
PRIMA: Archiving and Querying Historical Data with
Evolving Schemas

Hyun J. Moon
UCLA

hjmoon@cs.ucla.edu

Carlo A. Curino
Politecnico di Milano

carlo.curino@polimi.it

Myungwon Ham
UCLA

ham@cs.ucla.edu

Carlo Zaniolo
UCLA

zaniolo@cs.ucla.edu

ABSTRACT
Schema evolution poses serious challenges in historical data
management. Traditionally historical data have been archived
either by (i) migrating them into the current schema ver-
sion, providing an easy query interface, but compromising
archival quality, or (ii) by maintaining them under the orig-
inal schema version in which they first appeared, leading to
a perfect archival quality, but also to a difficult query in-
terface. In PRIMA system, we achieve the best of both
approaches, by archiving historical data under the original
schema version, while automatically adapting the user tem-
poral queries to the relevant schema versions. The users
are allowed to query the archive under a schema version
of choice, letting the system to rewrite the queries to the
(potentially many) involved schema versions in the past.
Moreover, the system offers automatic documentation of the
schema history, and allows to pose temporal queries over
the metadata history itself. The proposed demonstration,
highlights the system features exploiting both a synthetic-
educational running example and the real-life evolution his-
tories (schemas and data), which include hundreds of schema
versions from Wikipedia and Ensembl. The demonstration
offers a thorough walk-through of the system features and
a hands-on system testing phase, where the audiences are
invited to directly interact with the advanced query inter-
face of PRIMA . The SIGMOD attendees will freely pose
complex temporal queries over transaction-time databases
subject to schema evolution, observing PRIMA’s query
rewriting and execution capabilities.

1. INTRODUCTION
The ability of archiving past database information and

supporting temporal queries over historical databases has
long been recognized as highly demanded in Information
Systems [9]. This objective, which has provided a long
standing motivation for temporal database research, is be-
coming more and more pressing [3], due to the accountabil-
ity obligations of organizations such as financial institutions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

and web portals, e.g., Wikipedia.
Schema evolution, which represented a serious problem

already for traditional information systems [10, 7], is even
more critical for web information systems [3], and scientific
databases [1].

To address the preservation and querying of transaction-
time databases with evolving schemas, PRIMA system [8]
has been designed and implemented, based on the following
key concepts: (i) a language of atomic schema modification
operators (SMOs), exploited by the users to design complex
evolution steps, (ii) an XML-based temporal data model
for archiving historical data with evolving schemas, (iii) the
corresponding temporal query interface based on XQuery,
and (iv) a query answering semantics and algorithms, by
which users can issue complex temporal queries spanning
over multiple schema versions in an easy way. Furthermore,
the system allows to pose temporal queries over metadata
histories (records of the schema history), similarly to what
is done for regular data. We describe the architecture of
PRIMA and a demonstration which (i) guides the audi-
ence through the system functionalities, and (ii) allows the
participants to directly interact with the system query inter-
face to issue complex temporal queries over transaction-time
data archives under schema evolution. The combination of
synthetic-eductional and real-life case studies exploited in
the demonstration provides an ideal balance between intro-
ductory illustrative examples and actual evolution histories
from the domain of genetic scientific databases and web in-
formation systems, which include the genuine evolution his-
tories of the Wikipedia1 the free encyclopedia and Ensembl2

genome database.

2. DEMONSTRATION SCENARIO
The demonstration begins with a brief introduction of

the PRIMA system architecture, as discussed in the Sec-
tion 3. It then proceeds by highlighting the system features
through four simple interrogation scenarios, based on the
synthetic evolution history summarized in Table 1 and the
evolution histories of Wikipedia and the Ensembl databases.
We present the system features in the order of increasing
level of complexity as follows:

1. Historical schema navigation: This first scenario
shows how the PRIMA users can inspect the schema
evolution history itself, by posing temporal queries on

1http://www.wikipedia.org
2http://www.ensembl.org

1

Figure 1: PRIMA Interface Screenshot

it. This functionality is based on the PRIMA exten-
sion we presented in [5]. The users are allowed to ask
queries such as “What was the Wikipedia schema valid
at time T1?” or “What is the evolution history of the
gene table in the Ensembl database?” The relevance of
such features is illustrated with the interesting findings
from the real-world evolution histories.

2. Snapshot queries: This step allows user to issue
queries directly on the historical data. Users will select
a schema version (by exploiting the above-introduced
functionality) and manually pose a snapshot query such
as “Find the salary of employee 1337 at time T1 as of
2001-07-01.” on the data archive. This experience
will illustrate the value of a complete archive of the
database for flashback or auditing purposes. At the
same time it shows the difficulty of manual querying on
an archive under schema evolution, even for the sim-
plest snapshot queries. This motivates the PRIMA
research effort, whose contribution is presented in the
next step.

3. Snapshot queries in the past via the current
schema: This scenario presents one of the main ad-
vantages of exploiting PRIMA . Users can access
the same historical information of the previous exam-
ple, without even being aware that the schema has
ever evolved: past snapshot queries are naturally posed
through a schema of choice (typically the current one),
and automatically rewritten by the efficient query rewrit-
ing engine of PRIMA into the equivalent ones valid
under the correct past schema version. The system
is run open-hood to illustrate the internal mechanics
involved.

4. General temporal queries via the current schema:
Lastly, users are invited to explore the full power of
PRIMA temporal query engine. The potential of
XQuery as temporal language becomes clear when we
present several complex temporal queries and their
natural XQuery rendering. Users are allowed to ask
general temporal queries (e.g., history, range, and temporal-

Table 1: Running Example: Schema evolution in an
employee DB

Schema Versions Ts Te

engineerpersonnel (empno, name, hiredate, title, dept-

name)
V1 otherpersonnel (empno, name, hiredate, title, dept-

name)

T1 T2

job (title, salary)
empacct (empno, name, hiredate, title, deptname)

V2 job (title, salary) T2 T3
empacct (empno, name, hiredate, title, deptno)

V3 job (title, salary) T3 T4
dept (deptno, deptname, managerno)

empacct (empno, hiredate, title, deptno)
V4 job (title, salary) T4 T5

dept (deptno, deptname, managerno)
empbio (empno, sex, birthdate, name)

empacct (empno, hiredate, title, deptno, salary)
V5 dept (deptno, deptname, managerno) T5 now

empbio (empno, sex, birthdate, firstname, lastname)

Table 2: Schema Modification Operators (SMOs)
SMO Syntax

create table r(Ā)
drop table r
rename table r into t
copy table r into t
merge table r, s into t
partition table r into s with cond, t
decompose table r into s(Ā,B̄), t(Ā,C̄)
join table r, s into t where cond
add column c [as const|func(Ā)] into r
drop column c from r
rename column b in r to c

join queries) without the need to deal with the underly-
ing schema evolution. Synthetic and real-life examples
are exploited to present some of the optimizations im-
plemented in PRIMA . This allows the audience to
fully understand how PRIMA performance are built
from several individual optimizations.

A first prototype of the demo (work in progress) is cur-
rently on-line at: http://yellowstone.cs.ucla.edu/demo/
prima. A short video tutorial (i.e. screencast), presenting
some of the core system features, can also be found at the
same address. A richer and more stable version of the inter-
face, which will be the one presented, is about to be released.

3. PRIMA ARCHITECTURE
Here we discuss how schema evolution are described using

schema modification operators and how historical data are
archived under schema evolution, based on XML. Then we
briefly discuss the algorithm for query rewriting between
schema versions. Interested readers are referred to [8] for
further details.

3.1 SMOs
Schema modification operators (SMOs) are a set of op-

erators capable of representing schema changes. We sum-
marize SMOs supported in PRIMA in Table 2, each of
which perform an atomic action on both the schema and
the underlying data. The SQL-inspired syntax should be
self-explanatory to the purpose of this paper, while the in-
terested readers are referred to [4] for the detailed and formal
presentation of the SMOs and their capabilities.

2

db

empacct job

row

em
pn
o

h
ir
ed
a
te

n
am
e

ti
tl
e

d
ep
tn
a
me

row

ti
tl
e

sa
la
r
y

db

dept

row

de
pt
n
o

d
ep
tn
a
me

ma
na
ge
rn
o

Schema Version V Schema Version V

empacct job

row

em
pn
o

h
ir
ed
a
te

n
am
e

ti
tl
e

de
pt
n
o

row

ti
tl
e

sa
la
r
y

2 3

Figure 2: Two schema versions of Employee DB in
V-document (V2 and V3)

3.2 XML-Based Transaction-time Databases
We archive relational data based on XML, which provides

temporally grouped representation (or attribute-level times-
tamping)3.

3.2.1 V-Document
V-Document models the history of relational data using

XML, as in Figure 2, where versions V2 and V3 from our
running example are captured as a V-document schema. Its
intuitive structure can be represented with an XPath no-
tation as /db/table-name/row/column-name. Each of
the nodes, representing respectively database, tables, tuples
and attributes, has two attributes, start-time, (ts), and end-
time, (te), representing respectively the (transaction-) time
in which the element was added to the database and the
time in which was removed. A special value “now” is used
to represent the end time, which means that the associated
value is part of the current DB.

XQuery is used, without any extension, as a temporal lan-
guage over this representation [11]. This is possible due to
the expressive power of XQuery, which is Turing-complete.

3.2.2 V-Document with Evolving Schemas
In order to represent the history of a relational database

where the schema evolves along with the content, we extend
V-document. Consider the example in Figure 2: the two-
table schema version V2 evolved into the three-table schema
version V3. This change is represented in XML by sim-
ply appending new columns and tables after the old ones.
The timestamp values guarantee an unambiguous associa-
tion among tuples, tables and schema versions.

Therefore, we have a general representation, named MV-
Document (Multi-schema-version V-Document), capable of
representing both the content and the history of our databases
using a standard XML representation. Note that all his-
torical data are stored under their original schema version,
satisfying our archival requirement.

3.3 Query Rewriting
We rewrite queries between schema versions. The seman-

tics of query rewriting is described in Figure 3: we answer

3It has been shown that temporally grouped representation
is better than the ungrouped one, due to redundancy and
coalescing problems [2].

T

SVTDB2

3

T2

T1

T1 T2
T3

data
time

schema
time

TDB1 TDB2

TDB1

TDB2

1TDB '

V

V2

1

Figure 3: Transaction-time DB under V1 and V2

the queries as if all historical data are first migrated into
the queried schema version and the the query is executed.
Instead of literally implementing this semantics, we take an
efficient approach where we rewrite the input query into
the relevant historical schema versions. For query rewrit-
ing, we use MARS [6] that performs a series of chase and
backchase. MARS uses XML Integrity Constraints (XICs)
to infer the mappings between schema versions, which is
generated based on SMOs.

4. REFERENCES
[1] Schema evolution benchmark [on-line]:

http://yellowstone.cs.ucla.edu/

schema-evolution/index.php/Benchmark_Extension.
[2] J. Clifford, A. Croker, F. Grandi, and A. Tuzhilin. On

Temporal Grouping. In Recent Advances in Temporal
Databases, pages 194–213. Springer Verlag, 1995.

[3] C. A. Curino, H. J. Moon, L. Tanca, and C. Zaniolo.
Schema evolution in wikipedia: toward a web
information system benchmark. In International
Conference on Enterprise Information Systems
(ICEIS), 2008.

[4] C. A. Curino, H. J. Moon, and C. Zaniolo. Graceful
database schema evolution: the prism workbench.
Proc. of VLDB, 1(1), 2008.

[5] C. A. Curino, H. J. Moon, and C. Zaniolo. Managing
the history of metadata in support for db archiving
and schema evolution. In ECDM 2008, 2008.

[6] A. Deutsch and V. Tannen. Mars: A system for
publishing XML from mixed and redundant storage.
In VLDB, 2003.

[7] S. Marche. Measuring the stability of data models.
European Journal of Information Systems, 2(1):37–47,
1993.

[8] H. J. Moon, C. A. Curino, A. Deutsch, C.-Y. Hou,
and C. Zaniolo. Managing and querying
transaction-time databases under schema evolution.
Proc. of VLDB, 1(1), 2008.

[9] G. Ozsoyoglu and R. Snodgrass. Temporal and
Real-Time Databases: A Survey. IEEE Transactions
on Knowledge and Data Engineering, 7(4):513–532,
1995.

[10] D. I. Sjoberg. Quantifying schema evolution.
Information and Software Technology, 35(1):35–44,
1993.

[11] F. Wang, C. Zaniolo, and X. Zhou. Archis: An
xml-based approach to transaction-time temporal
database systems. The International Journal of Very
Large Databases, 17(6):1445–1463, 2008.

3

