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ABSTRACT 

GEM (bn acronym for General Entity Manipulator) is a general-purpose query and update 
language for the DSIS data model, which is a semantic data model of the Entity-Relationship 
type. GEM is designed as -an easy-to-use extension of the relational language QUEL. 
providing supporr for. the notions of entities with surrogates, aggregation, generalization, null 
values, and set-valued attributes. 

1. INTRODUCTION 

A main thrust of computer technology is towards 
simplicity and ease of use. Database management 
systems have come a long way in this respect, 
particularly after the introduction of the relational 
approach [Ullml, which provides users with a simple 
tabular view of data and powerful and convenient 
query languages for interrogating and manipulating 
the database. These features were shown to be the 
key to reducing the cost of database-intensive 
application programming Ecddll and to providing 
a sound environment for back-end support and 
distributed databases. 

The main limitation of the relational model is its 
semantic scantiness, that often prevents relational 
schemas from modeling completely and expressively 
the’ natural relationships and mutual constraints 
between entities. This shortcoming, acknowledged 
by most supporters of the relational approach 
[CoddZl, has motivated. the introduction of new 
semantic data models, such as that described in 
[Chenl where reality is modeled in terms of entjties 
and relationships among entities, and that presented 
in [SmSml where relationships are characterized 
along the orthogonal coordinates of aggregation and 
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generalization. The possibility of extending the 
relational model to capture more meaning - as 
opposed to introducing a new model - was 
investigated in [CoddZl, where, surrogates and null 
values were found necessary for the task. 

,-‘Most previous work with semantic data models has 
concentrated on the problem of modeling reality and 
on schema design; also the problem of integrating 
the database into a programming environment 
supporting abstract data types has received 
considerable attention [Brad, KMCI. However, the 
problem of providing easy to use queries and 
friendly user-interfaces for semantic data models has 
received comparatively little attention’. Thus the 
question not yet answered is whether semantic data 
models can retain the advantages of the relational , 
model with respect to ease of use, friendly query 
languages and user interfaces, back-end support and 
distributed databases. 

This work continues the DSIS effort [DSISI to 
enhance the UNIX* environment with a DBMS 
combiiing the advantages of the relational approach 
with those of semantic data models. Thus, we begin 
by extending the relational model to a rich semantic 
model su&rting the notions of entities with 
surrogates, generalization and aggregation, null 
values and set-valued attributes. Then we show that 
simple extensions to the relational language QUEL 
are sufficient to provide an easy-to-use and ,general- 
purpose user interface for the specification of both 
queries and updates on this semantic model. 

1. To the extent that the functional data m6del [SiKel can be 
viewed as a semantic data model,~DAPLEX Bhipl stipplier a 
remarkable exception to this trend. 

* UNIX is a trademark of Bell Laboratories. 
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ITEMS Name: c, Type: c, Colors: {c)> key(Name); 

DEPT (Dname: c, Floor: i2) key(Dname) ; 

SUPPLIER (Company: c, Address: c) key(Company); 

SALES ( Dept: DEPT, Item: ITEM, Vol: i2) key(Dept, Item) ; 

SUPPLY (Camp: SUPPLIER, Dept: DEPT, Item: ITEM, Vol: i2) ; 

EMP (Name: c, Spv: EXMPT nuU aIlowed, Dept: DEPT, 

[EXMPT(Sal: i4), NEXMPTtHrlwg: i4, Ovrt: i4)1, 

[EMARRIED (Spoused: i4), otkd key (Name), key @OUSC#) ; 

Figure 1. A GEM schema describing the following database: 
ITEM.. for each item. its name, its type, and a set of colors 
DEPT: for each department its name and the floor where it ts located. 
SUPPLIER.. the names and addresses of supplier companies. 
SALES: for each department and item the volume of sales. 
SUPPLY. what compan supplies what item to what department in what wlume 6f 

0ck.f current st 
EMP: the name, the supervisor, and the deportment of each employee; 
EXMPT: employees can either be exempt 611 supervisors arc) or 
NEXMPT: non-exempt; the former earn a monthly salary while the latter have an hourly 

wage with an overtime rate. 
EMARRIED: Employees can either be married or not; the spouse’s social security number is 

of interest for the married ones. 

2. ‘!-HE DATA MODEL 

Figure 1 gives a GEM schema for an example 
adapted from that used in [LaPi]. The attributes 
Dept and Item in SALES illustrate how an 
aggregation is specified by declaring these two to be 
of type DEPT and ITEM, respectively. Therefore, 
Dept and Item have occurrences of the entities 
DEPT and ITEM as their respective values. The 
entity EMP supplies an example of generalization 
hierarchy consisting of EMP and two generalization 
sublists shown in brackets. The attributes Name, 
Spv and Dept are common to EMP and its 
subentities in brackets. The first generalization 
sublist captures the employment status of an 
smployee and consists of the two mutually exclusive 
subentities EXMPT and NEXMPT (an employee 
cannot be at the same time exempt and nonexempt>. 
The second generalization sublist describes the 
marital status of an employees who can either be 
EMARRIED or belong to the others category. 
Although not shown in this example, each subentity 
can he further subclassified in the same way as 
shown here, and so on. 

The Colors attribute of entity ITEM is of the set 
type, meaning that a set of (zero of more) colors 
may he associated with each ITEM instance; each 

member of that set is of type c (character string). _ 

Name and Spouse# are the two keys for this family, 
However, since the uniqueness constraint is waived 
for keys that are partially or totally null Spouse## is 
in effect a key for the s&entity EMARRIED only. 

We will next define GEM’s Data Definition 
Language, using the same me&notation as in 
[IDMI to define its syntax. Thus (...I denote a set 
of zero or more occurrences, while [:..I denotes one 
or zero occurrences. Symbols ‘enclosed in semiquotes 
denote themselves. 

A GEM schema consists of a set of uniquely named 
entities. 

1. <Schema>: ( <Entity> ;] 

An entity consists of a set of one or more attributes 
and the specification of zero or more keys. 

2. <Entity>: <EntName> ( <At&Specs ” 
1, <AttrSp=> 1) (Key) 

Attributes can either be single-valued, or be a 
reference (alias a link) attribute, or be set-valued or 
represent a generalization sublist. 
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3. <AttrSpec>: <SimpleAttr> 1 <RefAttr> 
1 <SetAttr> 1 <Generalization sublist> 

4. <SimpleAttr>: <DataAttr> [ <null spec> 1 
5. <DataAttr>: <AttrName> ‘:’ <DataType> 

GEM’s data types include l-, 2- and 4-byte integers 
( respectively denoted by il, i2 and i4), character 
strings ( denoted by c) and all the remaining IDM’s 
types [IDMI. 

The user can allow the value of a data attribute to 
be null either by supplying a regular value to serve 
in this role, or by asking the system to supply a 
special value for this purpose (additional storage 
may be associated with this solution). 

6. <null spec>: q all’: <datavalue> 1 nuB’:’ system 

The option nuB aBowed must be entered to allow a 
null link in a reference attribute. 

7. <RefAttr>: 
<AttrName>‘:’ <EntName> [nuB allowed1 

Set-valued attributes are denoted by enclosing the 
type definition in braces. . 

8. <SetAttr>: <AttrName>‘:’ *(, <DataType>‘)’ 

A generalization sublist defines a choice between 
two or more disjoint alternatives enclosed in 
brackets. The keyword others is used to denote that 
the entity need not belong to one the subentities in 
the list. 

9. <Generalization sublist>: 
‘1’ <Entity> 1, <Entity>) , <Entity> ‘1’ 

1 ‘[’ <Entity> I, <Entity> ) , others ‘1’ 
Repeated applications of this rule produce a 
hierarchy of entities called an htity family. We 

* have the following conventions regarding the names 
of a schema. 

Names: All entity names must be unique within a 
schema. Attribute names must be unique within an 
entity-family (i.e., a top level entity and its 
subentities). Attributes and entities can be 
identically named. 

Any subset of the attributes from the various entities 
in a family can be specified to be a key; no two 
occurrences of entities in the family can have the 
same non-null key value. 

The DDL above illustrates the difference between 
the relational model and the GEM model. 
Productions 1 and 2 basically apply to GEM as well 
as to the relational model, with relations 
corresponding to entities. In the declaration of 

attributes, however, a relational system would be 
limited to the pattern: 

< AttrSpec> : < SimpleAttr > 

<SimpleAttr>: <DataAttr> 

Instead GEM’s data model is significantly richer 
than the relational one. However, we will show that 
it is possible to deal with this richer semantics via 
simple extensions to the QUEL language and also to 
retain the simple tabular view of data on which the 
congeniality of relational interfaces is built. 

3. A GRAPHICAL VIEW of GEM SCHEMAS 

DBMS users’ prevailing view of schemas is 
graphical, rather than syntactic. IMS users, for 
instance, perceive their schemas as hierarchies; 
Codasyl users view them as networks. Relational 
users view their database schema and content as 
row-column tables; this view is always present in a 
user’s mind, and often drawn on a piece of paper as 
an aid in query formulation. Moreover, relational 
systems also use the tabular format to present query 
answers to users. For analogous reasons, it would be 
very useful to .have a, graphical - preferably tabular 
- representation for GEM schemas. A simple 
solution to this problem is shown in Figure 2. 

There is .an obvious correspondence between the in- 
line schema in Figure 1 and its pictorial 
representation in Figure 2; all entity names appear 
in the top line, where the nesting of brackets defines 
the generalization hierarchy. A blank entry 
represents the option “others”. Under each entity 
name we find the various attributes applicable to 
this entity. For reasons of simplicity we have omitted 
.type declarations for all but reference attributes. 
However, it should be clear that these can be added, 
along with various graphical devices to represent 
keys and the option “null allowed” to ensure a 
complete correspondence between the graphical 
representation and the in-line definition such as that 
of Figure 1. Such a representation is all a user needs 
to realize which queries are meaningful and whieh 
updates are correct, and which are not2. 

2. A network-like representation can be derived from this by 
displaying the reference attributes as arrows pointing from one 
entity to another. The result is a graph similar to a DBTG 
data structure diagram with the direction of the arrows 
reversed. More alluring representations (e.g., using double 
arrows and lozenges) may be. useful for further visualizing the 
logical structure of data (e.g., to represent the generalization 
hierarchies); but they do not help a user in formulating GEM 
queries. 
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I Dname I Floor I 

SALES 
Dent: DEPT 1 Item: ITEM 1 Vol 

SUPPLY 
Comp: SUPPLIER 1 Dept: DEPT 1 Item: ITEM 1 Vol 

EMP [ EXMPT NEXMPT 1 1 EMARRIED I ., 
Name 1 Spv:EXMPT I Dept:DEPT I Sal Hrlwg I Gvrt I SpOUSd# 

Figure 2. A graphical representation of the GEM schema of Figure 1. 

Query results of GEM are also presented in output 
as row-column tables derived from these tables. 

particularly the simple ones; nor does any loss of 
generality occur since range declarations can always 
be included when needed. 

4. THE QUERY LANCUACE 

GEM is designed to be a generalization of QUEL 
IINGRI; both QUEL and IDM’s IDL are upward- 
compatible with GEM. Whenever the underlying 
schema is strictly relational (i.e., entities only have 
data attributes): 

The query of Example 2 is therefore interpreted by 
GEM as if it were as follows: 

range of DEPT Is DEPT 
retrieve (DEPT.Dname) 
where DEPT.Floor-3 

<AttrSpec> - <SimpleAttr> + <DataAttr> , 

GEM is basically identical to QUEL, with,which we 
expect our readers to be already familiar. However, 
GEM allows entity names to be used as range 
variables without an explicit declaration. Thus the 
query, “Find the names of the departments located 
on the third floor,” that in QUEL can be expressed 
as 

Example 3. Same as examples 1 and 2. 

Thus in the syntactic context of the retrieve and 
where clauses, DEPT is interpreted as a range 
variable (ranging over the entity DEPT). 

:r 
Besides this syntactic sweetening, GEM contains 
new constructs introduced to handle the richer 
semantics of its data model; these are discussed in 
the next sections. 

range of dep Is DEPT 
retrieve (dep.Dname) 
where dep.Floor-3 

5. AGGREGATION aad GENERALIZATION 

Example 1. List each department on the 3rdjIoor. 

in GEM can also be expressed as: 

retrieve (DEPT.Dname) where DEPTFloor - 3 

Example 2. Same as Example 1. 

The option of omitting range declarations improves 
the conciseness and expressivity of many queries, 

A reference (alias link) attribute in GEM has as 
value an entity occurrence. For instance in the 
entity SALES, the attribute D6pt has an entity of 
type DEPT as value; and Item an entity of type 
ITEM, much in the same way as the attribute Vol 
has an integer as value. Thus, while SALESVol is 
an integer, SALESDept is an entity of type DEPT 
and SALESItem is an entity of type ITEM. An 
entity occurrence cannot be printed as such. Thus, 
the statement, 
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range of S is SALES 
retrieve 6) 

Example 4. A syntactically incorrect query. 

is incorrect in GEM (as it would be in QUEL). 
Therefore, these statements are also incorrect: 

range of S is SAL& 
retrieve (S.Dept) 

Example 5. An incorrect query. 

and 

retrieve (SALESItem) 

,Example 6. A second jncorrect query. 

Thus, reference attributes cannot be printed. 
However both single-valued and set-valued attributes 
can be obtained by using QUEL’s usual dot- 
notation; thus 

rdrieve (SALESVol) 

Example 7. Find the volumes of all SALES. 

will get us the volumes of all SALES. Moreover, 
since SALFSDept denotes an entity of type DEPT. 
we can obtain the value of Floor by simply applying 
the notation. “Floor” to it. Thus, 

retrieve (SALES.Dept.Floor) 
where SALES.Item.Name-“SPORT” 

Example 8. Floors where departments selling 
items of type SPORT are located. 

will print all the floors where departments that sell 
sport items are located. The importance of this 
natural extension of the ‘dot notation cannot be 
overemphasized, as illustrated by the sixty-six 
queries in Appendix IIIof IZani31, it supplies a very 
convenient and natural construct that eliminates the 
need for :complex join statements in most queries. 
For. instance, the previous query implicitly specifies 
two joins: one of SALES with ,DEPT, the other of 
SALES with ITEM. To express the same query, 
QUEL would require three range variables and two 
join conditions in the where clause. 

A comparison to functional query languages may be 
useful here. Reference attributes can be viewed as 
functions from an entity to ‘another, and GEM’s 
dot-notation can be interpreted as the usual dot- 
notation of functional composition. Thus GEM has a 
functional flavor; in particular it shares with 
languages such as DAPLEX [Ship] the convenience 
of providing a functional composition notation to 
relieve users of the burden of explicitly specifying 
joins. Yet the functions used by GEM are strictly 

single-valued non-redundant functions; multivalued 
and inverse functions and other involved constructs 
are not part of GEM, which is based on the bedrock. 
of the relational theory and largely retains the 
“Spartan simplicity” of the relational model. 

Joins implicitly specified through the’use of the dot 
notation will be called functional joins. An 
alternative way to specify joins k9 by using sexpltcit 
entity joins, where entity occurrences are directly 
compared, to verify that they are the same, using 
the identity test opera&* is3. For ‘instance the ,. 
previous query can also beexpressed as fol10ws:~ -< 3 

range of S is SALES 
range of I Is ITEM 
rmgeofDisDEPT, 
retrieve (D.Floor) 
wIrereD Is S.Dept arrd S.Item Is I .’ 

and I.T~~~P”SPORT” 

Example 9. Same query as in example& : 

Comparison operators such as -, !=, >, >-, ‘<, 
and < - are not applicable to entity”o%urrences: : 

The names of entities and their’subentities - all in 
the top row of our templates - are unique and can 
be used in two basic ways.” Their first use is in 
defining range, variables. Thus, to request the name 
and the salary of each married employee one can 
write: 

range of e is EMARRlbD 
retrieve (e.Name, e.Sal) 

Example 10. Find the name and salary of each s 
married employee. 

or simply, 

retrieve (EMARRIED.:Name, EMARRIED.SalJ 

Example Il. Same as in example IO. 

Thus all attributes within an entity can be applied 
to any of its subtypes kithout ambiguity since their 
names are unique within the family). 

3. The operator isnot is used to test that two objects are not 
identical. 

4. ,que&s in Examples 8 and 9 are u&&t only under’ the 
assumntion that the Dent attribute in SALES cannot be null. 
If so& SALES occur&c& havi? a null Dcpt link, then the 
results of the two queries are ndt the same, as dkusscd in 
detail in the section on null values. 
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Subentity names can also be used in the 
qualification conditions of a where clause. For 
instance, an equivalent restatement of the last query 
is 

retrieve (EMP.Name, EMP.Sal) 
where EMP Is EMARRIED 

Example. 12. Same as example 1 I. 

(Retrieve the name and salary of each employee 
who ’ is an employee-married.) For all those 
employees who are married but ’ non-exempt this’ 
query returns their names and a null salary. Thus, 
it is different from 4. 

retrieve (EXMPT.Name, EXMPTSal) 
where EXMPT is EMARRIED 

Example 13. Find all exempt employees that 
are vuuried. 

that excludes all non-exempt employees at once. 
The query, 

retrieve (EMP.Name) wbare 
E&fP Is EXMPT or EMP Is EMARRIED 

Example 14. Find ,a11 employees that are 
exempt or married. 

will retrieve the names ‘of all employees that are 
exempt or married. 

In conformity to QUEL, GEM also allows the use 
of the keyword aII in the role of a target attribute. 
Thus to print the whole table ITEM one need only 
specify, 

retrieve OTEM.~I~ 

Example 15. Use of all. 

In the presence of ‘generalization and aggregation 
the aII construct can be extended as .follows. Say 
that t ranges over an entity or a subentity E. Then 
“t.aii” specifies all sitiple and set-Galtied attributes 
in b and ‘its subentities. Thus, 

retrieve (EMP.~~ 
where EMP.Sal > EMP.Spv.Sal 

Example 16. Extended use of all. 

returns the name, the salary, the hourly wage and 
overtime rate, and the spouse’s social security 
number of every employee earning more than his or 
her supervisor (the values of some of these attributes 
being null, of course); while 

retrieve (EXMPT.alll 
where EXMPT.Sal > EXMPT.Spv.Sal 

Example 17. Use of all with subentities. 

returns only the salaries of those employees. 

The following query gives another example of the 
use of entity joins and the use of subentity names as 
default range variables ( EMP and EMARRIED 
are the two variables of our query). 

retrieve (EMARRIED.Name) 
where EMP.Name-“J.Black” 
and EMPDept is EMARRIED.Dept 

Example 18. ‘Find all married employees iir the 
same department as J.Black. 

6. NULLVAIAJES 

A important advantage of GEM over other DBMSs 
is that it provides for a complete and consistent 
treatment of null values. The theory underlying our 
approach was developed in fZani1, Zani21; where a 
rigorous justification is given for the practical 
conclusions summarized next. 

GEM conveniently provides several representations 
of null values in storage and in output tables; at the 
logical level, however, all occurrences of nulls are 
treated according to the no4nformation 
interpretation discussed in [Zanill. 

A three-valued logic is required to handle 
qualification expressions involving negation. Thus, a 
condition such as, 

ITEM.Type- “SPORT” 

evaluates to DUB for an ITEM occurrence where the 
Type attribute is null. Boolean expressions of such 
terms are evaluated according to the three-valued 
logic tables of Figure 3. Qualified tuples are only 
those that yield a TRUE value; tuples that yield 
FALSE or the logical UUII are discarded. 

It was suggested in [&id21 that a IIUB version of a 
query should also be p&dad to retrieve those tuples 
where the qualification, although not yielding 
TRUE, does not yield FALSE either. By contrast it 
was, ,hown in [Zani21 that the TRUE version’. 
suffices once ‘the expression “t.A is null” and its 
negation 4.B ‘isnot rmII” are allowed in the 
qualification expression. Therefore, ‘we have included 
these clauses in GEM. %nts,‘rather than requesting 
a null version answer for the query in Example 2, a 
user will instead enter this query: * 
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OR T F nuII AND 1 T 1 F ) nuII 

nuil null F null 

Figure 3. Three-valued logic: tables. 

range of dep Is DEPT 
retrieve (dep.Name) 
where dep.Floor is nutI 

Example 19. Find the departments whose jloors 
are unspecified. 

Indeed, this query returns the names of those 
departments that neither, meet nor fail the 
qualification of Example 2 (depEloor -3). 

In (Zani21 it is shown that a query language 
featuring the three-valued logic with the extension 
described above is complete - relational calculus 
and relational algebra are equivalent in power, as 
query languages. GEM, which is also complete, 
consists of a mixture of relational calculus and 
algebra, just like QUEL. In particular, both 
languages draw from the relational algebra 
inasmuch as they use set-theoretic notions to 
eliminate the need for. universal quantifiers in 
queries, The treatment of set and aggregate 
operations in the presence of null values will be 
discussed in the next section. 

S T 
# B Refl:R ‘Ref2:R 
6 bl 1 2 
7 b2 2 nuIi 

Figure 4: A database. 

Null values make possible a precise definition of 
the notion of implicit join defined by ‘the dot- 
notation. For concreteness consider the database of 
Figure 4. On this database, the query 

retrieve (S.B, S.Ref1.A) 

Example 21. Implicit join without nulls. 

produces the following table. (For clarity we show 
the reference columns although they are never 
included in the output presented to a user.) 

pj?Jj 

Figure 5. The result of example 21. 

However, the query 

retrieve (S.B, S.Ref2.A) 

Example 22. Implicit join with nulls. 

generates the table, 

ppJg 

Figure 6. Result of example 22. 

We can compare these queries with the explicit-join 
queries: 

retrieve (S.B, R.A) where S.Refl Is R 

Example 23. Explicit join without nulls. 

and 

retrieve (S.B, R.A) where S.Ref2 is R 

Example 24. Explicit join with null. 

Since two entities are identical if and only if their 
surrogate values are equal, these queries are 
equivalent (in a system that, unlike GEM, allows 
direct access to surrogate values) to: 
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retrieve (S.B, R.A) where S.Refl-R.# 

Example 25. Implementing Example 23 by 
joining on surrogates. 

and, 

retrieve (S.B, R.A) where S.Ref2-R.# 

Example 26. Implementing Example 24 by 
joining on surrogates. 

Applying the three-valued logic described above, one 
concludes that the queries of Examples 21 and 25 
return the same result; however, the query of 
Example 22 produces the. table of Figure 6, while 
that of Example 26 produces the same table but 
without the last row. 

It can be proved that an implicit functional join, 
such as the one of Figure 6, corresponds to a semi- 
union join [Zanill, alias a semi-outer join [Codd21, 
which is in turn defined as the union of S with the 
entity join, S w R. Therefore, implicit functional 
joins are equivalent to explicit entity joins whenever 
the reference attributes are not null. Therefore, 
queries of Examples 8 and 9 are equivalent only 
under the assumption that SALESDept is not 
allowed to be null. However, nulls in SALESItem 
would have no effect, since such tuples are 
discarded anyway because of the qualification, 
I.Type-“SPORT”. 

7. SET-VALUED AlTRIBuTEsand OPERATORS 

The availability of set-valued attributes adds to the 
conciseness and expressivity of GEM schemas and 
queries. For instance, in the schema of Figure 2, we 
find a set of colors for each item: 

ITEM (Name, Type, (Colors)) 

This information could also be modeled without 
set-valued attributes, as follows, 

NewITEM (Name, Type, Color) 

However, Name is a key in ITEM, but not in 
NewITEM, where the key is the pair (Name, 
Color). Thus the functional dependency of Type 
(that denotes the general category in which a 
merchandise ITEM lies) on Name is lost with this 
second schema. 

A better solution, from the modeling viewpoint, is to 
normalize NewITEM to two relations: an ITEM 
relation without colors, and a COLOR relation 
containing item identifiers and colors. But this would 
produce a more complex schema and also more 
complex queries. 

Thus inclusion of set-valued attributes is desirable 
also in view of the set and aggregate functions 
already provided by QUEL. In QUEL, and 
therefore in GEM, the set-valued primitives are 
provided through the (grouped) by construct. For 
example, a query such as, “for each item print its 
name, its type and the number of colors in which it 
comes” can be formulated as follows: 

range of I is NewITEM 
retrieve (I.Name, I.Type, 

Tot-count( I.Color by I.Name, I.Type)) 

Example 27. Use of by. 

(Since Type is functionally dependent on Name, 
I.Type can actually be excluded from the by 
variables without changing the result of the query 
above.) j 

Using the set-valued Colors in ITEM, the same 
query can be formulated as follows: 

range of I is ITEM 
retrieve (I.Name, I.Type, Tot-count<I.Colors)) 

Example 28. Example 27 with a set-\ialued 
attribute. 

Thus, ITEM basically corresponds to NewITEM 
grouped by Name, Type. Therefore, we claim that 
we now have a more complete and consistent user 
interface, since GEM explicitly supports as data 
types those aggregate and set functions that QUEL 
requires and supports as query constructs. 

In order to provide users with the convenience of 
manipulating aggregates GEM supports the set- 
comparison primitives included in the original 
QUEL [HeSWl. Thus, in addition to the set- 
membership test operator, In, GEM supports the 
following operators: 

I (set) equals 
!- (set) does not equal 
> properly contains 
>= contains 
< is properly contained in 
<== is contained in 

These constructs were omitted in recent commercial 
releases of QUEL [QUELI. This is unfortunate, 
since many useful queries cannot be formulated 
easily without them - as demonstrated by the 
sixty-six queries in Appendix II of [Zani31. 

Unfortunately, set operators are also very expensive 
to support in standard relational systems. Our 
approach to this problem is two-fold. First we plan 
to map subset relationships into equivalent aggregate 
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expressions that are more efficient to support. Then 
we plan to exploit the fact that set-valued attributes 
can only be used in this capacity, so that substantial 
improvements in performance can be achieved by 
specialixed storage organizations. Performance 
improvements obtained by declaring set-valued 
attributes may alone justify their addition to th3 
relational interface. 

In the more germane domain of user convenience, 
set-valued attributes entail a more succinct and 
expressive formulation .,of powerful queries. For 
instance, the query “Find all items for which there 
exist items of the same type with a better selection 
of colors,” can be expressed as follows: . 

ruge of 11 for ITEM 
rarrge of 12 for ITEM 
retrieve (Il.aIB where 
Il.Typc - 12.Type md 11 Colors < 12.Colors 

Exampli 29. Items offering an inadequate 
selection of colors for their 
types). 

Thus, set-valued attributes can only be operands of 
set-valued ‘operators and aggregate functions. The 
latter, however, can also apply to sets of values from 
single-valued ‘attributes and reference attributes. 
Thus, to find all the items supplied to all 
departments one can use the following query: 

&eve (SUPPLY.Item.Name) where 
(SUPPLYDept by SUPPLY.Item) >- (DEPT) 

Example 30. Items supplied to all departments. 

Observe that sets are denoted by enclosing them in 
braces. Also, GEM enforces the basic integrity tests 
on set and aggregate functions (sets must consist of 
elements of compatible type). 

In the presence of null values, the set operators must 
be properly extended. A comprehensive solution of 
this complex problem is presented in [Zanil I; for the 
specific case at hand (sets of values rather than sets 
of tuples), that reduces to the following simple rule: 
Null values are excluded from the computation of 
all aggregate functions or expressions; moreover, 
they must also be disregarded in the computation of 
the subset relationship. 

8. UPDAm 

GEM supports tQUEL*s standard style of updates, 
via the three commands iiuert, delete and replace. 
Thus, 

append to DEPT (Dname-“SHOES”, Floor- 2) 

Example 31. Add the shoe department, 2nd floor. 

adds the shoe department to the database. 

To insert a soap-dish that comes in brass and 
bronze finishes, one can write: 

append to ITEM (Name-“Soapdis”, 
Type=“Bath”, Colors-(brass, bronze}) , 

Example 32. Inserting a new item. _ 

Attributes that do not appear in the target list are 
set to q wII if single-valuad, if set-valued, they are 
assigned the empty set. 

. 

The statement, 

append to ITEM (Name- “towel-bar”, 
Type- ITEM.Type, Colors- ITEM.Colors~ 

where ITEM.Name - “Soap-dish” 

Example 33. Completing our bathroom set. 

allows us to add a towel-bar of the same type and 
colors as our soap-dish. ( Accordiig to the syntax of 
the append to statement, the first occurrence of 
“ITEM” is interpreted ‘as an entity name, while the 
others are interpreted as range variables declared by 
default.) 

Hiring T. Green, a new single employee in the, shoe 
department under J. Black, with hourly wage of S 
5.40 and overtime multiple of 2.2, can be specified 
by the statement, 

append to EMP (Name-“T.Green”, Spv- 
EXMPT, Dept. - DEPT, Hrlwg-5.&,Ovrt-2.2) 

where EXMPT.Name=“J.Black” 
and DEPTDname- “SHOE” 

Example 34. Adding a new single non-exempt 
employee. 

In thii statement, we can replace EMP by 
NEXMPT without any change in meaning since the 
fact that Hrlwg and o;f’ are not null already 
implies that the employee is non-exempt. Moreover, 
since no attribute of EMARRIED is mentioned in 
the target list, the system will set the new EMP to 
others, rather than EMARRIED. (If no attribute of 
either EXMPT or NEXMPT were in the target lit 
an error message would result, since others is not 
allowed for this generalization sublist.) 

If after a .while T. Green becomes an exempt 
employee eth a salary of $12000 and a supervisor 
yet to be assigned, the following update statement 
can be used: 
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replace EMP (Spv -null, Sal- 12000 1 
where EMP.Name - “T.Green” 

Example 35. Tom Green becomes exempt and 
loses his supervisor. 

Note that the identifier following a replace is a 
range variable, unlike the identifier following a 
qpend to. The fact that salary is assigned a new 
value forces an ‘automatic change of type from 
NEXMPT to EXMPT. Finally, note the assignment 
of nuII to a reference attribute. 

GEM also allows explicit reassignment of entity 
subtypes. Thus the previous query could, more 
explicitly, be formulated as follows: 

replace NEXMPT 
wltb EXMPT &v-mdI, Sal- 12000) 
where NEXMPT.Name- “T.Green” 

Example 36. Same as Example 35. 

Say now that after being married for some time, 
T. Green divorces; then the following update can be 
used: 

@ace EMARRIED with EMP 
where EMP.Name- “T.Green” 

Example 37. T. Green leaves wedlock. 

This example illustrates the rule that, when an 
entity el is replaced with an ancestor entity e2, all 
the entities leading from el to e2 are set to others. 
Thus the EMP T. Green will be set to others than 
EMARRIED. 

The deletion of an entity occurrence will set to nuU 
all references pointing to.it. Thus the resignation of 
T. Green’s supervisor, 

delete EMP.Spv 
where EMP.Name - “T.Green” 

Example 38. T. Green’s supervisor quits. 

causes the Spv field in T. Green’s record, and in the 
records of those under the same supervisor, to be set 
to xmR ( if null were not allowed for Spv, then the 
update would abort and an error message be 
generated), and then the supervisor record is 
deleted’. 

5. Of course. according to standard management practices T. 
Green’s people may instead be reassigned to another 
supcrvkor. e.g. Green’s hose; this policy can be implemented 
by preceding the deletion of Green’s record with an update 
reassigning hi people. 

A request such as, 

delete EXMPT 
where EXMPT.Name=“T.Green” 

Example 39. T. Green goes too. 

is evaluated as the following: 

delete EMP 
where EMP.Name=“T.Green” 
and EMP is EXMPT 

Example 40. Same as above. 

Thus, since T. Green. is exempt, his record is 
eliminated, otherwise it would not be. 

I 

9. CONCLUSION 

A main conclusion of this work is that’ relational 
query languages and interfaces are very robust. We 
have shown that with suitable extensions the 
relational model provides a degree of modeling 
power that matches or surpasses those of the various 
conceptual and semantic models proposed in the 
literature. Furthermore, with simple extensions, the 
relational language QUEL supplies a congenial ., 
query language for such a model. The result is a,:. 
friendly and powerful semantic user interface that 
retains, and in many ways surpasses, the ease of use 
and power of a strictly relational one. Because of 
these qualities, GEM provides an attractive interface 
for end-users; moreover, as shown in [A&J, it 
supplies a good basis on which to ‘build database 
interfaces for programming languages. 

The approach of extending the relational model is 
preferable to adopting a new semantic model for 
many reasons. These include compatibility and 
graceful evolution, since users that do not want the, 
extra semantic features need not learn nor use them; 
for these users GEM reduces to QUEL. Other 
advantages concern definition and ease of 
implementation. As indicated in this ‘paper and 
shown in [Tsur, TsZal, all GEM queries can be 
mapped into equivalent QUEL expressions., In this 
way a precise semantic definition and also a notion 
of query completeness for GEM can be derived 
from those of QUEL, which in turn maps into the 
relational calculus [Ullml. This is a noticeable 
improvement with respect to many semantic data 
models that lack formal, precise definitions. Finally, 
the mapping of GEM into standard QUEL supplies 
an expeditious and, ‘for most queries,’ efficient means 
of implementation; such an implementation, planned 
for the commercial database machine IDM 500, is 
described in [Tsur, TsZal. 
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AppdiXkCRMSYNTAX 

This syntax fs an extensfm of. and we the same m&notation as, that of bDhf1. Thus (...) denote a set of 
zero or man! 
themselves. 

occurrences, while L.J denotes one or zero occumnns. Symbols encltmd in m&potu denote 

retrim [ dqw I( <query target lif#> 1 here <qualiikation> I 

<v-Y tarset list> : <query target element> ‘(’ , <query target element> ‘1’ 

<query targ8t element> : <attribute> P a 8imDle or set-valued attribute*/ 

<attribute> 

<variable> 

I 
<name> * <cxptcdon> 
<name> -, <set> 

: <variable> . <name> 

<exprauim> 

<set> 

<extended expr> 
* <coDstanb set> 

<qualithtiaQ> 

<clause> 

<relDp> 

<il&lltity tsrt> 

: +ariable> ( . <name> I /+ way <mm& must deaote a reference attribute/* 

I 
<range variable> /* de&red in the range rtatemont/* 
<entity namd> /+ range varlablf by dofault/* 

: <8ggreg8te> /+ amto, 8mge0, ete. /* 
<attribute> /* a rimple attribute/* 
<constant> 
- <exprcuion> 
( <expruska> 1 j/ 
<function> /* see tIDM1 for a dehition of fun&w /* 

: <attribute> I* a set-valued attribute/* 
I*e<~~CXPf>rby<~~expr>(,<extmdedwpr>)l 

1 wbm <quali6c&ion> 1 ‘I’ 
1 <constants set> 
: <upratsion> 1 <variable> 

: ‘(’ ‘I’ 1 T <constant> I, <amstant>) ‘1 

: ( <qlIa@ation> 1 
mt <qualifica&nl> 
<qualifi~tioa> ud <qualihtion> 
<qu8liiicaw> or <qualihtion> 
alause> 

: <exptwsion> <relop> <expressh> 
< extended expr> im <set> 
<a> <rclop> <set> 
<attribute> <identity teat> rp 
<variable> <identity teat> <variable> 

:-I!-I<I<-I>I>- 

:bl ismd 

qged t to1 <entity name> ( < update target list>) 

de& <variable> 1 rrbre <quaUicatkm> I 

repha <variable> ‘h&b <entity name>] (<update target list>) 

<update targct’list> : <update target element> ‘p ) <update tugct element> ‘1’ 

<update target element> : <name> - <expressba> /+ <name> of 8 simple attribute l / 
I <name> - <variable> /* <name> of a ‘hrence attribute*/ 

1 <name> - <set> /* <name> of a 8et attribute l / 
1 <name> - d /+ <name> of a simple of reference attribute/* 
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