Magic Counting Methods

Domenico Saccd 1
University of Calabria, Rende, Italy

Carlo Zaniolo
MCC, Austin, Texas, USA

ABSTRACT

The problem constdered 1s that of implementing recur-
swwve querses, expressed sn a logic-based language, by
effictent fizpoint computatsons In partscular, the sttua-
tion 12 studied where the snitsal bindings tn the recursive
predicate can be used to restrict the search space and
ensure safety of execution Two key techniques prevs-
ously proposed to solve this problem are (1) the highly
efficient counting method, and (11) the magic set method
which 18 safe n a wnder range of situations than (1) In
thia paper, we present a family of methods, called the
magsc counting methods, that combines the advantages
of (1) and (13) This 18 made possible by the ssmilarsty of
the strategses used by the counting method and the
magsc set method for propagating the bindings This
paper ntroduces these new methods, ezamines their
computattonal complezsty, and sllustrates the trade-offs
between the family members and thesr supersorsty with
reaspect to the old methods

1. Introduction

The Counting Method [BSMU,SZ1,8Z2] and the
Magic Set Method [BSMU, SZ1] are among the most
significant techniques [BR| developed for supporting
logic-based data languages such as Nail! [Ul] or LDL
[TZ] The former method 1s normally more efficient than
the latter, but the latter 18 safe mn a wider range of
situations than the former In this paper, we present a
family of methods, called Magic Counting Methods,

Permussion to copy without fee all or part of this matenal 1s granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and 1ts date appear, and notice 1s given that copying
1s by permussion of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission

© 1987 ACM 0-89791-236-5/87/0005/0049 75¢

49

that combine the strengths of both The combination 1s
made possible by the fact that the counting method and
magic set method use similar strategies for propagating
bindings

In this paper, we first introduce a general frame-
work whereby the counting method and magic set
method are compared and their computational behavior
analyzed (Sections 2 and 3) This framework 1s then
used to introduce and prove the correctness of the
Independent Magic Counting Methods, and a refinement
of these called the Integrated Magic Counting Methods
(Sections 4 and 5) The rest of the paper discusses the
the implementation of these methods and their compu-
tational complexities We find that there exists a well-
defined efficiency hierarchy among them

Throughout the paper, we consider the query pro-
gram ¢ composed by the query goal

P(a, Y)?
and the following rules
P(X,Y)- EX,Y)
P(X,Y)~ L(X,X,), P(X, Y),R(Y, Y,

where P 1s a recurstve predicate and E, L and R are
database predicates The first rule, which does not con-
tain any recursive predicate in the body, 1s called an ezst
rule, whereas the second rule 18 called a recursive rule
The answer of the query 1s the set of pairs (¢, b) that
can be inferred from the logic program and from the
facts stored 1n the (fimite) database relations correspond-
mg to £, L and R

The above query 1s an abstraction of a large class
of similar queries, for instance to obtain the well-known
same-generation example {BMSU], we can assume that
both L and R correspond to a relation Parent storing
the facts that the person X {or Y,) 1s parent of X (or

t Part of this work was done while this author was
visiting at MCC



Y), and if we simplify the exit rule as
P(X,X)

thus, every person 1s of the same generation of himself,
and the query asks for all persons who are of the same
generation as a¢”

It 15 also easy to generalize this query by letting
L and R be derived predicates or conjuncts of these,
and X and Y be replaced by several arguments On
the other hand, the above query has a clear graph
interpretation where the methods and results can be
shown without too heavy a notation Moreover, since a
similar graph interpretation holds for a large class of
queries, notably all queries that can be expressed using
only one linear recursive rule, 1t turns out that all
results found for the query at hand can immediately be
extended to this important class, which was studied in
[SZ1] under the name of canonical strongly hnear
queries Furthermore, further extensions to more gen-
eral queries are possible, although more difficult and out-
side the scope of this paper

2. The Counting Method and the Magic Set
Method

The counting and the magic set methods rewrite
the rules and the query goal so that the answer can be
constructed efficiently by means of two fixpomt compu-
tations For the example at hand, the counting method
produces the following modified query program Q¢

COUNTING METHOD

cS(0, a) (1)
cS(J+1,X,) - CS(J,X), L(X, X,) (2)
Pe(J,Y)- CS(J,X),E(X,Y) 3)
PC("_L Y) - PC(J' Yl)’ R(Y! Yl) (4)
Answer(Y) - P¢(0, Y) (5)
Answer(Y)?

Rules 1 and 2, are called counting rules as they define
the counting set CS, while (3) and (4) are called
modified rules (J+1 1s an obvious notation of conveni-
ence, In actual Prolog we should write J1 instead and
have a goal "J11s J+1")

On the other hand, the magic set method pro-
duces the following query Qu

MAGIC SET METHOD
MS (a) (1)
MS(Xy) - M5(X), L(X, X)) (2)

50

Py(X,Y) - MS(X), E(X, Y) (3)
Pu(X,Y) - MS(X), L(X, X)), (4)
Pyu(Xy, Y1), R(Y, YY)

Answer(Y) - Py(a, Y) (5)
Answer (Y)?

Rules 1 and 2, are called the magic set rules as they
define the the magic set MS, while (3) and (4) are called
modified rules

Two queries are sard to be equsvalent when they
have the same answer (as per the well defined semantics
of Horn clause quenies [VK]) Then, we have the follow-
ing result that estabhishes the conceptual correctness of
the magic set and counting methods

FACT 1 [SZ1]
equivalent [

The queries @, Q¢ and Qy are

Let us next examine the problem of implementing
these methods using a least fixpoint computation To
that end, we use a convenient mixture of Horn clause
and procedural programming notation

The counting set CS 1s computed by the follow-
mg fixpoint computation (the semicolon is used as end-
delimiter for both rules and statements)

COUNTING SET COMPUTATION

begin
Cc5(0, a),
J =0,
while CS(J, X,) do
begin
CS(J+1, X)) -CS5(J, X), L(X, Xy),
J =J+1,
end,
end

Thus, we assume that we are working with a vari-
able two-column relation CS corresponding to the predi-
cate In the fixpoint computation, we perform relational
algebra operations on relations, which, for simplicity and
expressivity of notation, we represent by ther
equivalent Horn-clause form Thus, in the first step, our
variable relation 1s assigned the relation contamning only
the tuple (0,6) The fixpomnt computation step consists
of taking the semijoin of the current relation with that
representing L (X, X,;) and incrementing the first
column by one We thus assume that the new tuples so
generated are added to the vanable relation (e g, using
Prolog assert) Thus, the test CS(J, X ) fails only after
the last fixpoint 1teration has failed to produce any new
tuple As we will discuss extensively later, there are



situations (1 e, in the presence of cycles), where the loop
test never fails and the fixpoint computation never ter-
minates In these situations, we will say that the count-
ing method 1s not safe, 1e, the answer cannot be com-
puted 1n a finite amount of time [Ul, $Z2]

Using the seminaive fixpoint approach [Ban, BaR],
we can express the fixpoint computation of magic sets as
follows (to implement the fixpoint computation we have
introduced an index that records the steps at which a
value 1s first introduced)

SEMINAIVE MAGIC SET COMPUTATION

begin
m(ol a ),
I =0,
while M5 (I, X,) do
begin
MS(I+1, X,) -
m(’: X), L(X' Xl)' nOt(M—S(—' Xl));
I =I+1,
end,
end

The final magic set can be computed as
MS(Y) - m(-—: Y))
1e, by projecting the index out

The difference between the magic set computation
and counting set fixpoint 1s thus clear, this difference
reduces to the presence of not (MS(_, X)) m the magic
set fixpoint, 1e, to the condition that (I +1, X,) 1s not
added to M5 f (J, X,) 1s already in M5 (for some
0<J<I) Such negation can be implemented using the
set difference operation of relational algebra

3. Computational Complexity of Methods

In order to characterize the data underlying the query
and to obtain insight on the behavior of the methods,
we need to associate a graph G with the query, 1n the
following way

a)  For each value mn the domains underlymng L or
R, there 1s a corresponding node m G If the
same value appears both m L and R then there
will be two distinct associated nodes in G (one
may think they have some label to distinguish
them) Therefore, the nodes of G are partitioned
into L —nodes and R —nodes

b)  For each parr (b,c)in L, thereis an arc (b,¢ ) m
G , where both b and ¢ are L -nodes

¢)  For each pair {b,c¢) n E such that b and ¢ are
also database constants of L and R, respectively,
there 1s an arc (b,c) m G where b 1s an L -node

1

and ¢ 1s an R -node

d)  For each pair (b,c) m R, there 1san arc (¢ ,b) n
G, where both b and ¢ are R -nodes

The query graph Gg= <N, A > 15 the subgraph
of G, induced by all nodes that are reachable from a
(recall that a 1s the constant in the query goal) We call
e the source node of Gg The query graph Gy,
turn, 1s composed by the three subgraphs
Gr= <N, AL>, Gg= <Ng, Ag > and
Gr= <Np, Ap >, such that A;, Ag and Ap are all
the arcs In A corresponding to pairs n L, E and R,
respectively It 1s easy to see that N and Np are dis-
jomnt and contain L-nodes and R -nodes, respectively,
and N, U Np = N On the other hand, Gg 18 a bipar-
tite graph having arcs from L -nodes to R -nodes
Finally, A,, As and Ag are disjomnt and
A, UAgr UAg = A The number of respective nodes
of Gg, G, Gr and Gg will be denoted by n, n,, ng
and ng, while the number of respective arcs is denoted
by m, my,, mp and mg

Let b and ¢ be two nodes in the query graph If
there 1s a path from 4 to ¢ with length &k, we say that
¢ has a distance k£ from b

Consider the graph G; It follows directly from the
definitions that the nodes of this graph are the magic set
values, Ny =MS Thus we will call G, the Magic
Graph and refer to magic graph nodes and magic set
values as synonyms The counting set CS consists of
pairs (7, b ) where b 1s a node in the magic graph and
7 18 1ts distance from the source node @, as 1t will be
shown below The set of values obtained from CS by
projecting the indices out will be denoted CS_,, obwi-
ously CS_,=MS Moreover, let I, denote the set of
mdices ;7 such that (7,5) 18 1n CS Then a node b
will, respectively, be called

a) single if I, 15 a singleton set ,

b) multiple 1f I; has a finite cardinahty greater than
one,

c) recurring if I, 13 infinite

The magic graph of a query will be called regular,
when all 1ts nodes are single and non-regular otherwise

For the query graph of Figure 1, G, 1s the sub-
graph mduced by the nodes a, a,, , ag while Gp
1s the subgraph, represented by darker arcs, induced by
the nodes b, , , bg The graph Gg 1s composed by
the dashed arcs 1n Figure 1 The magic graph 1s regular
since all nodes 1n G, are single, 1 e, they have a unique
distance from ¢ If we add the tuple <agas> to the
relation L then the query becomes acyclic and the node
ag becomes multiple, nstead, If we add the tuple
< aga9> then the query becomes cyclic and the nodes
ag, agand as become recurring



e
b, b, b,
Pl Yo,
7~
Yo, Yo,
Y Y »Y
b, bg by

Fig 1. Query Graph

Proposition 1 summarizes the properties of query
graphs

PROPOSITION 1 Let Q be a query and Gg be
the query graph Then MS = CS_, = N In addition,
gtven a node b in G,

a) b 13 single 1f and only sf all directed paths from the
source node ¢ to b m G, have the same dis-
tance,

b) b 12 multiple sf and only sf there at least two
directed paths from a to b in G, with different
length,

c) b 18 recurring tf and only if there 3¢ a cyche
directed path from a to b n G, and

d) the set I, of indices associated to b coincides
with the set of all distances of b from a

As shown m [SZ1MPS), there 1s also a sumple
graph based interpretation of the query answer

FACT 2 A node b 18 sn the answer of Q if there
18 a (posasbly cyclic) directed path from the source node
a tob sn Gg such that this path 1s composed by ezactly
k arcs from Ay, one arc from Ag and k arcs from Ag,
where k 13 any non-negative snteger 1

Consider the query instance whose graph 1s shown
in Figure 1 Then bg 1s in the answer because of the
path a,a,,0sb0s The other answer nodes are b4, bg by
and bg Note that the latter node 1s mn the answer
because of the cychic path

a:al;as;a&ba,ba,ba,bs
The path from a to bg1s cychc as well

Within the graph formalism, interesting complex-
ity results about the magic set and the counting
methods have been found in [MPS] The costs of the
two methods are summarized in Table 1 for the different

52

kinds of Magic Graphs (MG) The basic cost unit 1s the
cost of retrieving a tuple in a database relation In this
table and throughout the paper, we use the notations O
and © for describing asymptotic time complexity If the
cost function of an algorithm 1s f (n), where n 13 the
problem size, and g (n ) 1s another function of n, then
a) f(n)=0(g(n)), 1f there exists a constant d
such that f(n) < dXg(n) for all but some

finite (possibly empty) set of non-negative values
for n, and

b)  f(n)=6(g(n)), f both f (n) = 0(g(n))and
g(n)=0(f(n)

MG Counting Magic Set
Regular || 8(m, +;,, Xmpg) O(m, X mp)
Acychic || ©(n, Xmy+n;, Xmg) | ©(my Xmg)
Cyche unsafe t O(m, X mp)

Tab 1 Costs of the counting and magsc set methods

PROPOSITION 2 Let C and Ms be the costs of
the counting method and of the magic set method,
respectively Then

a) If the magic graphs are regular then
C = 0(Ms)
b) If the magsc graphs are acychic and

my, = O(mpg), then C = O(Ms)

PROOF Since the number of arcs 1s always
greater than the number of nodes, we have that
n, = O(m,) Hence, n, Xmg = O(my Xmg), thus,
part a) of the proposition holds Furthermore, if
my = O(mg), then obviously
n, Xmp == O(my Xmy) Therefore, also part b) of the
proposition 1s proved 0

Proposition 2 says that the counting method
always works better than the magic set method when
the magic graphs are regular In addition, since 1t is real-
1stic to assume that mg 1s, on the average, of the same
order of my , 1t 1s fair to say that the counting method,
on the average, works better than the magic set method
when there 1s no cycle In fact, m the average, we have
that C = ©(n Xm) and Ms = 6(m Xm) Note that
having m; >> mg 1s not sufficient for the magic set

1 In [MPS] 1t has been shown that the counting
method can be extended to deal with cyclic graphs
and 1ts cost 18 ©(m x»8) Also note that the costs for
the magic set method are actually higher than
those given in Table 1, since arcs not in Gg can be
developed at each step of fixpoint computation us-
g the modified rules For simpheity, these costs
can be neglected since they stmply reinforce the su-
periority of magic counting methods



method to work better than the counting method

Thus the counting method 1s superior to the
magic set method 1n terms of worst case behavior This
superiority 1s even more dramatic when typical behavior
1s considered, in the comparative study presented n
[BR] the counting method was shown to be more
efficient than all other methods (including the magic set
method but excluding the [HN] method which 1s com-
parable performance-wise) Unfortunately, the potential
presence of cycles in the database compromises the
applicability of the counting method in many situations
Note that, a database being logically acyclic (eg, 2
non-incestuous family tree) does not guarantee that the
physical database 1s cycle free, since checking acycheity
upon updates 1s very expensive and not often done in
practice -- thus there could be accidental cycles that
throw the counting method astray Therefore, a method
that combines the performance of the counting set
method with the safety of the magic set method 1s
highly desirable

4. Magic Counting Methods

We now propose a family of methods that com-
bine the magic set and the counting methods and that
are, therefore, called magic counting methods All
methods 1 the family make use of a restricted magsc
set and a restricted counting set A restricted magic
set, denoted by RM, 1s any (possibly empty and not
necessarily proper) subset of MS Likewise, RC will
denote any (possibly empty and not necessanly proper)
subset RC of CS, while RC_, denotes the set of values
im RC without their indices In addition, for each b 1n
RC_,, RI; 1s the set of all indices associated to b 1n
RC (obviously RI, C I})

The general structure of the magic counting
methods consists of two steps In the first step, a res-
tricted magic set RM and a restricted counting set RC
1s constructed, in the second step, both the magic count-
ing method and the magic set method are applied using
the restricted sets This second step 1s implemented as
follows

MODIFIED RULES & QUERY FOR
INDEPENDENT MC METHODS

Pe(J, Y) - RC(J, X), E(X, Y) (1)
Po(J-1,Y) - Po(J, Y1), R(Y, Y)) (2
Pu(X,Y) - RM(X), E(X,Y) (3)
Pu(X,Y) - MS(X), L(X, X)), (4)

PM(XI) Yl)) R(Y: Yl)

83

Answer (X) - P¢(0, X) (5)
Anwer (X) - Py(a,X) (6)
Answer (X)?

Notice that the predicate RC has replaced CS n
the exit rule of Po (Rule 1), while RM has replaced the
origmal MS 1n the exit rule for Py (Rule 3) The recur-
sive rules for both Py and Py (Rules 2 and 4) have
remained as in the original magic set and counting
methods It 1s easy to see that the Pc and the Py rules
operate independently from each other Therefore, these
magic counting methods will be called independent

Let us next consider the issue of correctness of the
magic counting methods A method will be said to be
correct if 1t generates the same answer as the ornginal
query for all posssble databases (1e, by FACT 1, the
same answer as the magic set method or the counting
method) We then have this important result

THEOREM 1 An independent magic counting
method 18 correct 3f and only sf the followsng two conds-
tions hold

a) RM URC, = MS, and
b)  for each b n RC_,-RM, RI, = [,

PROOF  Only-tf part Let M be a correct
independent magic counting method We first prove
that, for each instance of the query @,
RM U RC_, = MS, where MS 1s the magic set of the
query and RM and RC are the reduced sets con-
structed by M We carry out the proof by contradic-
tion Suppose that, for a given query instance @, a node
b 1s m MS but not m RM U RC_, Let k be the
length of any (non-cyclic) path from the source node a
to b (by Proposition 1, such a path exists) We con-
struct another mmstance of @ by modifying the query
graph as follows We add the new nodes b;, b;_;, s
bo to Gg, and also mmtroduce the arc (b,5;) n Gg and
the ares (bg,be-1) , , (b,bo) m Gg It s easy to see
that the new graph corresponds to a new query instance
Q@ Moreover, by Fact 2, the node b4 1s 1n the answer of
@ Since the reduced sets are constructed by M
independently from the database predicates £ and R
(1e, Gg and Gg), the reduced sets for ¢ remam
unchanged and do not contain the node &6 Hence, since
only those arcs of Ag starting from a node in MS or
RC_, are used i the second step of the method M (see
Rules 1 and 3 of Step 2 for independent methods), the
arc (b,b;) and, hence, the path from a to b, 1s not
taken into account Therefore, the method M does not
generate the node by -- a contradiction Let us now
agam proceed ab absurdo to prove that for each 4 mn
RC_,-RM, RI, = I, Suppose not and let k¥ be an
index in I, but not n RI; We modify the query graph



of the query instance Q as before The magic set does
not use the new arc (4,5, ) because b is not m RM and
1t cannot generate the parr (a,b,) The counting
method uses the node & but, since RI; does not contain
the index k, the node b; does not have the index k&
Hence, a path from b, to by with length k¥ cannot be
constructed by repeatedly using Rule 2, 1e, 44 1s not
marked as an answer (contradiction)

If part Let us now suppose that, for any query
mstance @, the mdependent magic counting method M
constructs the reduced sets 1n such a way that
RM URC., = MS and for each b4 m RC. -RM,
RI; = I, We have to prove that M 1s correct Con-
sider any node b, 1n the query answer By Proposition
1, there exists a path from ¢ to by composed by k arcs
m G, the arc (b,b;) n Gg and the arcs (b;,b;)
, , (bydo)m G 1f b 1s1n RC_,-RM, the index &
1s in I; by Proposition 1 and, then, in RI, since
RI, = I, by hypothesis The index & 1s passed to b; by
Rule 1 Hence, the counting method assigns the index 0
to b by repeatedly applying Rule 2 Therefore, the node
bo 1s included 1n the answer by Rule 5 Suppose now
that & 1s not m RC_,—-RM We have that b 1s 1n N,
because 1t 1s the source node of an arc in Gg Hence,
since N, = MS by Proposition 1 and
RM U RC_, = MS by hypothesis, b 1s iIn RM Rules
3 and 4 generate all pairs (¢ ,d) such that (b,e) 15 n
Ag and there are paths from ¢ to b and from e¢ to d
with the same length Hence, the pair (a,bo) 1s also
generated and the node b4 1s included 1n the answer by
Rule 6 This concludes the proof [

Theorem 1 allows us to divide the nodes of the
magic graph into the set RC that uses the counting
method and the set RM that uses the magic set
method Since the counting method 1s better than the
magic method for all nodes but the recurring ones, the
1deal solution assigns the recurring nodes to RM and all
others to RC However, this ultimate goal 1s not easy to
reach, because of the added complexity of detecting
recurring nodes, thus, we present three alternative
methods that approximate the ultimate goal with solu-
tions that offer practical advantages of their own Since
detecting non-regular graphs 1s easier than detecting
cyclic ones, these methods use the regularity of the
magic graph as their decision criterion

The simplest method to implement is the basic
method, as follows

a) Basic Method If the graph G, 1s regular then
RM = 0 and RC = CS§, otherwise RM = MS
and RC = @ The basic method comncides with
the counting method in the former case and

54

a

Fig 2. Magic Graph

with the magic set method in the latter case

For instance, the graph Gp of Figure 2, 1s not regular,
thus RM = MS = {a, b, J}and RC =0

While the basic method removes the compile-time
dilemma of having to chose between counting and magic
sets, 1t 1s clearly suboptimal 1n the sense that the count-
ing method should still be used for the parts of the
graph which do not contain any multiple or recurring
nodes The next method accomplishes that by recording
the level at which non-regular nodes are first found

b) Single Method Let 1, be the maximum index such
that all nodes in CS_, having an index less then
1, are single Then, RC_, 1s the set of all (single)

nodes with index less than t,, and
RM = MS-RC._,
In Figure 2, for example, we have 1,=2, RC_, = {a,

b,c,d}and RM = {e, [, A}

Using an index to partition the graph horizontally
represents too coarse a criterion, since nodes in different
vertical branches of the graph are smeared together For
the example of Figure 2, for instance, the nodes
e, ,h are assigned to RM, although they are single
The next method solves this problem

c) Multiple Method RC_, 1s the set of all single
nodes and RM = MS-RC_, (1e, RM contains
all multiple and recurring nodes)

For the example of Figure 2, we have RC_, = {a, b,

c,d, e, fand RM = {g,h,s,3,k,1}

Our final method uses counting for both single
and multiple nodes



d) Recurring Method RC_, 1s the set of all single
and multiple nodes and RM = MS-RC_, (thus,
RM contains all recurring nodes)

For the magic graph Gy m Figure 2, the Recurrmg
Method will produce, RC_, = {a, b, ¢, d, e, f, h,
k}and RM = {g,:, 3,1}

5. Integrated Magic Counting Methods

Before turning to the actual computation of the
reduced set, let us observe how, in the last three
methods, the RM nodes have been relegated to the part
of the graph most remote from the source-- 1e, to the
upper part of Figure 2 As the magic set computation
for these nodes progresses, 1t moves to the lower part of
the graph (1 e, closer to the source node) where no recur-
ring node exists -- thus 1t can be improved by using the
counting method The integrated magic counting
methods embody this improvement

MODIFIED RULES &8 QUERY FOR

INTEGRATED MC METHODS
Py(X,Y) -RM(X), L(X, X)), (2)

Py(X, Yy, R(Y,Y))

Po(J, Y) - RC(J, X), L(X, X)), (3)
Pu(X,Y), R(Y, Y)

Po(J, Y) - RC(J, X), E(X, Y) (4)

Po(J-1,Y) = Po(J, Y), R(Y, 1) (8)

Answer (X) - P¢(0, X) (6)

Answer (X)?

Rules 1 and 2 are those of the magic set method,
whereas Rules 4 and 5 are those of the counting method
Rule 3 contains the recursive predicate Py 1n 1ts body
Nevertheless, 1f the magic set method (first two rules)
are apphed before the counting method, then Py 1s
already solved and Rule 3 can be considered as an exit
rule Indeed, this rule transfers the results of the magic
set method to the counting method Therefore, these
magic counting methods are called integrated

THEOREM 2 An integrated magic counting
method 1s correct sf and only sf the followsng conditions
holi a) RM URC_, = MS, b) for each b 1
RC_,-RM, RI, = I,, and c) the pair (0,a), where a 1s
the source node of the query graph, 13 sn RC

PROOF It follows the !mes of the proof of
Theorem 1 @

S8

Also for integrated methods, we may have basic,
single, multiple and recurring methods, according to the
way the reduced sets are constructed However, by
Theorem 2, the reduced counting set RC cannot be
empty Then we shall assume that an empty RC actu-
ally means that RC only contains the pair (0,a) The
integrated single method coimncides with the magic
counting method proposed 1n [SZ1]

We are interested in magic counting methods that
are not only correct but also safe, 1 e, the answer to the
query can be found 1n a finite amount of time via a
fixpoint computation Let Step 1 denote the computa-
tion of the sets RM and RC The following proposition
states that the safety of a magic counting method only
depends on Step 1

PROPOSITION 3 An (integrated or indepen-
dent) magsc counting method ss safe sf and only sf for
each instance of the query @, the computation of Step 1
18 safe O

In the remaining sections, we discuss the four
approaches for computing the reduced sets and we com-
pare the corresponding methods for efficiency To this
end, we shall denote the cost function of the basic
method by B, single method by S, multiple method by
M, or recurring method by R A subscript denotes
whether the method 1s independent (IND ) or integrated
(INT) For nstance Myyp 18 the cost function of the
independent multiple method and Sy 1s the cost func-
tion of the integrated single method Since the
integrated basic method practically coincides with the
independent one, we denote by B the cost function of
the two of them Finally, we continue to denote the cost
functions of the counting method and the magic set
method by C and Ms, respectively Also, if M/ and
M are two methods, then M/ <, M will denote that
Oy = O(Opy) for magic graphs of type ¢, where
¢ =R stands for regular magic graphs, § =A stands for
non-regular acyclic ones and ¢=C stands for non-
regular cyclic ones When M’ <M and vice versa, we
write M/ =M When M' <M holds only on the
average case (1 e, if the bound m;, == O(mp ) holds as 1t
will happen on the average), then we use the notation
M' <M For nstance, the part a) and b) of Proposi-
tion 2 are expressed as C <z Ms and C L, Ms,
respectively We have Ms <o C as well

6. Basic Magic Counting Methods

The basic magic counting methods just detect
whether there 1s some multiple node 1n the magic graph
When no such a node occurs, they use the counting
method, otherwise they use the magic set method Thus,
Step 1 1s implemented as follows we extend the magic
set predicate with an additional argument that records



whether this 18 the first occurrence of a node (1), or a
successive one (2) Only first occurrences are used in the
following steps, the multiple occurrences are not

begin
M3(0, 1, a),
I =0,
while M3(I, 1, X,) do
begin
M3(I+1,C,X,) -M5(1,1, X), L(X, X)),
f MS(_, 1, X,) then C=2 else C=1,
I =I+1,
end,
end

(note the use of sf —then —else construct with the obvi-
ous meaning as per any implementation of Prolog)

At the end of the above fixpoint computation, if
all nodes are single (1 ¢, there are no tuples (1, 2, Y) n
MS), then RM = @ and RC 1s computed as follows

RC(I,Y) -MS(I,1,Y)

On the other hand, if there 1s at least one mult1-
ple (or recurring) node (1 e, there are at least one tuple
(I,2,Y) m M), then RC =0 (or RC = {(0,a)}, f
the method 1s integrated) and RM 1s computed as fol-
lows

RM(Y) -MS5(_,1,7)

Then the following proposition follows directly
from the definitions

PROPOSITION 4 The bassc magsc counting methods
are correct and safe and thesr costs are the ones shown

in Table 2 Furthermore, B =g C, B =, ¢ Ms,
B Sg C, and C SA B

g
MG Independent or Integrated
Regular O(my, +n, Xmpg)
Non-Regular || 8(m;, X mg)

Tab 2 Costs of bassc magsc counting methods

7. Single magic counting methods

The single magic counting methods represent a
simple extension of the basic methods They perform
the same fixpoint computation as basic methods, but, at
the end, they construct the reduced sets in a different
way If all nodes are single then RM = @ and RC 1s
constructed from MS by projecting out the second
index (as basic methods do) If there 1s at least one mul-
tiple (or recurring) node then the methods select the
maximum index s, for which all nodes with mndex & <i,

56

are single Then, RM and RC are computed in the fol-
lowing way

RM(I,Y) -MS(I1,1,Y), >y,
RC(I,Y) -MS(I,1,Y), I<y,

(Again, if RC turns out to be empty, then the
integrated method adds the pair (0,a))

In order to present the complexity of single
methods, we characterize the graph G, as follows Con-
sider the subgraph of G, induced by all single nodes b
having a distence from o less than s, We denote the
number of nodes and arcs of this subgraph by n, and
m,, respectively Moreover, we denote by n; the
number of all single nodes b such that § has a distance
from @ less than 3, and there 13 no directed path from
b to any node with distance from a greater or equal to
3, Le m; be the total number of arcs entering the
above nodes Obviously, n, > n, and m;, > m;, For
the magic graph G, 1 Figure 2, we have i, = 2,
n,=4,n,=1m =3, m, =1

Thus we have the following proposition

PROPOSITION 5 The single magic counting methods
are correct and safe and thesr costs are the ones shown
in Table 8 Furthermore, Spp =r Siny =r B,
Sint Za,c Sivp and Sip <ac B

PROOF It 15 easy to see that
RC_, URM = MS In addition, RC_, contains only
smgle nodes Hence, every node in RC_, has only one
index, thus, condition b) of Theorem 1 or 2 is satisfied
Fumally, if RC 1s not empty, then 1t contains the pair
(0,8) since obviously 0<t, In the other case, we have
added the above pair It follows that also condition ¢) of
Theorem 2 holds, so the single methods are correct Let
us now discuss their complexity If the magic graph 1s
regular, RC_, contains all nodes and the single methods
coincides with the counting method Let us now suppose
that the query 1s not regular It 1s easy to see that also
In this case the reduced sets are constructed m O (my)
time Let us now consider the implementation of Step 2
The integrated single method works as the magic set
method for all nodes in N; that have a distance from
the source node a greater or equal to s, Thus, the
method finds all possible paths from such nodes to all
nodes m Np  Hence, the magic set part of the
integrated method works 1n ((my, -m, )X mg ) time On
the other hand, the method works as the counting
method for all nodes with distance from a less than s,
Thus, 1ts cost 18 8(n, X mg) Note that the cost of the
Rule 3 (see the implementation of Step 2 for integrated
methods), where the results of the magic set method 15
passed to the counting method, has been already
included 1m the cost of the magic set part of the



integrated method Using a similar argument, 1t 1s easy
to see that the cost functions of the independent method
for non-regular magic graphs, with or without cycles, are
the ones shown 1n Table 3 Hence, all cost functions in
Table 3 are correct and, therefore, the single methods
are safe The cost function of the independent method
15 an upper bound for the cost function of the integrated
method for non-regular graphs, since m, >m; The
other relationships among cost functions can be easily
derived from Table 3 and Table 2 1

MG Independent Integrated

Regular || O(m +n, X mg) | ©(my +n, Xmg)

Non- (m, + O(my, +

Regular || +(m,-m;)Xmp | +(my-m,)Xmg
+n; Xmg) +n, Xmpg)

Tab 3 Costs of the single magic counting methods

Proposition 5 says that the single methods work
better than the basic ones and that the integrated single
method works better than the independent one We note
that the integrated single method comcides with the
magic counting method presented in [SZ1]

8. Multiple Magic Counting Methods

We now propose multiple magic counting methods
that fully exploit single nodes by including all of them
in the reduced counting set To this end, the second
argument of the magic set predicate records whether
this 1s the first occurrence of a node or the second This
time, both first and second occurrences are used to gen-
erate other nodes in order to identiy all multiple or
recurring nodes (thus, we may need to use the same
path twice)

begin
MS(0, 1, a),
I =0,
while M5(I, C, X,), do
begin
MS(I+1, C, X)) -
MS(I, ¢, X), L(X, X)), not(MS(_, 2, X)),
if MS(_,
I =I+1,
end,
end

1, X;) then C=2 else C=1,

At the end of the above fixpoint computation, the
multiple methods compute RC_, as the set of all single
nodes and RM as the set of all multiple/recurring nodes
in the following way (recall that the magic set M§ 1s
also needed for independent methods)

MS(Y) -M35(_, Y)

-—

357

RM(Y) -M5(_,2,Y)
RC(I,Y) -MS(I,1,7), not(RM(Y))

If RC happens to be empty (1 e, there are no sin-
gle nodes), then the integrated method adds the pair
(0,a) In order to discuss the complexity of multiple
magic counting methods, we denote by n, the number
of all simple nodes iIn Gy and by m, the number of arcs
in the subgraph of G induced by the simple nodes
Besides, we denote by n; the number of all simple nodes
b in G, such that there 13 no directed path from b to
any multiple or recurring node Let m; be the total
number of arcs entering the above nodes It 1s easy to
see that n, > n,, my >2m;, n, 2 n,, m, > m,,
n; > n; and m; >m; For the magic graph 1n Figure
2, wesee that n, =6, n, =2, m, =6andm; =3

PROPOSITION 6 The multiple magsc counting
methods are correct and safe and thesr costs are the
ones shown sn Table 4 Furthermore, Miny <a,0c Mmnp,

Mo <a,c Smp, Mint <a,c SINT and
Mo =g Mmr =gr Sint =g Smp U
MG Independent Integrated
Regular || ©(m +n, Xmg) | 6(my+n, Xmg)
Non- o(my + O(my +
Regular || +(my-m;)Xmp | +H(my-m, )X mg
+n; X mg) +n, Xmg)

Tab 4 Costs of multsple magsc counting methods

From Proposition 6, we infer that the independent
(resp, integrated) multiple counting method works
better than the independent (resp, integrated) single
method Besides, the integrated multiple method works
better than the independent one

8. Recurring Magic Counting Methods

In order to cope with cycles in the reduced set
computation, we observe that, in a graph with K nodes,
any path with length >2XK -1, 18 cychc Thus, we
have the following algorithm, which also uses a set-
cardinality function (an efficient operation that does not
change our complexity bounds)



begin
M5(0,1, a),
I =0,
K =1,
while M5(I, X,), I<2XK-1do
begin
MS(I+1, X)) - MS(1,X), L(X, X)),
K =cardinabty (MS(_, Y)),
I =I+1,
end,
end

At the end of the above fixpoint computation, the
recurring methods compute RC_, as the set of all single
and multiple nodes and RM as the set of all recurring
nodes 1n the following way

MS'Y) - MS(_, Y)
RM(Y) - M3(I, Y), I>K
RC(I, Y) - MS(I, Y), not (RM(Y))

If RC happens to be empty (1e, all nodes are
recurring) then the integrated method adds the pair
(0,8) to 1t

In order to perform the complexity analysis of
recurring methods, we denote by =n, and m, the
number of multiple and single nodes and the number of
arcs among such nodes Besides, we denote by n, the
number of all simple or multiple nodes 4 1n G, such
that there 18 no directed path from b to any recurring
node Let m; be the total number of arcs entering the
above nodes It 1s easy to see that n,, > n,, m, > m,,
Am > By, My > My, n; > n; and my, > m; For
the magic graph G. 1 Figure 2, we see that n, = 8,
n, =7, m, =9and m, =8

PROPOSITION 7 The recurring magic coualing

methods are correct and safe and thesr costs are the
ones shown sn Table 5 Furthermore, Riny <4,c Rinp,

Rinp La,0c Mo, RBine £a,0 Minr and
Rivp =gr Rinr =p Mint =g Minp O
MG Independent Integrated
Regular || 6(my, +n, X mz) O(mp +ny, Xmg)
Acyche || ©(ng, X my, O(ny X my
+n, Xmg) +n;, Xmg)
Cyclic O(n, X my + O(ny X my +
+{my, -m; )X mg +{my,—my ) X mg
+n, Xmg) +n, Xmg)

Tab 5 Costs of recurring magsc counting methods

Proposttion 7 states that again the mtegrated
method works better than the corresponding indepen-

58

dent method, and both methods work better than the
counting method However, the reduced sets are not
computed any longer in O(m.) time This means that
the recurring methods work better than the correspond-
ing multiple methods only on the average One could
object that the implementation of Step 1 for recurring
methods 1s a bit naive, and some other mmplementation
could work better Indeed, we have a smarter implemen-
tation  that computes the reduced set
O(m +ny, Xm,, ), thus the increase of complexity 1s
only hmited to the multiple nodes, whereas recurring
nodes are detected 1n hnear time (Due to the space con-
strants of this paper, this algorithm is not given here,
but see [Tar] for a depth algorithm that detects strongly
connected components 1n linear time ) We pomt out
that the cost component 2, Xm, 15 due to the fact
that we need to associate with every multiple node all
possible distances from the source node This means
that we cannot expect the same tangible improvement
In passing from multiple methods to recurring ones as
we had 1n moving from basic to single methods or from
single to multiple methods

10. Conclusion

We have presented a family of methods that com-
bine the strengths of two well-known methods for imple-
menting logic queries for databases, namely, the magic
set method and the counting method We have given
necessary and sufficient conditions for the new algo-
rithms, called magic counting methods, to be correct
and safe In addition, we have divided the family of
magic counting methods 1nto independent methods and
integrated methods, according to whether the magic set
part and the counting part run independently from each
other or co-operate Within each family, four methods
were introduced, these are the basic method, the single
method, the multiple method and the recurring method
Every method 1s 1dentified by two coordinates, one dis-
tinguishing between basic methods, single methods, mul-
tiple methods and recurring ones, and the second coor-
dinate establishing whether the method 1s independent
or integrated

A detailed efficiency analysis of the methods was
performed and 1t was found that that there exists a
clear hierarchy among them In fact, if the first coordi-
nate 1s fixed, then the integrated method works better
than the independent ones, if the second coordinate 1s
fixed, then a recurring method works better than a mul-
tiple one, a multiple one works better than a single one,
and a single one works better than a basic one Finally,
all magic counting methods are safe and work better
than the magic set method, and they coincide with the
counting method when the query 1s regular In Figure 3
we present this hierarchy in details The relationship



<, Is denoted by a a solid arc labelled q, while the rela-
tionship <, 1s denoted by a dotted arc The integrated
basic method and the the independent basic method
have the same cost, thus, they are represented by a one
node, B Since all magic counting methods have the
same cost function for regular cases, the corresponding
arcs are not included 1n Figure 3

These results were obtamed for simple kinds of
queries However, their extension to a larger class of
queries, called canonical strongly linear in [SZ1], 1s rea-
sonably simple Their extension to the completely gen-
eral case 1s harder, but possible, and constitutes a topic
for future research

Fig 3 Efficiency Hierarchy Among Magic Counting Methods

39

References

[Ban] Banailhon, F, "Naive evaluation of Recursively
Defined Relations,” Unpublished Manuscript,
1985

[BaR| Balbin Isaac, K  Ramamohanarao, ”A

Differential Approach to Query Optimization n
Recursive Deductive Databases,” Journal of
Logic Programming, to appear

[BMSU]Bancilhon, F , Maier, D, Sagiv, Y, Ullman, J D,
"Magic sets and other strange ways to imple-
ment logic programs”, Proc S5th ACM
SIGMOD-SIGACT Symp on Principles of Data-
base Systems, 1986, pp 1-15

Bancilhon, F , Ramakrishnan, R, " An amateur’s
introduction to recursive query processing stra-
tegies”, Proc ACM SIGMOD Conf, 1986, pp
16-52

Henschen, L J, Nagvi, S A, "On compihng
queries in recursive first-order databases”,
JACM 81, 1, 1984, pp 47-85

McKay, D, Shapiro, S, "Using active connec-
tion graphs for reasoning with recursive rules”,
Proc 7th IJCAIL 1981, pp 868-874

Marchetti-Spaccamela, A, Pelagg, A, Saccd,
D, "Worst-case complexity analysis of methods
for logic query implementation”, Proc ACM
SIGMOD-SIGACT Symp on Principles of Data-
base Systems, San Diego, Cal , 1987

Saccd, D, Zaniolo, C, "On the implementation
of a simple class of logic queries for databases”,
Proc 5th ACM SIGMOD-SIGACT Symp on
Principles of Database Systems, 1986, pp 16-23

Saccd, D, Zamolo, C, "The generalized count-
ing method for recursive queries, Proc 1st Inter-
natsonal Conf on Database Theory, Rome, 1986

Saced, D, Zaniolo, C, "Implementation of
Recursive Queries for a Data Language Based on
Pure Horn Logic”, Procs Fourth Conference on
Logic  Programmang, Melburne, May 25-29,
1987

Tarjan, R E, "Depth first search and linear

graphs algorithms,” SIAM J Computing, vol 1,
no 2, 146-160

Tsur, Shalom, and Zaniolo, Carlo "LDL A
Logic-based Data Language,” Proc 12th Int
Conference on Very Large Data Bases, 1986

[BR]

[HN]

[MK]

[MPS]

[821]

[5Z2)

[523]

[Tar|

(T2Z]

Ullman, JD, "Implementation of logical query
languages for databases”, TODS 10, 3, 1985, pp
289-321

van Emden, M H , Kowalski, R, ” The semantics
of predicate logic as a programming language”,
JACM 28, 4, 1976, pp 733-742



