construction

tff
P derives the same fact, via pre-refined satisfaction, using rule » during mode! construc-

tion M (P) (as defined in the statement of Theorem 1).

In forming M ,(P) each added fact is standardized and w.l.o.g. only standard substitutions
are used. In forming M (P) this is also the case except that ordinary matching is used with

funnel_up literals and funnel_up facts are not standardized.

Thus, it suffices to show that for a standard fact I and standard substitution 8, r,8 =_; [
iff |
funnel_up_¢t; in 7" can be matched via # with fact funnel_up_t,8 in forming the model
M(P +funnél).
By Theorem 2, t6 =,; [xff there exists a permutation permute_i_t, of t, such that

permute_i_t\0 =; I. By construction there is a rule f unnel_up_t,+—permute_i_t, in

P+funnel .
So, for a standard fact I and standard substitution 6, ¢ W0 =ul
iff
the body of some permutation rule funnel_up_¢ 1+-permute_i_{ | i-matches [via g
iff
In forming M (P +funnel), funnel_up_t8 is added
iff
funnel up_t, in " can be matched via # with funnel_up_t 8 in forming the model
M (P+funnel). []

3.2. The second step

In the next step of the transformation, each permutation rule funnel_up_t,+—permute_j_t |
is deleted and replaced with, usually many, generic rules obtained from G(t), where
t=permute_i_t,. For each pair (g,w) in G(permute_i_t,) the rule funnel_up_t we—g is

added, g is called a generic literal.

26

Continuing the previous example, let us concentrate on one particular permutation
rule, say funnel up_friends(set_of (X ,Y,john))efriends(set_of (X ,john,Y)). For the
simple set_of term in the body of this rule, each w can be represented by indicating which
arguments were identified as equal by w. Once this is done, a bottom-to-top compaction
obtains g. The possibilities can be represented symbolically as patterns (#,#,#),
(#,@,#), (@,#,#), (#,#,@), (#,@,&). Each such possibility has implications on the
values assigned to variables in the rule. The first possibility (#,#,#) implies that § must

assign john to both X and Y. Thus we generate a rule:
(a) funnel up_friends(set_of(john,john,john)) «— friends(set_of(john)). (#, #, #)

The second possibility (#,@,#) implies that § must assign the same values to X and Y.

Thus we generate a rule:
(b) funnel_up_friends(set_of(X,X,john)) « friends(set_of(X,john)). (#, @, #)
For the other possibilities we generate, respectively:

(c) funnel_up_friends(set_of(X,john,john)) «~ friends(set_of(X,john)). (@, #, #)
(d) funnel_up_friends(set_of(john,Y,john)) « friends(set_of(john,Y)). (#, #, @)
() funnel up_friends(set_of(X,Y,john)) «— friends(set_of(X,john,Y)). (#, @, &)

After we do the above for each permutation rule we end up with a large collection of new

generic rules and no permutation rules.

Define P+generic as the resulting program following the transformation. Refine rule
satisfaction by addihg: "(c) ;0 =s; if ¢; is a generic literal," (the definition precedes Lemma
4.1).

Lemma 4.2: Suppose that in the definition of M (P) only standard substitutions are con-
sidered, the newly refined notion of rule satisfaction is used, and each added fact, which

is not with predicate name prefix funnel_up_, is standardized. Let M (P) be the resulting

model. Then, M (P +generic)/P =,; M(P).

27
Proof: By Lemma 4.1, it suffices to show that M (P+funnel)=h:[(P +generic). By
Theorem 3, if I is a standard fact, there exists a standard substitution 8 such that
permute_i_r\@ =; I iff there exists a substitution § and an E-sequence E, inducing a
satisfiable Q(E) via mgu w and a generic g=E (permute_i_r\)w such that

permute S w=; g, gd=I and wé is standard.

By generic rule construction, a fact funnel_up_t 8 is added by a éermut’ation rule in form-
ing M (P +funnel) using i-matching of permute_j_t via standard 6 to a staﬁdard fact J

iff
there is a generic rule that will add funnel_up_t wé=funnel up_r\# in forming

M (P+generic) using ordinary matching of g to I with ¢,w,5 and g as in Theorem 3.

It follows that any fact in M (P+funnel) is also in b}(P+generic) and that every fact
derived for M (P +generic) by a generic rule, induced by generic term g and mguw, viaa §

such that wé is standard is also in M (P +funnel). Thus, M (P+funnel)=Fv} (P +generic) []

Suppose a body g of a rule with head funnel_up_t,«w matches a s-tandard fact I with
standard substitution 4. This produces a fact f unnel_up_tw§. This fact is matched with
funnel_up_r via wé. By Claim 1(ii), w is strongly compact, since § is standard, so is wé
(otherwise, I being standard is contradicted). This implies that indeed following the
rewriting, the (ordinary) matching of funnel_up_t, and a fact, is done via a standard sub-
stitution. Thus, in Lemma 4.2, there is no generality lost in considering only standard

substitutions.

The trand;er_mation above is applied to a single literal in a single rule. Clearly, it can
be applied ta.-,ﬂjf literals in a rule which contain set_of subterms until they are all "con-
verted” into funnel up literals. Similarly, each program rule can be separately rewritten.
(Of course, care must be taken to avoid naming conflicts; e.g. if + appears in rule r; and
in rule r2 then we may use funnel_r 1 up_t in rewritting r; and funnel r2_up_t in rewrit-
ting r2.) Call the result rthe transformed P, denoted P'. Based on Lemma 4.2, and the

observation following that Lemma, we conclude that if derived facts (other than those

28
derived for generic rules) are standardized in computing M (P'), then M (P') may be com-
puted by only considering ordinary matching.

3.3. The third step

In the previous step each permutation rule was replaced with some generic rules.
We now describe the next stage in the transformation which we call body homogenizing.
Recall that terms s, ¢+ sharing no variables are variants if there exists a substitution 8 which
is a 1-1 renaming of variables such that 5 =¢. It may happen that in the collection of gen-
eric rules produced above, we may locate two rules, rjhead;~—body, and
ry.head ;+—body,, such that body, and body, are variants. Since the meaning of a program
is not altere‘d when the variables in a rule are consistently renamed, we can rewrite r, as
head \#«body, (since body,f=body,). Consequently, we can rewrite the collection of
rules in such a way that all bodies which are variants of each other become now syntacti-
cally identical. As an illustration consider the pattern (@,# ,#) and the permutation rule
with the body friends (set.of (john,Y ,X)). Note that this is a different permutation rule
than the one we considered before, with body friends (ser_of (X ,john ,Y)), that induced

rules (a)-(e). The rule that we get is:
(f) funnel_up_friends(set_of(X, X, john)) « friends(set_of(john, X)).

The body of rule (d), friends (ser_of (john ,Y)), is a variant of the body of rule (f) viz. ¢ =

{Y/X}. Thus, we rewrite rule (d) as:
(d°) funnel_up_friends(set_of(john, X, john)) « friends(set_of(john, X)).

Once rule-bodies are homogenized we can rewrite them in MHSB format (S stands
for Single), byr—‘associating with each body all of the heads appearing in rules in conjunc-
tion with this body. Of course, if two heads grouped for a body are equal, only one is

retained.

Example 4: The final result for our example are the following MHSB rules:

(1) funnel_up_friends(set_of(X,Y,john)),
funnel_up_friends(set_of(Y,X,john)) «— friends(set_of(X,john,Y)).

(2)
€)
(4)

()

©)

3.4.

(1)
)

©)
(4)
5

(6)

29

funnel_up_friends(set. of(X,Y,john)),
funnel_up_friends(set_of(Y,X,john)) « friends(set_of(X,Y,john)).

funnel_up_friends(set_of(X,Y,john)),
funnel_up_friends(set_of(Y,X,john)) « friends(set_of(john,X,Y)).

funnel_up_friends(set_of(X,X,john)),
funnel_up_friends(set_of(john,X,john)),
funnel_up_friends(set_of(X,john,john)} « friends(set_of(X,john)).

funnel_up_friends(set_of(X,X,john)),
funnel_up_friends(set_of(john,X,john)),
funnel_up.friends(set_of(X,john,john)) + friends(set_of(john,X)).
funnel_up_friends(set_of(john,john,john)) + friends(set_of(john)).
I

Summary of the transformations on a rule

replace the literal ¢ in the original rule body with a funnel _up_t literal.

For each permutation of ¢ generate a permutation rule whose head is funnel_up_s

and whose body is the permutation of #.
Replace each permutation rule with a set of generic rules.
Perform body homogenizing by making variant bodies syntactically identical.

Group rules into MHSB format by associating wifh each body form all of the distinct

heads it derives.

Possible optimizations utilizing the rule body containing ¢ ; see next section.

4. Optimization

The set of rules produced by the previous rewriting transformations offer significant

opportunities for compile-time optimization. In this section, we discuss the elimination of

rules that are redundant as result of (i) equalities and inequalities in the rules, (ii) storing

the set_of terms in a standard sorted form and (iii} variables playing synonymous roles in

rules.

4.1. Using equalities and inequalities

In some cases it may be determined that funnel-up heads in a MHSB rule cannot

supply any bindings for which the whole (modified) rule body can be satisfied in matching

all literals; in such cases these heads are disposed of in advance. Such cases often involve

30
arithmetic predicates and the predicatess = and . For example, the head
funnel_up_friends(set_of(john, X, john)), can be discarded from the MHSB rule {4) in
Example 4, as it will force X = john in the original rule and thus it violates X »%john .

Thus, rule (4) can be replaced by (4”) below:

(4") funnel_up_friends(set_of(X,X,john)),
funnel_up_friends(set_of(X,john,john)) « friends(set_of(X,john)).

At compile-time some violations can be checked for as follows. Rename variables
so that each rule has a set of variables disjoint from the set of variables in any other rule.
Unify funnel_up_t in the body of the modified rule r' with &, the head of the checked
MHSB rule; let # be the mgu that was used. Now consider an equality constraint g =s in
r.If g9 and 58 are not ci-unifiable, then A can be discarded. Checking this can be dqne
by using a ci-unification procedure; the description of such a procedure is outside the
scope of this paper. Next consider an inequality constraint g5 in r'. We consider it

violated at compile-time only if g 8 =, 58 which can also easily be checked.
4.2. Using the standard representation assumption

In other cases it may be determined that a body of a MHSB rule will never match a
standard fact. For example, if friends(set_of(john, eric, X)) happens to be a body in a
MHSB rule then it cannot match any standard fact because eric precedes john in the
sorted order. A term is mismatching if it cannot matcﬁ any standard fact /. The decision
problem as to whether a given term is mismatching is still open. However, we make the

following observations.

We say that a given term ¢ is aqnriordereded if it contains a ser_of subterm s such
that for all substitutions @ such that ¢4 is ground, s5.j 8 precedes s5.i4 in the total order on
terms where s.j (s.i) is the j’th (i’th) argument of s, i <;. For instance,
f (g Q) set_of (male(X),male(Y), female(Z))) is antiordered since female precedes

male. Observe that a term may be mismatching and yet not be antiordered, e.g.,

31
¢ =f (set_of (1,X),set_of (X,1)), each set_of subterm of ¢ by itself can match with a

standard fact yet ¢ cannot, We have the following:
Lemma 5.1: An antiordered term is mismatching. |

So, if a generic literal is antiordered, and hence mismatching, the generic rule for this gen-

eric literal will never be satisfied and therefore can be discarded.

We now present a method that detects many cases, but not all, in which a term ¢ is
antiordered. For term ¢, if ¢ is a constant then t[0] denotes ¢ and otherwise ¢ [0] denotes
the main functor of . We need the following procedure, precedes, which defines a rela-
tion R on terms (7Y R T, 'Lffprecede.s; (Ty, T,) returns true). In R, for all variables X, for
allterms T, X R T and TR X. When R is restricted to ground terms, it reduces to the
total order on ground terms defined previously. Thus, one can think about the relation R

as a "generalization” of the relation < on ground terms,

procedure precedes (¢ ,s):boolean ; _
/* variables are magically ok, we "approximate” here */
if¢ or s is a variable then return true;
if +[0] precedes s[0] in the total order on terms then return true;
if ¢[0] follows 5[0] in the total order on terms then return false;
if ¢ [0}=5[0] and ¢ [0] is a constant then return true;
if £ [0]=s {0] then
begin /* need to compare arguments if same functor */
continue :=true; .
I:=1;
while i <arity(t) and i <arity {s) and continue do
begin
if t[i]¢s[i] then
/* determine if ¢[i] precedes s{i] and exit loop */
begin
continue :=false;
if precedes(t[i],s[i]) then comp :=true else comp :=false
end;
i:=i+1; /* compare next arguments in ¢ and s */
end;
/* check if loop exited with all checked pairs equal, i.e. continue =true */
If continue then comp := arity (t) < arity (s);
return comp .
end;

We state without proof that if precedes (r,5) returns false then for all substitutions g,

¢ precedes 6. Thus, to determine whether ¢ is antiordered we can use the following

32
method. Apply precedes to each pair of arguments at positions i,/ , | <], in each ser_of

subterm of ¢. If any such application returns false then ¢ is antiordered.

We now consider the computational complexity of detecting antiordered terms using
the above method. First, in precedes the line “if tfil#s[i] then" takes time O (size of
s[i]+size of ¢[i]). So, precedes(s,t) is O ((size of t +size of s)z). Second, given ¢ we
need to apply precedes to each pair of arguments in a set_of subterm of /. The number
of such pairs is O((size of ¢)?). Thus our method is O((size of 1)*). The 4 in the
exponent can easily be reduced to 3 by locating the first point of "disagreement” in check-

ing "if 1i]s[i] and calling precedes recursively on the corresponding subterms.

More stringent criteria could also be considered to enhance precedes. One possibility
is that the ordering deté:‘mined through the execution between variables and terms can in
simple cases be checked for acyclicity. For instance, on set_of(X, Y, f(Y), f(X)) pro-
cedure precedes returns true. Observe that no matching is possible since, once X and Y
are instantiated, we cannot have both X precedes ¥ and Y precedes X in the total order
on terms. However, procedure precedes is computationally feasible and detects many

cases in which ¢ is antiordered.
4.3. Using Synonyms

Other optimization techniques are similar to tableaux minimization [ASUT9]. A dis-
tinguished substitution w.r.t. t isa suﬁstitution # which assigns to each variable X appear-
ing in ¢ a unique distinct coﬁstant which does not appear in ¢ or in the program P. For
our purposes this substitution is unique, assigning unique constant x to variable X. The
distinguished bﬁ;ing form of ¢, 1,, is obtained by applying to ¢ the distinguished substitu-
tion w.r.t. . An expression is a term, a literal or a rule. Given a set of expressions S, a
binding 8 is reducing w.r.t. S if it transforms each element of S into its distinguished
binding form, i.e., converting § into a set of ground terms in which §’s variables are uni-

formly renamed into distinct constants.

33
Rule bodies body1=B,, ..., B, and body2=C,, ...,C, are isomorphic, denoted
body 1 w:= body?2 if set_of (B, .. ., B, J=ciset_of (Cy, ..., C,). Here, we represent s=¢
as =(ser_of (s,)) and we represent s =t as #(set_of (s,¢)). Consider a funnel-up heads 4,
and A, in a MHSB rule m for literal ¢. let P’ be the result of the rewriting of P. Funnel-
up heads h,, A, iﬁ m are synonyms if deleting from m in P’ either the head k; or the
head h;, results in an equivalent program P, i.e. one that generates correct results for
queries, as asked against P. We define the following synonym test. Let h; be the dis-
tinguished binding version of k; , i =1,2 produced by reducing binding § w.r.t. h; and #.,.
For i =1,2, suppose that ¢, matches funnelup_t in r' with h, (which is the dis-
tinguished binding form of &;). Let
ri =(r—t)8; =head; ~ body,
where (r—t) is r after deleting the literal r from its body. Then, the synonym test

succeeds if body | =:=body, and head, =,;head .

We illustrate the above definitions via the following example; consider the ruie r:
john_friend(X) + friends(set_of(X,Y,john)), X 5 john, nice(X).
Here t=funnel_up_friends (set_of (X,Y,john)). We now examine a MHSB rule, for

example rule (4’) discussed above:

(4" funnel_up_friends(set_of(X,X,john)),

funnel_up_friends(set_of(X,john,john)) +~ friends(set_of(X,john)).

After applying the distinguished substitution « = {X /x} 10 the two heads in rule (4) we

obtain:

h 1, = funnel_up_friends(set_of(x,x,john))

h 24 = funnel_up_friends(set_of(x,john,john)).
Thus,

0)={ X/x,Y/x} and b;= { X/x,Y/john}.

34
Also,
(r—t)= john_friend(X) « X # john, nice(X).
So,
ry = (john_friend(X) «— X #john, nice(X)}d;= (john_friend(x) «— x 5 john, nice(x)),
where
head; = john_friend(x), and body; = set_of(x # john, nice(x)); and
ry = (john_friend(X) « X »john, nice(X))f;= (john_friend(x) «— x #john, nice(x)),
where
head; = john_friend(x), and body, = set_of(x » john, nice(x)).

Consequently, head; =head; and body, =body; . Since = implies =, , the synonym
test succeeds on funnel_up_ friends (set_of (X ,X ,john)) and
funnel_up_friends (set_of (X ,john ,john)). Based on Theorem 4 below, they are
synonyms and either may be eliminated, for instance, the latter. Similar optimization steps

can be applied to rule (5) of Example 4, thus yielding the rules of Example 3.
The correctness of the synonym test follows from the following Theorem.

Theorem 4: If the synonym test applied to h, and h, succeeds, then k, and h, are
synonyms.
Proof: Since body’ 0, =:=body’ §,, substituting for each variable in the MHSB rule m any
ground term, as expressed by a substitution a, yields
body 8,8 a =:=body 6,8 a
and
head 8,8 a = head 8,8 a
where A1 is the inverse of the grounding substitution producing k; , , i =1,2.
The following observation can be proven by induction: if

set_of (ty ..., 1) = set_of (51,...,5,) then for all 1<i <n there exists 1</ <n such

that f; =.; 5;. Suppose we are given a set of standard facts M;.

35
Consider the construction of M (P +generic). It follows from the above observation that
tuple standard (head’ &) is added during model construction using # by matching, using a,
funnel_up_r with a tuple generated by head, and ci-matching each literal in (r—) with a
fact in M;,
iff

an equal tuple, i.e. standard (head), is added during model construction by by match-
ing, using &, funnel_up_t with a tuple generated by head, and ci-matching each literal in
(r—r) with a fact in M;.
Hence, deleting head (which is either & or h,) results in a program P +generic —head
such that A:I (P +generic)/P = M (P +generic —head)/P. Therefore, h, and h, are
synonyms. []

The above implies that if the synonym test succeeds on k ,h, then only one of &,k »
need be retained in m. An obvious optimization procedure is to repeatedly test for

synonyms and remove heads accordingly.
4.4. Additional Optimization Techniques

The multihead rule representation creates an opportunity for further optimizations—
which, for the most part have been implemented in the LDL system. One such optimiza-
tion is a generalization of the synonym test, which often eatails further rule elimination.

This is briefly discussed in the Appendix.

A second optimization opportunity arises at code generation time, when multi-head
rules having the same body can be grouped into multi-head multi-body rules (such as a,b
+~— ¢, d ; e, ; gh described in the introduction). which can then be compiled as units.
Then, as differeat bodies are considered for possible matchings, it is possible to take into
account the results of matching the previous bodies to eliminate unnecessary work. This
is done through a Prolog-like backtracking mechanism which always uses as much informa-

tion as possible each time a new matching is tried out. The same general idea applies to

36
generated tuples -in the multihead part. These tuples introduce certain variations of each
other, thus the "next” tuple to be generated may be obtained by a minor permutation on a
previously generated one. By examining the heads an "inexpensive” sequence may be
obtained. Furthermore, some variables in ¢’ are used in r' only in t'. Intuitively, such vari-
ables check "existence". The terms in corresponding positions in funnel-up heads need no¢

be formed at all..

5. Conclusions

The approach presented for supporting sets in a HCLPL represents a clear advance-
ment of the state of the art. First of all, it eliminates the need to use E-matching at run
time in supporting sets; instead we compile the original program into one that only
requires ordinary matching. Second, it leads to more efficient implementations since the
rewritten program is optimized using information available in the given rule, thus eliminat-
ing many of the alleys explored by the blind search of E-matching. In particular we take
advantage of having a standard representation for facts, of inequality constraints and

synonyms (i.e. matchings that lead to the generation of identical tuples).

Some of the techniques, e.g. multiheads, are still in the experimental stage and we
expect to further report on them in the future. Other aspects are now being explored,
among these are the support for the standard set operations, e.g. member, equality, ine-
quality, union. The problem of whether given a term ¢, ¢ is mismatching, i.e. cannot

match with my standard fact, is still open.

We should note that the rewriting is expensive and may take exponential time in the
size of the rewritten term. Thus, for sets with more than ten items or so it is not very
practical, as it may result in too m'any rules; this is not surprising in light of [KN86]. For
large sets we can resort to using other techniques which use the predicate member.

(These techniques are outside the scope of this paper.) For "small" sets these other tech-

37
niques are not as efficient as the methods described in this paper. Also, in many cases of
such large sets, many of the ser_of arguments are variables that appear in one place and
nowhere else in the rule, these are "placeholders” used to indicate cardinality. It will be
interesting to "grow" the rewritten rule from a version produced by first ignoring these

"place-holders” and then adding them one at a time.

Acknowledgments

We would like to thank C. Beeri for reading and commenting on an early version of this
paper. We would like to thank Y. Sagiv for his many useful comments. We also would
like to acknowledge the help of Nissim Francez, Roger Nasr and Jim Christian while revis-
ing the paper. Lastly, the referees did an excellent job in supplying us with relevant refer-
ences which resulted in better understanding of the problem we address and and its rela-
tionship to results in the literature.

References

[AB87] Abiteboul, S. and C. Beeri. On the Power of Languages for the Manipula-
tion of Complex Terms. Unpublished Manuscript.

[ASU79] Aho, A.V., Y. Sagiv and J.D. Ullman, Equivalence of Relational Expres-

sions. SIAM J. Computing Vol. 8, No. 2, 218-246, 1976.

[BHKSST88] Buckert, H. J., A, Herold, D. Kapur, J. H. Siekmann, M. H. Stickel,
and M. Tepp, Opening the AC-Unification Race, J. Automated Reason-
ing, 4, 465474, 1988. .

[BNRSTS7] Beeri, C., S. Naqvi, R. Ramakrishnan, O. Shmueli, and S. Tsur.

Sets and negation in a Logic Database Language (LDL1), 6th ACM Sym-
posium on Principles of Database Systems, San Diego, CA., 1987.

(BUTTS6] Buttner, W., Unificarion in the Data Structure Sets, Proc. 8th International
Conference on Automated Deduction (CADE-8) Oxford, England, (also
Springer Verlag LNCS-230,) July 1986.

[CHRIS89] Christian, J., High-Performance Permutative Completion, Dissertation,
Univ. of Texas, Austin, MCC Tech. Rep. ACT-AI1-303-89, 1989.

[CM84] Clocksin, W.F., and C.S. Mellish. Programming in Prolog, 2n d. Edition,
Springer Verlag, 1984.

[DERSHSE7] Dershowitz, N., Completion and its Applications, Coll. on the Resolution
of Equations in Algebraic Structures, Austin, Texas, May 1987.

[FAY79] Fay, M., First Order Unification in an Equational Theory, Proc. 4th Inter-
national Conference on Automated Deduction (CADE4), Austin, Texas,
161-167, 1979,

[FAGES87] Fages F., Associative-commutadive Unification. J. Symbolic Comp., 3-3,
257-275, June 1987.

[HEROS6] Herold, A., Combination of Unification Algorithms, Proc. 8th Intema-

tional Conference on Automated Deduction (CADE-8) Oxford, England,
(also Springer Verlag LNCS-230, 450-469,) July 1986.

[HUETS0] Huet G., Confluent Reductions: Abstract Properties and Applications to
term ,
rewriting systems. J. ACM, Vol 27, No. 4, 797-821, October 1980.

[HULLS0]
[JK86]
[JKK&3]
[KN86]
[KRS84]
[KV84]

[LLOYS7|
[LCs8]

[LS76]
[MK8S5]

[NATS89]

[0083]

(PS81]
[RETY87]

[RSSU79]

[SIEK89]
[STICKS81]

[SZ87)

38

Hullot J-M, Associative Commutative Pattern Matching, Proc. 5th Interna-
tional Conference on Automated Deduction (CADE-5), Springer-Verlag
LNCS 87, 318334, 1980.

Jouannaud J-P., and H. Kirchner,
Completion of a Set of Rules Modulo a Set of Equations, SIAM J. COM-
PUT., Vol. 15, No. 4, 1155-1178, November 1986.

Jouannaud J-P., C. Kirchner and H. Kirchner,
Incremental Construction of Unification Algorithms in Eguational
Theories. ICALP '8, (also Springer Verlag LNCS-154, 361-373,) 1983.

Kapur, D., and P. Narendran. NP-Completeness of the Ser Unification and
Matching Problem, Proc. 8th International Conference on Automated
Deduction (CADE-8) Oxford, England, (also Springer Verlag LNCS-230,)
July 1986.

Korth, H.F., M.A. Roth, and A. Silberschatz, A Theory of Non-Firs:-
Normal-Form Relational Databases, 1984.

Kuper, G.M., and M.Y. Vardi. A new Approach to Database Logic, Proc.
Third ACM Symp. on Principles of Database Systems, Waterloo, Canada,
1984,

Lloyd, J.W., Foundartions of Logic Programming. Springer Verlag, 1987.

Lincoln, C., and J. Christian, Adventures in Associative-Commutative
Unification (a summary), Proc. 9th International Conference on
Automated Deduction (CADE-9), (also in Springer Verlag LCNS 310,
358-367,) 1988.

Livesey, M., and J. H. Siekmann, Unification of A+C-Terms (Bags) and
A+C+I-Terms (Sets). Universitat Karilsruhe, Fakultat fur Informatik
Technical Report 5/76, 1976.

Maluszynski J. and H. J. Komorowski, Unification-Free Execution of
Logic Programs, Proc. 1985 Symposium on Logic Programming, 78-87,
IEEE Computer Society Press, 1985.

Nagvi, S. A., S. Tsur,
A Logical Language for Data and Knowledge Bases W. H. Freeman, 1989,
Oszoyoglu, G. and Z. Oszoyoglu. An Extension of Relational Algebra for

Summary Tables, Proc. 2nd. International (LBL) Conference on Statistical
Database Management, 1983.

Peterson, G. E. and M. E. Stickel. Complete Sets of Reductions for Some
Equational Theories , J. ACM, Vol. 28, No. 2, 233-264, April 1983.

Rety, P., Improving Basic Narrowing Techniques. Conf. on Rewriting
Techniques and Applications, Bordeaux, May 1987.

Raulefs, A. P., J. H. Siekmann, P. Szabo, and E. Unvericht, A Short Sur-
vey on the State of the Art in Matching and Unification Problems, ACM
Sigsam Bulletin 13,2, 14-20, May 1979,

Siekmann J. H., Unification Theory, J. Symbolic Computation, (1989) 7,
207-274.)

Stickel, M.E., A Unification Algorithm for Associative-Commutative Func-
rions, J. ACM 28,3, 423434, July 1981.

Sacca, D., and C. Zaniolo, [mplemenmrion-of Recursive queries for a Data
Language Based on Pure Horn Clauses, Fourth International Conference
on Logic Programming, Melbourne, Australia, 1987.

39

{TZ86) .Tsur, S., and C. Zaniolo LDL: A Logic-Based Data-Language, Proc. 12th
Int Conf. on very Large Databases, Kyoto, Japan, 1986.
[ZANSS] Zaniolo, C., Design and Implementation of a Logic Based Language for

Data Intensive Applications, Proc. of the Fifth International Conference
and Symposium on Logic Programming, 1667-1687.

Appendix

In many cases more than a single conclusion, i.e. head tuple, may be drawn from a
single match of the body literals with facts. Notationally, we indicate this by rewriting the
rule in a MHSB format.

Example 5: Consider

r: john_friend(X) — friends(set_of(X,Y,john)),nice(X),nice(Y)
Its transformed version according to the previous section is
r': john_friend(X) o funnel_up. friends(set_of(X,Y,john)), nice(X), nice(Y)

Suppose the body is matched with facts friends (set_of (al ,jim ,john)),nice(al) and

nice (jim). The deduced head tuple is john_f riend (al). Intuitively, as al and jim play a

totally symmetric role, john_friend (jim) may be deduced as well. Hence, the rule is
rewritten as 7:

7 : john_friend(X), john_friend(Y) « funnel_up_friends(set_of(X,Y,john)), nice(X), nice(Y). 0

The main advantage of identifying multiheads for a rule is that it enables further
eliminations of funnel-up heads.

Example 6: Consider a MHSB rule m generated for Example 5, for the generic literal
friends(set_of(john,X)):

funnel_up_friends(set_of(john,X,john)),
funnel_up_friends(set_of(X,john,john)),
funnel_up_friends(set_of(X,X,john)) +— friends(set_of(john,X)).

If the original rule is kept as is, i.e. r’, then the three heads in m must be retained.
However, if the rule is modified to the form 7 then one of the heads in m may be elim-
inated, resulting in:

funnel_up_friends(set_of(X,john,john)),
funnel_up_friends(set_of(X,X,john)) « friends(set_of(john,X)). (1

, The deletion of heads in m implies that fewer matchings are performed in the body
of F with facts generated by funnel-up heads as compared to the matchings performed in
r'. This saves on checking for matchings in the rest of the body literals in 7. We should
note that in some cases the above transformation may result in a slight cost increase.

Example 7: Consider the MHSB rule w for the generic literal friends(set_of(john)):
funnel_wggSriends(set of(john,john,john)) « friends(set_of(john)).

Here, for a match with this rule w, 7 will, wastefully, produce two identical heads
of the form . friend (jokn). []

This apparent waste is marginal as it involves simple value permutations at run-time to
produce deduced tuples for the multiple heads in 7 as opposed to matching with possibly
numerous tuples.

The first problem in forming a rule like 7 is how to obtain additional head tuples
based on a single binding to body variables. Some additional notation is needed. A vari-
able to variable mapping (wmap) is a substitution {X,/Y,...,X, /Y,} where
Xy ...,X, are distinct variables and {X, ..., X, }={Y,...,Y,}. Let £ be an
expression and ¢ a vvmap, ¢ is preserving with respect to £ if Eé=_FE. For example, if
E=setof (9(X,Y),q(Y,X),p(set_of (X,Y,Z))) then ¢={X/Y ,Y/X} is preserving
while ¢={X/Z ,Z/X } is not preserving. If r is a rule, with body By, ...,B,,thenfis a

40

vvmap (respectively, preserving vvmap) w.r.t. r if 0 is a vvmap (respectively, preserving
vvmap) w.r.t. set_of (B, ..., B,).

We would like to obtain all solutions derivable from a body under all different
preserving vvmaps. This is because of the following key observation:
Observation A.1: Let # be a preserving vvmap w.r.t. head «—body . For any matching « of
body with standard facts deriving head tuple head «, there is another matching, with the
same standard facts, such that the head tuple head §a is derived.

Proof: Let body=B,,...,B,. Consider standard facts d,,...,d, and a matching o such
that for i=1,...,n, B;a=,d;. Each B; is mapped by ¢ to B;8; since § is a preserving
vvmap, there exists some B;, 1<j <n such that B;8=.,B;. Denote the smallest such j
as 4({). Now, we can match B,,...,B, tody ...,d, in a different way, namely, B; is
matched with d,;y, by matching each variable X in B; with what X4 in B iy was matched
with in dy;). Thus whenever head a can be produced, so can head da. []

We can extend the definition of M(P) (respectively, M(P), M(P)) to the case
where original rules are in MHSB format, simply by stating that h ¢ (respectively,
standard (h 9)) are added during model forming for all heads k in rule 7. We use 7 to
denote 7 once ¢ is replaced with funnel_up_t in the transformation.

Corollary: If 7 is a preserving vvmap for rule r: head <—bogy, then replacing in P r
with 7 results in the same M(P) (respectively, M(P),M(P) for 7,), where 7:
head , headd + body . []

Thus, to each original rule body we may attach many heads, one per each preserving
vvmap #. Clearly, this results in an equivalent program. Of course, if a number of heads
thus generated are ci-equal, only one need be retained.

The redundancy elimination implied by Theorem 4, may be eésily adapted to the
situation where original rules are transformed into MHSB equivalent representation. Head
head | in m is dominated if deleting head | results in an equivalent program.

We now define a domination test to take into account the fact that 7 is MH. Intui-
tively, head, is dominated because of head, if, for the generic literal match in m’s body,
the multiheads after unifying with a head, generated tuple, form a superset, modulo com-
mutativity and idempotence, of the multiheads after unifying with a head, generated tuple.
Define S C* C S if both § and §" are sets and for each A € S there exists B € §' such
that A =;;B.

The domination test, on funnel-up heads #,k; is as follows. Let 7 be a MH rule
with set of heads A and body body . Let: be aliteralin 7. Let hy be the distinguished
binding version of h;,i=1,2. For i=1,2, let §, match hy with f in 7. Let
Fi=(F—r)8;=H;+body;, i=1,2, where (F—t) is obtained from F by deleting literal r.
Then, the domination test determines that i, dominates h, if body,=:=body, and
H,C* CH,p.

The domination test is in fact a generalization of the synonym test of the previous
section, specializing it to the case where original rules may have a number of heads.
While synonym is a symmetric relation, dominated is a one place relation. In a way simi-
lar to that in Theorem 4, it can be shown that when the domination test determines that
h; dominates h,, where both A, and k; are heads in a MHSB rule m, then h, is dom-
inated in m and thus may be deleted without altering the meaning of the program.

It might be possible to remove additional m heads. Intuitively, the idea is that the
heads produced in 7 due to some head in m are, collectively, also produced Ly those
heads in m that give rise to an isomorphic body when unified with ¢ .

