
Tbe Database Language GEM
Carlo Zaniolo

Bell Laboratories
Holmdel, New Jersey 07733

ABSTRACT

GEM (bn acronym for General Entity Manipulator) is a general-purpose query and update
language for the DSIS data model, which is a semantic data model of the Entity-Relationship
type. GEM is designed as -an easy-to-use extension of the relational language QUEL.
providing supporr for. the notions of entities with surrogates, aggregation, generalization, null
values, and set-valued attributes.

1. INTRODUCTION

A main thrust of computer technology is towards
simplicity and ease of use. Database management
systems have come a long way in this respect,
particularly after the introduction of the relational
approach [Ullml, which provides users with a simple
tabular view of data and powerful and convenient
query languages for interrogating and manipulating
the database. These features were shown to be the
key to reducing the cost of database-intensive
application programming Ecddll and to providing
a sound environment for back-end support and
distributed databases.

The main limitation of the relational model is its
semantic scantiness, that often prevents relational
schemas from modeling completely and expressively
the’ natural relationships and mutual constraints
between entities. This shortcoming, acknowledged
by most supporters of the relational approach
[CoddZl, has motivated. the introduction of new
semantic data models, such as that described in
[Chenl where reality is modeled in terms of entjties
and relationships among entities, and that presented
in [SmSml where relationships are characterized
along the orthogonal coordinates of aggregation and

Permission to copy without kc all QC. part of this material is gmual
provided that the topics arc not msde or distributed for dimct
commercial advantage, tha ACk cbpyright notice and the titk of the
pubiiition and its date l ppcac, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otbcrwisc. or to republish. tequiru a fee and/or spccif~ permission.

@ 1983 ACM -O-89791-104-O/83/005/0207 $00.75

generalization. The possibility of extending the
relational model to capture more meaning - as
opposed to introducing a new model - was
investigated in [CoddZl, where, surrogates and null
values were found necessary for the task.

,-‘Most previous work with semantic data models has
concentrated on the problem of modeling reality and
on schema design; also the problem of integrating
the database into a programming environment
supporting abstract data types has received
considerable attention [Brad, KMCI. However, the
problem of providing easy to use queries and
friendly user-interfaces for semantic data models has
received comparatively little attention’. Thus the
question not yet answered is whether semantic data
models can retain the advantages of the relational ,
model with respect to ease of use, friendly query
languages and user interfaces, back-end support and
distributed databases.

This work continues the DSIS effort [DSISI to
enhance the UNIX* environment with a DBMS
combiiing the advantages of the relational approach
with those of semantic data models. Thus, we begin
by extending the relational model to a rich semantic
model su&rting the notions of entities with
surrogates, generalization and aggregation, null
values and set-valued attributes. Then we show that
simple extensions to the relational language QUEL
are sufficient to provide an easy-to-use and ,general-
purpose user interface for the specification of both
queries and updates on this semantic model.

1. To the extent that the functional data m6del [SiKel can be
viewed as a semantic data model,~DAPLEX Bhipl stipplier a
remarkable exception to this trend.

* UNIX is a trademark of Bell Laboratories.

207

ITEMS Name: c, Type: c, Colors: {c)> key(Name);

DEPT (Dname: c, Floor: i2) key(Dname) ;

SUPPLIER (Company: c, Address: c) key(Company);

SALES (Dept: DEPT, Item: ITEM, Vol: i2) key(Dept, Item) ;

SUPPLY (Camp: SUPPLIER, Dept: DEPT, Item: ITEM, Vol: i2) ;

EMP (Name: c, Spv: EXMPT nuU aIlowed, Dept: DEPT,

[EXMPT(Sal: i4), NEXMPTtHrlwg: i4, Ovrt: i4)1,

[EMARRIED (Spoused: i4), otkd key (Name), key @OUSC#) ;

Figure 1. A GEM schema describing the following database:
ITEM.. for each item. its name, its type, and a set of colors
DEPT: for each department its name and the floor where it ts located.
SUPPLIER.. the names and addresses of supplier companies.
SALES: for each department and item the volume of sales.
SUPPLY. what compan supplies what item to what department in what wlume 6f

0ck.f current st
EMP: the name, the supervisor, and the deportment of each employee;
EXMPT: employees can either be exempt 611 supervisors arc) or
NEXMPT: non-exempt; the former earn a monthly salary while the latter have an hourly

wage with an overtime rate.
EMARRIED: Employees can either be married or not; the spouse’s social security number is

of interest for the married ones.

2. ‘!-HE DATA MODEL

Figure 1 gives a GEM schema for an example
adapted from that used in [LaPi]. The attributes
Dept and Item in SALES illustrate how an
aggregation is specified by declaring these two to be
of type DEPT and ITEM, respectively. Therefore,
Dept and Item have occurrences of the entities
DEPT and ITEM as their respective values. The
entity EMP supplies an example of generalization
hierarchy consisting of EMP and two generalization
sublists shown in brackets. The attributes Name,
Spv and Dept are common to EMP and its
subentities in brackets. The first generalization
sublist captures the employment status of an
smployee and consists of the two mutually exclusive
subentities EXMPT and NEXMPT (an employee
cannot be at the same time exempt and nonexempt>.
The second generalization sublist describes the
marital status of an employees who can either be
EMARRIED or belong to the others category.
Although not shown in this example, each subentity
can he further subclassified in the same way as
shown here, and so on.

The Colors attribute of entity ITEM is of the set
type, meaning that a set of (zero of more) colors
may he associated with each ITEM instance; each

member of that set is of type c (character string). _

Name and Spouse# are the two keys for this family,
However, since the uniqueness constraint is waived
for keys that are partially or totally null Spouse## is
in effect a key for the s&entity EMARRIED only.

We will next define GEM’s Data Definition
Language, using the same me¬ation as in
[IDMI to define its syntax. Thus (...I denote a set
of zero or more occurrences, while [:..I denotes one
or zero occurrences. Symbols ‘enclosed in semiquotes
denote themselves.

A GEM schema consists of a set of uniquely named
entities.

1. <Schema>: (<Entity> ;]

An entity consists of a set of one or more attributes
and the specification of zero or more keys.

2. <Entity>: <EntName> (<At&Specs ”
1, <AttrSp=> 1) (Key)

Attributes can either be single-valued, or be a
reference (alias a link) attribute, or be set-valued or
represent a generalization sublist.

208

3. <AttrSpec>: <SimpleAttr> 1 <RefAttr>
1 <SetAttr> 1 <Generalization sublist>

4. <SimpleAttr>: <DataAttr> [<null spec> 1
5. <DataAttr>: <AttrName> ‘:’ <DataType>

GEM’s data types include l-, 2- and 4-byte integers
(respectively denoted by il, i2 and i4), character
strings (denoted by c) and all the remaining IDM’s
types [IDMI.

The user can allow the value of a data attribute to
be null either by supplying a regular value to serve
in this role, or by asking the system to supply a
special value for this purpose (additional storage
may be associated with this solution).

6. <null spec>: q all’: <datavalue> 1 nuB’:’ system

The option nuB aBowed must be entered to allow a
null link in a reference attribute.

7. <RefAttr>:
<AttrName>‘:’ <EntName> [nuB allowed1

Set-valued attributes are denoted by enclosing the
type definition in braces. .

8. <SetAttr>: <AttrName>‘:’ *(, <DataType>‘)’

A generalization sublist defines a choice between
two or more disjoint alternatives enclosed in
brackets. The keyword others is used to denote that
the entity need not belong to one the subentities in
the list.

9. <Generalization sublist>:
‘1’ <Entity> 1, <Entity>) , <Entity> ‘1’

1 ‘[’ <Entity> I, <Entity>) , others ‘1’
Repeated applications of this rule produce a
hierarchy of entities called an htity family. We

* have the following conventions regarding the names
of a schema.

Names: All entity names must be unique within a
schema. Attribute names must be unique within an
entity-family (i.e., a top level entity and its
subentities). Attributes and entities can be
identically named.

Any subset of the attributes from the various entities
in a family can be specified to be a key; no two
occurrences of entities in the family can have the
same non-null key value.

The DDL above illustrates the difference between
the relational model and the GEM model.
Productions 1 and 2 basically apply to GEM as well
as to the relational model, with relations
corresponding to entities. In the declaration of

attributes, however, a relational system would be
limited to the pattern:

< AttrSpec> : < SimpleAttr >

<SimpleAttr>: <DataAttr>

Instead GEM’s data model is significantly richer
than the relational one. However, we will show that
it is possible to deal with this richer semantics via
simple extensions to the QUEL language and also to
retain the simple tabular view of data on which the
congeniality of relational interfaces is built.

3. A GRAPHICAL VIEW of GEM SCHEMAS

DBMS users’ prevailing view of schemas is
graphical, rather than syntactic. IMS users, for
instance, perceive their schemas as hierarchies;
Codasyl users view them as networks. Relational
users view their database schema and content as
row-column tables; this view is always present in a
user’s mind, and often drawn on a piece of paper as
an aid in query formulation. Moreover, relational
systems also use the tabular format to present query
answers to users. For analogous reasons, it would be
very useful to .have a, graphical - preferably tabular
- representation for GEM schemas. A simple
solution to this problem is shown in Figure 2.

There is .an obvious correspondence between the in-
line schema in Figure 1 and its pictorial
representation in Figure 2; all entity names appear
in the top line, where the nesting of brackets defines
the generalization hierarchy. A blank entry
represents the option “others”. Under each entity
name we find the various attributes applicable to
this entity. For reasons of simplicity we have omitted
.type declarations for all but reference attributes.
However, it should be clear that these can be added,
along with various graphical devices to represent
keys and the option “null allowed” to ensure a
complete correspondence between the graphical
representation and the in-line definition such as that
of Figure 1. Such a representation is all a user needs
to realize which queries are meaningful and whieh
updates are correct, and which are not2.

2. A network-like representation can be derived from this by
displaying the reference attributes as arrows pointing from one
entity to another. The result is a graph similar to a DBTG
data structure diagram with the direction of the arrows
reversed. More alluring representations (e.g., using double
arrows and lozenges) may be. useful for further visualizing the
logical structure of data (e.g., to represent the generalization
hierarchies); but they do not help a user in formulating GEM
queries.

209

I Dname I Floor I

SALES
Dent: DEPT 1 Item: ITEM 1 Vol

SUPPLY
Comp: SUPPLIER 1 Dept: DEPT 1 Item: ITEM 1 Vol

EMP [EXMPT NEXMPT 1 1 EMARRIED I .,
Name 1 Spv:EXMPT I Dept:DEPT I Sal Hrlwg I Gvrt I SpOUSd#

Figure 2. A graphical representation of the GEM schema of Figure 1.

Query results of GEM are also presented in output
as row-column tables derived from these tables.

particularly the simple ones; nor does any loss of
generality occur since range declarations can always
be included when needed.

4. THE QUERY LANCUACE

GEM is designed to be a generalization of QUEL
IINGRI; both QUEL and IDM’s IDL are upward-
compatible with GEM. Whenever the underlying
schema is strictly relational (i.e., entities only have
data attributes):

The query of Example 2 is therefore interpreted by
GEM as if it were as follows:

range of DEPT Is DEPT
retrieve (DEPT.Dname)
where DEPT.Floor-3

<AttrSpec> - <SimpleAttr> + <DataAttr> ,

GEM is basically identical to QUEL, with,which we
expect our readers to be already familiar. However,
GEM allows entity names to be used as range
variables without an explicit declaration. Thus the
query, “Find the names of the departments located
on the third floor,” that in QUEL can be expressed
as

Example 3. Same as examples 1 and 2.

Thus in the syntactic context of the retrieve and
where clauses, DEPT is interpreted as a range
variable (ranging over the entity DEPT).

:r
Besides this syntactic sweetening, GEM contains
new constructs introduced to handle the richer
semantics of its data model; these are discussed in
the next sections.

range of dep Is DEPT
retrieve (dep.Dname)
where dep.Floor-3

5. AGGREGATION aad GENERALIZATION

Example 1. List each department on the 3rdjIoor.

in GEM can also be expressed as:

retrieve (DEPT.Dname) where DEPTFloor - 3

Example 2. Same as Example 1.

The option of omitting range declarations improves
the conciseness and expressivity of many queries,

A reference (alias link) attribute in GEM has as
value an entity occurrence. For instance in the
entity SALES, the attribute D6pt has an entity of
type DEPT as value; and Item an entity of type
ITEM, much in the same way as the attribute Vol
has an integer as value. Thus, while SALESVol is
an integer, SALESDept is an entity of type DEPT
and SALESItem is an entity of type ITEM. An
entity occurrence cannot be printed as such. Thus,
the statement,

210

range of S is SALES
retrieve 6)

Example 4. A syntactically incorrect query.

is incorrect in GEM (as it would be in QUEL).
Therefore, these statements are also incorrect:

range of S is SAL&
retrieve (S.Dept)

Example 5. An incorrect query.

and

retrieve (SALESItem)

,Example 6. A second jncorrect query.

Thus, reference attributes cannot be printed.
However both single-valued and set-valued attributes
can be obtained by using QUEL’s usual dot-
notation; thus

rdrieve (SALESVol)

Example 7. Find the volumes of all SALES.

will get us the volumes of all SALES. Moreover,
since SALFSDept denotes an entity of type DEPT.
we can obtain the value of Floor by simply applying
the notation. “Floor” to it. Thus,

retrieve (SALES.Dept.Floor)
where SALES.Item.Name-“SPORT”

Example 8. Floors where departments selling
items of type SPORT are located.

will print all the floors where departments that sell
sport items are located. The importance of this
natural extension of the ‘dot notation cannot be
overemphasized, as illustrated by the sixty-six
queries in Appendix IIIof IZani31, it supplies a very
convenient and natural construct that eliminates the
need for :complex join statements in most queries.
For. instance, the previous query implicitly specifies
two joins: one of SALES with ,DEPT, the other of
SALES with ITEM. To express the same query,
QUEL would require three range variables and two
join conditions in the where clause.

A comparison to functional query languages may be
useful here. Reference attributes can be viewed as
functions from an entity to ‘another, and GEM’s
dot-notation can be interpreted as the usual dot-
notation of functional composition. Thus GEM has a
functional flavor; in particular it shares with
languages such as DAPLEX [Ship] the convenience
of providing a functional composition notation to
relieve users of the burden of explicitly specifying
joins. Yet the functions used by GEM are strictly

single-valued non-redundant functions; multivalued
and inverse functions and other involved constructs
are not part of GEM, which is based on the bedrock.
of the relational theory and largely retains the
“Spartan simplicity” of the relational model.

Joins implicitly specified through the’use of the dot
notation will be called functional joins. An
alternative way to specify joins k9 by using sexpltcit
entity joins, where entity occurrences are directly
compared, to verify that they are the same, using
the identity test opera&* is3. For ‘instance the ,.
previous query can also beexpressed as fol10ws:~ -< 3

range of S is SALES
range of I Is ITEM
rmgeofDisDEPT,
retrieve (D.Floor)
wIrereD Is S.Dept arrd S.Item Is I .’

and I.T~~~P”SPORT”

Example 9. Same query as in example& :

Comparison operators such as -, !=, >, >-, ‘<,
and < - are not applicable to entity”o%urrences: :

The names of entities and their’subentities - all in
the top row of our templates - are unique and can
be used in two basic ways.” Their first use is in
defining range, variables. Thus, to request the name
and the salary of each married employee one can
write:

range of e is EMARRlbD
retrieve (e.Name, e.Sal)

Example 10. Find the name and salary of each s
married employee.

or simply,

retrieve (EMARRIED.:Name, EMARRIED.SalJ

Example Il. Same as in example IO.

Thus all attributes within an entity can be applied
to any of its subtypes kithout ambiguity since their
names are unique within the family).

3. The operator isnot is used to test that two objects are not
identical.

4. ,que&s in Examples 8 and 9 are u&&t only under’ the
assumntion that the Dent attribute in SALES cannot be null.
If so& SALES occur&c& havi? a null Dcpt link, then the
results of the two queries are ndt the same, as dkusscd in
detail in the section on null values.

211

Subentity names can also be used in the
qualification conditions of a where clause. For
instance, an equivalent restatement of the last query
is

retrieve (EMP.Name, EMP.Sal)
where EMP Is EMARRIED

Example. 12. Same as example 1 I.

(Retrieve the name and salary of each employee
who ’ is an employee-married.) For all those
employees who are married but ’ non-exempt this’
query returns their names and a null salary. Thus,
it is different from 4.

retrieve (EXMPT.Name, EXMPTSal)
where EXMPT is EMARRIED

Example 13. Find all exempt employees that
are vuuried.

that excludes all non-exempt employees at once.
The query,

retrieve (EMP.Name) wbare
E&fP Is EXMPT or EMP Is EMARRIED

Example 14. Find ,a11 employees that are
exempt or married.

will retrieve the names ‘of all employees that are
exempt or married.

In conformity to QUEL, GEM also allows the use
of the keyword aII in the role of a target attribute.
Thus to print the whole table ITEM one need only
specify,

retrieve OTEM.~I~

Example 15. Use of all.

In the presence of ‘generalization and aggregation
the aII construct can be extended as .follows. Say
that t ranges over an entity or a subentity E. Then
“t.aii” specifies all sitiple and set-Galtied attributes
in b and ‘its subentities. Thus,

retrieve (EMP.~~
where EMP.Sal > EMP.Spv.Sal

Example 16. Extended use of all.

returns the name, the salary, the hourly wage and
overtime rate, and the spouse’s social security
number of every employee earning more than his or
her supervisor (the values of some of these attributes
being null, of course); while

retrieve (EXMPT.alll
where EXMPT.Sal > EXMPT.Spv.Sal

Example 17. Use of all with subentities.

returns only the salaries of those employees.

The following query gives another example of the
use of entity joins and the use of subentity names as
default range variables (EMP and EMARRIED
are the two variables of our query).

retrieve (EMARRIED.Name)
where EMP.Name-“J.Black”
and EMPDept is EMARRIED.Dept

Example 18. ‘Find all married employees iir the
same department as J.Black.

6. NULLVAIAJES

A important advantage of GEM over other DBMSs
is that it provides for a complete and consistent
treatment of null values. The theory underlying our
approach was developed in fZani1, Zani21; where a
rigorous justification is given for the practical
conclusions summarized next.

GEM conveniently provides several representations
of null values in storage and in output tables; at the
logical level, however, all occurrences of nulls are
treated according to the no4nformation
interpretation discussed in [Zanill.

A three-valued logic is required to handle
qualification expressions involving negation. Thus, a
condition such as,

ITEM.Type- “SPORT”

evaluates to DUB for an ITEM occurrence where the
Type attribute is null. Boolean expressions of such
terms are evaluated according to the three-valued
logic tables of Figure 3. Qualified tuples are only
those that yield a TRUE value; tuples that yield
FALSE or the logical UUII are discarded.

It was suggested in [&id21 that a IIUB version of a
query should also be p&dad to retrieve those tuples
where the qualification, although not yielding
TRUE, does not yield FALSE either. By contrast it
was, ,hown in [Zani21 that the TRUE version’.
suffices once ‘the expression “t.A is null” and its
negation 4.B ‘isnot rmII” are allowed in the
qualification expression. Therefore, ‘we have included
these clauses in GEM. %nts,‘rather than requesting
a null version answer for the query in Example 2, a
user will instead enter this query: *

212

OR T F nuII AND 1 T 1 F) nuII

nuil null F null

Figure 3. Three-valued logic: tables.

range of dep Is DEPT
retrieve (dep.Name)
where dep.Floor is nutI

Example 19. Find the departments whose jloors
are unspecified.

Indeed, this query returns the names of those
departments that neither, meet nor fail the
qualification of Example 2 (depEloor -3).

In (Zani21 it is shown that a query language
featuring the three-valued logic with the extension
described above is complete - relational calculus
and relational algebra are equivalent in power, as
query languages. GEM, which is also complete,
consists of a mixture of relational calculus and
algebra, just like QUEL. In particular, both
languages draw from the relational algebra
inasmuch as they use set-theoretic notions to
eliminate the need for. universal quantifiers in
queries, The treatment of set and aggregate
operations in the presence of null values will be
discussed in the next section.

S T
B Refl:R ‘Ref2:R
6 bl 1 2
7 b2 2 nuIi

Figure 4: A database.

Null values make possible a precise definition of
the notion of implicit join defined by ‘the dot-
notation. For concreteness consider the database of
Figure 4. On this database, the query

retrieve (S.B, S.Ref1.A)

Example 21. Implicit join without nulls.

produces the following table. (For clarity we show
the reference columns although they are never
included in the output presented to a user.)

pj?Jj

Figure 5. The result of example 21.

However, the query

retrieve (S.B, S.Ref2.A)

Example 22. Implicit join with nulls.

generates the table,

ppJg

Figure 6. Result of example 22.

We can compare these queries with the explicit-join
queries:

retrieve (S.B, R.A) where S.Refl Is R

Example 23. Explicit join without nulls.

and

retrieve (S.B, R.A) where S.Ref2 is R

Example 24. Explicit join with null.

Since two entities are identical if and only if their
surrogate values are equal, these queries are
equivalent (in a system that, unlike GEM, allows
direct access to surrogate values) to:

213

retrieve (S.B, R.A) where S.Refl-R.#

Example 25. Implementing Example 23 by
joining on surrogates.

and,

retrieve (S.B, R.A) where S.Ref2-R.#

Example 26. Implementing Example 24 by
joining on surrogates.

Applying the three-valued logic described above, one
concludes that the queries of Examples 21 and 25
return the same result; however, the query of
Example 22 produces the. table of Figure 6, while
that of Example 26 produces the same table but
without the last row.

It can be proved that an implicit functional join,
such as the one of Figure 6, corresponds to a semi-
union join [Zanill, alias a semi-outer join [Codd21,
which is in turn defined as the union of S with the
entity join, S w R. Therefore, implicit functional
joins are equivalent to explicit entity joins whenever
the reference attributes are not null. Therefore,
queries of Examples 8 and 9 are equivalent only
under the assumption that SALESDept is not
allowed to be null. However, nulls in SALESItem
would have no effect, since such tuples are
discarded anyway because of the qualification,
I.Type-“SPORT”.

7. SET-VALUED AlTRIBuTEsand OPERATORS

The availability of set-valued attributes adds to the
conciseness and expressivity of GEM schemas and
queries. For instance, in the schema of Figure 2, we
find a set of colors for each item:

ITEM (Name, Type, (Colors))

This information could also be modeled without
set-valued attributes, as follows,

NewITEM (Name, Type, Color)

However, Name is a key in ITEM, but not in
NewITEM, where the key is the pair (Name,
Color). Thus the functional dependency of Type
(that denotes the general category in which a
merchandise ITEM lies) on Name is lost with this
second schema.

A better solution, from the modeling viewpoint, is to
normalize NewITEM to two relations: an ITEM
relation without colors, and a COLOR relation
containing item identifiers and colors. But this would
produce a more complex schema and also more
complex queries.

Thus inclusion of set-valued attributes is desirable
also in view of the set and aggregate functions
already provided by QUEL. In QUEL, and
therefore in GEM, the set-valued primitives are
provided through the (grouped) by construct. For
example, a query such as, “for each item print its
name, its type and the number of colors in which it
comes” can be formulated as follows:

range of I is NewITEM
retrieve (I.Name, I.Type,

Tot-count(I.Color by I.Name, I.Type))

Example 27. Use of by.

(Since Type is functionally dependent on Name,
I.Type can actually be excluded from the by
variables without changing the result of the query
above.) j

Using the set-valued Colors in ITEM, the same
query can be formulated as follows:

range of I is ITEM
retrieve (I.Name, I.Type, Tot-count<I.Colors))

Example 28. Example 27 with a set-\ialued
attribute.

Thus, ITEM basically corresponds to NewITEM
grouped by Name, Type. Therefore, we claim that
we now have a more complete and consistent user
interface, since GEM explicitly supports as data
types those aggregate and set functions that QUEL
requires and supports as query constructs.

In order to provide users with the convenience of
manipulating aggregates GEM supports the set-
comparison primitives included in the original
QUEL [HeSWl. Thus, in addition to the set-
membership test operator, In, GEM supports the
following operators:

I (set) equals
!- (set) does not equal
> properly contains
>= contains
< is properly contained in
<== is contained in

These constructs were omitted in recent commercial
releases of QUEL [QUELI. This is unfortunate,
since many useful queries cannot be formulated
easily without them - as demonstrated by the
sixty-six queries in Appendix II of [Zani31.

Unfortunately, set operators are also very expensive
to support in standard relational systems. Our
approach to this problem is two-fold. First we plan
to map subset relationships into equivalent aggregate

214

expressions that are more efficient to support. Then
we plan to exploit the fact that set-valued attributes
can only be used in this capacity, so that substantial
improvements in performance can be achieved by
specialixed storage organizations. Performance
improvements obtained by declaring set-valued
attributes may alone justify their addition to th3
relational interface.

In the more germane domain of user convenience,
set-valued attributes entail a more succinct and
expressive formulation .,of powerful queries. For
instance, the query “Find all items for which there
exist items of the same type with a better selection
of colors,” can be expressed as follows: .

ruge of 11 for ITEM
rarrge of 12 for ITEM
retrieve (Il.aIB where
Il.Typc - 12.Type md 11 Colors < 12.Colors

Exampli 29. Items offering an inadequate
selection of colors for their
types).

Thus, set-valued attributes can only be operands of
set-valued ‘operators and aggregate functions. The
latter, however, can also apply to sets of values from
single-valued ‘attributes and reference attributes.
Thus, to find all the items supplied to all
departments one can use the following query:

&eve (SUPPLY.Item.Name) where
(SUPPLYDept by SUPPLY.Item) >- (DEPT)

Example 30. Items supplied to all departments.

Observe that sets are denoted by enclosing them in
braces. Also, GEM enforces the basic integrity tests
on set and aggregate functions (sets must consist of
elements of compatible type).

In the presence of null values, the set operators must
be properly extended. A comprehensive solution of
this complex problem is presented in [Zanil I; for the
specific case at hand (sets of values rather than sets
of tuples), that reduces to the following simple rule:
Null values are excluded from the computation of
all aggregate functions or expressions; moreover,
they must also be disregarded in the computation of
the subset relationship.

8. UPDAm

GEM supports tQUEL*s standard style of updates,
via the three commands iiuert, delete and replace.
Thus,

append to DEPT (Dname-“SHOES”, Floor- 2)

Example 31. Add the shoe department, 2nd floor.

adds the shoe department to the database.

To insert a soap-dish that comes in brass and
bronze finishes, one can write:

append to ITEM (Name-“Soapdis”,
Type=“Bath”, Colors-(brass, bronze}) ,

Example 32. Inserting a new item. _

Attributes that do not appear in the target list are
set to q wII if single-valuad, if set-valued, they are
assigned the empty set.

.

The statement,

append to ITEM (Name- “towel-bar”,
Type- ITEM.Type, Colors- ITEM.Colors~

where ITEM.Name - “Soap-dish”

Example 33. Completing our bathroom set.

allows us to add a towel-bar of the same type and
colors as our soap-dish. (Accordiig to the syntax of
the append to statement, the first occurrence of
“ITEM” is interpreted ‘as an entity name, while the
others are interpreted as range variables declared by
default.)

Hiring T. Green, a new single employee in the, shoe
department under J. Black, with hourly wage of S
5.40 and overtime multiple of 2.2, can be specified
by the statement,

append to EMP (Name-“T.Green”, Spv-
EXMPT, Dept. - DEPT, Hrlwg-5.&,Ovrt-2.2)

where EXMPT.Name=“J.Black”
and DEPTDname- “SHOE”

Example 34. Adding a new single non-exempt
employee.

In thii statement, we can replace EMP by
NEXMPT without any change in meaning since the
fact that Hrlwg and o;f’ are not null already
implies that the employee is non-exempt. Moreover,
since no attribute of EMARRIED is mentioned in
the target list, the system will set the new EMP to
others, rather than EMARRIED. (If no attribute of
either EXMPT or NEXMPT were in the target lit
an error message would result, since others is not
allowed for this generalization sublist.)

If after a .while T. Green becomes an exempt
employee eth a salary of $12000 and a supervisor
yet to be assigned, the following update statement
can be used:

215

replace EMP (Spv -null, Sal- 12000 1
where EMP.Name - “T.Green”

Example 35. Tom Green becomes exempt and
loses his supervisor.

Note that the identifier following a replace is a
range variable, unlike the identifier following a
qpend to. The fact that salary is assigned a new
value forces an ‘automatic change of type from
NEXMPT to EXMPT. Finally, note the assignment
of nuII to a reference attribute.

GEM also allows explicit reassignment of entity
subtypes. Thus the previous query could, more
explicitly, be formulated as follows:

replace NEXMPT
wltb EXMPT &v-mdI, Sal- 12000)
where NEXMPT.Name- “T.Green”

Example 36. Same as Example 35.

Say now that after being married for some time,
T. Green divorces; then the following update can be
used:

@ace EMARRIED with EMP
where EMP.Name- “T.Green”

Example 37. T. Green leaves wedlock.

This example illustrates the rule that, when an
entity el is replaced with an ancestor entity e2, all
the entities leading from el to e2 are set to others.
Thus the EMP T. Green will be set to others than
EMARRIED.

The deletion of an entity occurrence will set to nuU
all references pointing to.it. Thus the resignation of
T. Green’s supervisor,

delete EMP.Spv
where EMP.Name - “T.Green”

Example 38. T. Green’s supervisor quits.

causes the Spv field in T. Green’s record, and in the
records of those under the same supervisor, to be set
to xmR (if null were not allowed for Spv, then the
update would abort and an error message be
generated), and then the supervisor record is
deleted’.

5. Of course. according to standard management practices T.
Green’s people may instead be reassigned to another
supcrvkor. e.g. Green’s hose; this policy can be implemented
by preceding the deletion of Green’s record with an update
reassigning hi people.

A request such as,

delete EXMPT
where EXMPT.Name=“T.Green”

Example 39. T. Green goes too.

is evaluated as the following:

delete EMP
where EMP.Name=“T.Green”
and EMP is EXMPT

Example 40. Same as above.

Thus, since T. Green. is exempt, his record is
eliminated, otherwise it would not be.

I

9. CONCLUSION

A main conclusion of this work is that’ relational
query languages and interfaces are very robust. We
have shown that with suitable extensions the
relational model provides a degree of modeling
power that matches or surpasses those of the various
conceptual and semantic models proposed in the
literature. Furthermore, with simple extensions, the
relational language QUEL supplies a congenial .,
query language for such a model. The result is a,:.
friendly and powerful semantic user interface that
retains, and in many ways surpasses, the ease of use
and power of a strictly relational one. Because of
these qualities, GEM provides an attractive interface
for end-users; moreover, as shown in [A&J, it
supplies a good basis on which to ‘build database
interfaces for programming languages.

The approach of extending the relational model is
preferable to adopting a new semantic model for
many reasons. These include compatibility and
graceful evolution, since users that do not want the,
extra semantic features need not learn nor use them;
for these users GEM reduces to QUEL. Other
advantages concern definition and ease of
implementation. As indicated in this ‘paper and
shown in [Tsur, TsZal, all GEM queries can be
mapped into equivalent QUEL expressions., In this
way a precise semantic definition and also a notion
of query completeness for GEM can be derived
from those of QUEL, which in turn maps into the
relational calculus [Ullml. This is a noticeable
improvement with respect to many semantic data
models that lack formal, precise definitions. Finally,
the mapping of GEM into standard QUEL supplies
an expeditious and, ‘for most queries,’ efficient means
of implementation; such an implementation, planned
for the commercial database machine IDM 500, is
described in [Tsur, TsZal.

216

Acknowlcdgmcnta [INGRI

The author is grateful to J. Andrade and S. Tsur for
helpful discussions and recommendations on the
design of GEM. Thanks are due to D. Fishman, M.
S. Hecht, E. Y. Lien, E. Wolman and the referees
for their comments and suggested improvements. [LaPil

RtBf-

[Andrl

[Brodl

[Coddll

[CoddZl

[Chenl

[DSISl

[HeSWl

[KiMcl

[IDMI

Andrade J. M. “Genus: a programming
language for the design of database
applications,” Internal Memorandum,
Bell Laboratories, 1982.

Brodie, M.L., “On Modelling
Behavioural Semantics of Databases,”
7th Znt. Conf. Very Large Data Bases,
pp. 32-42, 1981.

Codd, E.F., “Relational Database: A
Practical Foundation for Productivity”
Comm. ACM, 25,2, pp. 109-118, 1982.

Codd, E.F., “Extending Database
Relations to Capture More Meaning,
ACM Trans. Data Base Syst., 4,4, pp.
391-434, 1979.

Chen, P.P., “The Entity-Relationship
Model - Toward an Unified View of
Data,” ACM Trans. Database Syst., 1,
1, ‘pp. 9-36, 1976.

Lien, Y.E., J.E. Shopiro and S. Tsur.
“DSIS - A Database System with
Interrelational Semantics,” 7th Znt. Co&
Very Large Data Bases, pp. 465-411,
1981.

Held, G.D, M.R. Stonebraker and E.
Wong, “INGRES: a Relational Data
Base System,” AFZPS Nat. Computer
Conf., Vol. 44, pp. 409-416, 1975.

King, R. and D. McLeod, “The Event
Database Specification Model,” 2nd Znt.
Co& Databases - Improving Usability
and Responsiveness, Jerusalem, June
22.24, 1982.

IDM 500 Software Reference Manual.
Ver. 1.3,’ Sept 1981. Britton-Lee Inc.,
90 Albright Way, Los Gatos, CA,
95030.

[QUELI

[Ship]

ISiKe

[SmSml

[Tsurl

[TsZaI

HJllml

[Zanill

1Zani21

1Zani31

Stonebraker, M., E. Wong, P. Kreps and
G. Held. “The Design and
Implementation of INGRES”, ACM
Trans on Database Syst. 1:3, pp. 189-
222,1976.

Lacroix, M. and A. Pirotte, “Example
queries in relational languages,” MBLE
Tech. note 107, 1976 (MBLE, Rue Des
Deux Gares 80, 1070 Brussels).

Woodfill, J. et al., “INGRES Version 6.2
Reference Manual,” Electronic Research
Laboratory, Memo UCB/ERL-M78/43,
1979.

Shipman, D.W., “The Functional Model
and the Lata Language DAPLEX,”
ACM Trans. Data Base Syst., 6,1, pp.
140-173, 1982.

Sibley, E.H. and L. Kershberg, “Data
Architecture and Data Model
Considerations,” AFZPS Nat. Computer
Con& pp. 85-96,1977.

Smith, J.M: and C.P. Smith, “Database
Abstractions: Aggregation and
Generalization,” ACM Trans. Database
syst., 2, 2, pp. 105-133, 1977.

TSUT, S., “Mapping of GEM into IDL,”
internal memorandum, Bell Laboratories,
1982.

Tsur, S. and C. Zaniolo, “The
Implementation of GEM - Supporting
a Semantic Data Model on a Relational
Backend”, submitted for publication.

Ullman, J., “Principles of Database
Systems;” Computer Science Press, 1980.

Zaniolo, C., “Database Relations with
Null Values,” ACM SZGACT-SZGMOD
Symposium on Principles Of Database
Systems, Los Angeles, California, March
1982.

Zaniolo, C., “A Formal Treatment of
Nonexistent Values in Database
Relations,” Internal Memorandum, Bell
Laboratories, 1983.

Zaniolo, C., “The Database language
GEM,” Internal Memorandum, Bell
Laboratories, 1982.

217

_. .- .

AppdiXkCRMSYNTAX

This syntax fs an extensfm of. and we the same m¬ation as, that of bDhf1. Thus (...) denote a set of
zero or man!
themselves.

occurrences, while L.J denotes one or zero occumnns. Symbols encltmd in m&potu denote

retrim [dqw I(<query target lif#> 1 here <qualiikation> I

<v-Y tarset list> : <query target element> ‘(’ , <query target element> ‘1’

<query targ8t element> : <attribute> P a 8imDle or set-valued attribute*/

<attribute>

<variable>

I
<name> * <cxptcdon>
<name> -, <set>

: <variable> . <name>

<exprauim>

<set>

<extended expr>
* <coDstanb set>

<qualithtiaQ>

<clause>

<relDp>

<il&lltity tsrt>

: +ariable> (. <name> I /+ way <mm& must deaote a reference attribute/*

I
<range variable> /* de&red in the range rtatemont/*
<entity namd> /+ range varlablf by dofault/*

: <8ggreg8te> /+ amto, 8mge0, ete. /*
<attribute> /* a rimple attribute/*
<constant>
- <exprcuion>
(<expruska> 1 j/
<function> /* see tIDM1 for a dehition of fun&w /*

: <attribute> I* a set-valued attribute/*
I*e<~~CXPf>rby<~~expr>(,<extmdedwpr>)l

1 wbm <quali6c&ion> 1 ‘I’
1 <constants set>
: <upratsion> 1 <variable>

: ‘(’ ‘I’ 1 T <constant> I, <amstant>) ‘1

: (<qlIa@ation> 1
mt <qualifica&nl>
<qualifi~tioa> ud <qualihtion>
<qu8liiicaw> or <qualihtion>
alause>

: <exptwsion> <relop> <expressh>
< extended expr> im <set>
<a> <rclop> <set>
<attribute> <identity teat> rp
<variable> <identity teat> <variable>

:-I!-I<I<-I>I>-

:bl ismd

qged t to1 <entity name> (< update target list>)

de& <variable> 1 rrbre <quaUicatkm> I

repha <variable> ‘h&b <entity name>] (<update target list>)

<update targct’list> : <update target element> ‘p) <update tugct element> ‘1’

<update target element> : <name> - <expressba> /+ <name> of 8 simple attribute l /
I <name> - <variable> /* <name> of a ‘hrence attribute*/

1 <name> - <set> /* <name> of a 8et attribute l /
1 <name> - d /+ <name> of a simple of reference attribute/*

218

