
An Implementation of GEM -
supporting a semantic data model on a relational back-end.

Shalom Tsurt
Carlo Zanrolo

AT&T Bell Laboratortes
Murray HtII, NJ 07974

ABSTRACT

Thls paper pr8S8ntS a Slmp/8 spproach for extending the

reletlone/ system /NG/?ES into one supportlng s semantic data

mode/ /t describe a DBMS consisting of (I) a user-friend/y
front-end, supporting the GEM semantic date mod81 and query

langusge under the UNIX’ time-sharing system, and (II) a
dedlcsted back-end processor provldlng emcfent support for

database tranSaCtiOnS, concurrency control and recovery GEM

8xt8ndS the relatiOna/ model t0 support the notions of 8ntltf8s
with surrogates, the r8/ationshlps of aggregation and

g8n8ra/lzatiOn, nu// values and Set-VakI8d attributes, and

prOvld8S simple extensions of O/./EL to handle these new

constructs In this proposed lmplementatfon of GEM, the
rebtlonal database processor IDM 500 by BrlttOfPL88 IS used

as the back-end mschlne

1 Introduchon

Data Base Management Systems (DBMSs) based on the
relahonal approach have gamed wade popularity due to th8U

abikty of providing users with a simple tabular view of data and
hlQh-l8V8l set-onented Data Manipulation Languages (DMLs) for

querying and updating the database These features enhance

the ease of us8 and data independence of these DBMSs, thus
reducing the COSt Of database-intensive appllCatlOn proQrammlng

[Coddl], they are also important for prOvldinQ a good
environment for back-end support and distributed databases

(particularly, b8CauS8 they r8duC8 communication overhead)

The main limitahon of the relational model IS its semantic

scantmess, which often prevents relahonal schemas from

modeling completely and expresstvely the natural r8latlonships
and mutual constramts b8tW88n entities This shortcoming has

motivated the mtroduchon of semantic data models, such as

that described in [Ch8n] Where reality IS modeled in terms of
entities and relahonshtps amonQ entities, and that presented in

[SmSm] where relationships are characterized alonQ the

PermIssIon to copy wlthout fee all or part of this matenal 1s granted
provided that the copws arc not made or dlstnbuted for dmxt
commercial advantage, the ACM copyright notice and the title of the
pubhcation and its date appear, and notlce 1s given that copying LS by
pcrmlsslon of the Assoclatlon for Computmg Machmery To copy
otherwnse, or to republish, rcquxcs a fee and/or specific pcrmlsslon

0 1984 ACM O-89791-128-8/84/006/0286 $00 75

Orthogonal coordmates of aggregation and genera/lzatfon

Semantic data models prOvid8 a good basis for enterprise

mOd8linQ and Conceptual schema d8SiQn, and for int8QratmQ
programming languages and database facikhes [Taxis, Brod,

KIMc, Adplx, Catt]

An obvious approach to semantic data models consists of
abandoning relational DBMSs and buildmg new systems based
on the new models Of particular interest to us, because it

focuses on high-level DML, ia the work on DAPLEX [Shop] that
provides a user-friendly DML supportmQ the notions of
aggregation and generalization

Her8 instead we explore the evolutionary approach of of addmQ

semantic data model Capabiliti8s to relational systems This
approach IS attractwe from a practical wewpomt. smce tt

ensures compahbtkty with existing systems and the preservation

of the considerable know-how acquired in building DBMS%

database machmes and distributed databases usmQ the
relational approach This approach was prevtously advocated in
[CoddP], where surrogates and null values were found necessary
for the task HoWeVer, Codd concentrated on conceptual

issues, without describing a Specific architecture or how current

relational systems can be modtfled to provide the new
funchonality

A first obtectwe of this research IS to combine the advantages

of the relational approach with those of semanhc data models, a
second IS to preserve compatibility with existing relational

DBMSs Therefore, GEM was designed as an extension of

INGRES that adds a rich set of semantic oonatructs to the

relational model (such as the notions of entities with surrogates,
Qenerakzation and aQQreQation, null values and Set-Valued
attributes) and provides an easy-to-use and general-purpose

DML for the speciffcation of high-level set-oriented queries and

updates on such a model

A second obfective of thm work IS to prOvid8 for better r8COV8ry

and performance by building GEM on the top of a back-end

system rather than on the current UNIX’ file system, thus
avoiding the problems described in [Stone] We also wanted to
design a system for experim8ntmQ wtth various front-end and

back-end combmahons all communicatmg through a standard
Interface Thus we have an architecture based upon multlple

layers of data representation along the lutes recommended in

[ANSI]

t Currently with the IBM Scientitlc Center Wta IUaeI

* UNIX ia a trademark of AT61 Bell Laboratorio

286

Fmally, we wanted to assess the suitabtkty of current database

machines to support semantic data models Under the influence
Of [DeHa], we haV8 selected an evolutionary and inductive

solution approach to the problem Thus, rather than postulatmg

a new architecture and new commands to support GEM’s new
semanhc constructs, we have decoded to experiment first with a
commercial back-end machine to determine its sultabtkty to the
new task, hoping to formulate recommendations for archltectural
improvements based upon lessons learned from thm expertence

The IDM 600 by Srltton-Lee, used as our primary vehicle of

back-end support, has lngU8nC8d the design of our Interface and

provided ready-made software very expedient in our endeavor

WMI

USERS

DATA
BASE

Figure 1 Architecture of the system

FlQUr8 1 shows the general architecture of our system There

are basically two levels of data definmon and manipulation The

external level, consisting of GEM semantic achemas and data

manipulation commands. suppkea the interface to users ’ The
internal level consisting of a relational storage schema and of
IDM’s commands already in theu IDL parse-tree form directly

processable by the back-end ’ The translation between the
upper and the lower level IS handled by the host, and users
communicate wtth the back-end machine through the host-

restdent UNIX system There, data defimhons and queries are

parsed and translated into corresponding parse-trees, which are

2 IDL lo the oUEL Ilko DML @&+wfted by the tDM 600

then passed to the back-end machme Finally the processed

results are returned to the user wa the host system

The main focus of this paper IS on the translation of GEM

semantic schemas and data mampulahon commands mto

equlvatent constructs processable by the relational back-end
We begin with a brief discussion of GEM’s DDL and DML and
then proceed with the specnics of the translation

2 The GEM Data Model

Ftgure 2 gives the GEM schema for an example adapted from
[LaPt]

SUPPLIER (Company c, Address c) key(Company),

DEPT (Dname c. Floor 12) key(Dname) ,

ITEM (Name c, Type c null I-“, Colors (c)) key(Name),

SUPPLY (Camp SUPPLIER, Dept DEPT, Item ITEM, Voli2),

EMP (Name c, Spv EXMPT null allowed, Dept DEPT,

[EXMPT(Sal 14). NEXMPTfHrlwg 14, Ovrt 41,

[EMARRIED (SpOUS8 4, others])

key (Name), key (Spouse),

Figure 2 The GEM sCh8mS describing the following database

SUPPLIER the namer and addressecl of rupplier compank5

DEPT for each department It5 name and the ilour where ft lo
located

ITEM for each item, Ito name, 115 type, and e ret of color5

SALES for each department and Item the volume of 5alee

SUPPLY what company 5upplier what item to what department in
what volume (of current stock)

EMP the name, the eupervlror, and the department of each
employee,

EXMPT employeea can either be exempt (all eupervfrcm are) or

NEXMPT non-exempt, the fonef earn a monthly salary while the
latter have an hourly wage with an overtime rate

EMARRIED Employee8 can either be marded or not, the 5pouu’s
racial security number in of interest for the married cnee

FlQur8 3 gives the syntax of the GEM DDL (GEM’s data types

- not defined in FlQUr8 3 - include l-, 2- and 4-byte integers,

respectwely denoted by 11, 12 and 14, character strings, denoted
by c. and all the remaining IDM’s types) A GEM aCh8ma

COnalStS Of a Set Of UniqU8ly named 8ntlti85, and one or more
keys SpeOifi8d for each entity Thus, if we let relations

correspond to entities, the relational model and GEM baatcally

share Producttons 1 and 2 The biQ difference IS in the

declaration of attrtbutes Whereas a relational system would be

lImIted to the pattern used to generate SUPPLIER and DEPT,

<AttrSpec> - <Slmpl8Attr> -L <DataAttr>,

GEM provides various extensions The grst is the option of

addmQ a <null spec> to specify that an attribute can be null,
by either designating a value from the attribute’s domain to
serve in this role, or by aSkIng the system to handle this
problem (at the cost of additional storage) For instance in

ITEM the user let a hyphen denote a null value for the attnbute

Type

Also, GEM supports set-valued attributes (Productions 4 and 6).

8Q, “Colors (c)’ m ITEM defines an attribute havinQ as value
a set of (zero or more) data-items of type c (character string)

The relationshIp of aggregation IS supported in GEM via
reference attrlbut8S, whmh have entity OCCW8nC8S as their
vslues Thus the attribute Dept in SALES has its value an
occurrence of the entity DEPT. and Item has an occurrence of

287

ITEM as tts value Null values can also be allowed for reference

attrrbutes (Productron 7)

1 <Schema> { <Entity> ,)

2 <Entrty> <EntName>

(<AttrSpeo> (, <AttrSpec> j] { Key j

3 <AttrSpec> <SimpleAttr> 1 <SetAttr>

1 <RefAttr> 1 <Generalization aubkst>

4 <SrmpleAttr> <DataAttr> [<null spec>]

5 <DataAttr> <AttrName> ” <DataType>

8 <null spec> @’ <datavalue> 1 oall’ ’ systsm

7 <RefAttr> <AttrName>’ ’ <EntName> [aall sjfewsd]

8 <SetAn <AttrName> ’ ’ ‘(’ <DataType> ‘)’

0 <Generakzahon sublmt>

‘[’ <Entity> (, <Entity>] , <Entity> ‘I’ I

‘1’ <Entity> 1, <Entity>) , etkrs ‘I’

FIgwe 3 The syntax of GEM DDL (Braces denote zero or

more occurrencea of the enclosed eubetrmg
whrle brackets denote zero or one occurrence of

the same. braces, brackets and colons
enclosed In eemrquotee denote themselves

CIDMJ 1

Finally (Production 91, an <AttrSpec> can be a generakzahon

eybkst that epecdies two or more disjoint altemabvee enclosed
In brackets the keyword etbsrs is used to denote that the entity

need not belong to one the subentrhee in the list For instance

m EMP we find two generalization subksts The (ret captures

the employment statue of an employee and consists of the two
mutually exclusive subentities EXMPT and NEXMPT (an

employee cannot be at the same time exempt and nonexempt)

The second describes the marital statue of an employee where

one can either be an employee-married (EMARRIED) or belong

to the otbsm category Atthough not shown in this example, each
subentity can be further subclassified in the same way as shown
here, producing a generalization hierarchy called an entity

fami/y Within an entity family, attflbute names must be unique

Any subset of the attributes from the various entities in a family

can be epecitled to be a key, no two occurrences of entities in

the family can have the same non-null key value Name and

Spouse are the two keys for the EMP family However, the

uniqueness constramt is waived for key values that are partially
or totally null, thus the effect is the same as if Spouse were

declared a key for the subentity EMARRIED

DBMS users’ prevailing view of schema8 and data IS graphical
(e g , tabular, hierarchical or network-like). rather than syntactic

Therefore, we want a graphical - preferably a tabular -

representation for our schemes A simple solution to this

problem IS shown in Figure 4

There IS an obvious correspondence between the in-line schema

m Figure 2 and its pictorial representation in figure 4, all entity

names appear m the top Ime, where the nesting of brackets

defktes the generalization hierarchy A blank entry represents

the option otbsrs Under each entity-name we find the various
attributes applicable to this entity a We found thus representation

most useful for formulating queries and update requests. also It
defines the skeletons and headings of the row-columns tables

used to present query results to users

3. Tbe GEM Query Language

GEM IS designed to be a generalization of DUEL [INGR]
Whenever the underlying schema IS sttnctly relational (I 8, all
attributes are <DataAttr>) GEM reduces to OUEL with which

we assume that our readers are already familiar However, GEM
allows entity names to be used as range variables without
explicit declarations Thus the query, ‘Find the names of the

departments located on the thud floor,” that in QUEL can be
expressed as

range of dep IS DEPT

retrieve (dep Dname)

where dep Floor-3

Example 1 List each department on the 3rd floor

In GEM can also be expressed as

retrjsve (DEPT Dname)

wbsrs DEPT Floor - 3

Example 2 Same as Example +

In the eyntachc context of the retrieve and rbers clauses, the

previously undeclared rdenhner DEPT IS interpreted by default as

a range variable over the entity DEPT

This option of omitting explicit range declarations improves the

conciseness and expressivity of many queries, particularly the

simple ones, nor does any loss of generality occur since range

declarations can always be mcluded when needed

31 AggTegatkw

A reference attribute, as seen by a GEM user, has an entity
occurrence as Its value For instance In the entity SALES, the

attribute Dept has an entity of type DEPT as value, and Item an
entity of type ITEM, much in the same way as the attribute Vol
has an integer as value Thus, while SALES Vol IS an integer,

SALES Dept IS an entity occurrence of type DEPT and

SALES Item IS one of type ITEM No entity occurrence can be

printed as such Thus, the statement

raage of S IS SALES

retrieve (S)

Example 3 A eyntactrcally incorrect query

IS mcorrect m GEM, as it would be in QUEL Since S Dept

denotes an entity occurrence (of type DEPT), the following
statement is also incorrect

rsoge of S IS SALES

retrieve (S Dept)

Example 4 Another incorrect query

While reference attrrbutes cannot be printed. emgle-valued and

set-valued attributes can be obtained by using QUEL’s usual dot

notation Thus,

retrieve (SALES Vol)

Example 5 Fmd the volumes of all SALES

will get us the volumes of all SALES Moreover, since

SALES Dept denotes an entity of type DEPT, we can obtain the
value of Floor by srmply appending ” Floor” to it Thus,

288

1 SUPPLIER I

Company Address

I DEPT 1

Dname 1 Floor

I SALES I

Dept DEPT 1 Item ITEM 1 Vol

I SUPPLY I
1 Comp SUPPLIER 1 Dept DEPT) Item ITEM 1 Vol 1

EMP [EXEMPT 1 NEXMPT 1 [EMARRIED 1 I

Name 1 SpvEXMPT 1 Dept DEPT 1 Sal 1 Hrlwg 1 Ovrt 1 Spouse 1

Figure 4 A grephrcal representation of the GEM scheme of Figure 2

refneve (SALES Dept Floor) 32 -boo
wlrere SALES Item Type-“sport”

Example 6 Find all the floors where departments selling

Items of type sport are located

will print all the noore where departments that sell sport items

are located The convenience and naturalness of this extension

of the dot notation, also used in [Taxre], cannot be
overemphasized, as illustrated by numerous examples [Zam2] It

suppkee a very convenient and natural construct that ekmmates

the need for complex Join statements in most queries (much in

the same way as DAPLEX does [Ship]) For instance, consider
the classic example

Subenhhes names can be used in two basic ways The Rrst IS

as default range variables Thus, to request the name and the

salary of each married employee one can write

rnage of e IS EMARRIED

retrieve (e Name, e Sal)

Example 9 Fmd the name end salary of each mamed employee

or simply,

retrieve (EMARRIED Name, EMARRIED Sam

Example 10 Same as in example 9

retrieve (EMP Name)

wbsre EMP Sal > EMP Spv Sal

Example 7 Fmd all employees that make more than their supervisor

Thus any attribute within en entity family can be applied to an

occurrence ranging over any subtype in the family (wrthout

ambrgurty since each name IS unique within the family)

Since the dot notation can be viewed as denoting a functional

composrtron, fonts rmpkcltly specrfied through the use of the dot

notation will be called functional joins An alternative way to
specify Jome IS by usmg expkcit entity joins. where entity

occurrences are directly compared, to venfy that they are the

same, using the rdentrty test operator, IS l For instance to nnd all
the employees working in the same department as J Black we

can write

Subenhty names can also be used in the quahflcation condrhone

of a where clause For Instance, an equrvalent restatement of the

last query is

retrieve (EMP Name, EMP Sal)

where EMP rs EMARRIED

Example 11 Same as Examples 9 and 10

raageofErsEMP

retrieve (EMP Name)
wbsre EMP Dept rs E Dept and E Name - “J Black”

Example 8 Using en entity Join to ffnd all persons working
m the same department es 3 Black

(Retrieve the name and salary of each employee who IS an
employee-married) For each employee who is married but non-

exempt the last three queries return his or her name and a null
salary Thus, they are different from

retrieve (EXMPT Name, EXMPT Sal)

where EXMPT rs EMARRIED

Example 12 Fmd all exempt employees that are mamed

that excludes all non-exempt employees at once The query

retrieve (EMP Name]
where EMP IS EXMPT or EMP IS EMARRIED

Example 13 Fmd all employees that are exempt or memed

289

retrieves the names of all employees that are exempt or

married

4 Mapping the GEM Scbeoms mto Internal Relatiam

An Important declslon, affecting the complexity of query

translation mechanisms and the efltciency of query execution
and storage utilization, IS the mapping of an entity family into
internal relations For instance in [SmSm], a family Is partltioned

vertically and the fragments are linked together using the

Codaeyl set-coupling mechanism. while the Local Database

Manager described in [ChDa] supports various options including
vertical and horizontal partitioning, and physical clustermg of
fragments However, additional Joins are needed for supportmg

queries in the presence of vertical fragmentation and set

differences and intersections are needed with horizontal
fragmentation (direct control of pointers and storage structures

can minimize the cost of these operations [ChDa]. but this

capability IS not at hand here since we build on top of a
relational system) Also we want to keep the query mapping as

simple as possible, and take direct advantage of the IDM’s

indexing and clustering capabilities All these conslderatione
lead to an implementation where a whole entity family m mapped
into one internal relation The main drawback of this solution IS

the additional storage often required, although thm IS minimized
with a technique described later

Given a family with E as its top entity, the internal relation

storing all family entitles will be denoted by IE Thus IEMP is

the internal relation corresponding to EMP and all Ito subentItles
(namely EXMPT, NEXMPT and EMARRIED)

Each entity occurrence IS uniquely ldentlfled by the value of its

surrogate, that will be denoted by the symbol “#” Reference
attributes are implemented by linking entity occurrences via

their surrogate values Thus in Figure 4, the reference attributes
Dept and Item in SALES are respectively implemented by the

integer attributes Dept# and IternSt that hold surrogate values of

DEPT and ITEM

Surrogates are inaccessible to users, stored as integers in the

internal relations. and maintained by the system by means of the

following dictionary table

SURRGT (Entity c, Count 14)

Counts for an entity are incremented when tuples are mitially

loaded, or when new tuples are appended to relatlone Thus,

upon the addition of tuple t to entity E, t # is assigned the value

of SURRGT Count where SURRGT Entity - “IE”

42 NaUValuu

Every simple attribute or a reference attribute can be set to null

If the user allows this option m the schema Null values for

reference attributes are always Internally represented as zeros

For simple attributes however, the user has the optlon of either

epeclfymg an Internal representation for nulls - e g , zero could

be used to represent a numeric null - or urmg a system

specittcation Therefore, for each attribute E A which IS null with

the system option, a flag-attribute, A%, IS added, such that when
EA-nuUthenEA%- 1 and the value of E A is ignored The
value of E A IS read if E A% - 0

4 3 set-valued dlrlbetu

Smce only normalized relations are supported by the back-end,
we store set-valued attributes in separate user-mweible
relatlons, where each set member IS linked to its set-owner

tuple, by pointing to Its surrogate value In our sample schema

the Colors attribute of entity ITEM 18 stored as

IITEM-Colors (Ref# 14, Value c)

where the column Value holds the color information. and Ref#
holds values of surrogates of IITEM The internal schema for the
example of Figure 2 is given in Figure 5

4 4 Rqrewatahn of families ad sdmtttiea

For each generaltzation subkst a discrimmant field DJ%, invisible

to users, IS included in the underlying relation For instance. for
a tuple t of EMP. t Dl% - 1 denotes an EXMPT and t Dl% - 2

denotes NEXMPT Moreover, t D2% - 1 denotes an EMARRIED

and t D2% - 0 corresponds to others If an employee IS not
married, then the value Spouse entered in IEMP becomes
immaterial. and so we set it to save storage Since this IS a

character string attribute, we set it to a blank and store it as a
compressed data type so that all leading blanks are eliminated

[IDM] Numeric attributes in inapplicable subentities are metead

set to the value zero and stored as compressed data types to
remove all leading zeros [IDM]

5 Meppiog of GEM mto QUEL

We will now describe the mapping of default variables, entity
joins, and implicrt Joins into equivalent expressions of QUEL

Here we use QUEL for clarity of exposition, but in reality we map

them into IDL query trees [Tsur]

The translation of Example 2 illustrates the treatment of default

variables

raoge of DEPT is IDEPT

retrieve (DEPT Dname)
where DEPT Floor-3

Example 15 The tranelatron of the query in Example 2

51 EhtltyJolm

Identity tests on entity occurrences, speclfled by is or ismt, are

respectively translated into equality and mequakty tests on their

surrogates Thus the query of Example 8 is tranalated as

follows

raage of E u1 IEMP

raage of EMP IS IEMP
retrieve (EMP Name)
whsre EMP Dept# - E Dept# and E Name - “J Black”

Example 16 The translation of Example 8

52 vavhbka~ovor~tka

Variables ranging over subentities are translated into range

variables over the corresponding internal relation and a
condition on the pertinent diecrimmant neld For instance, since

D2% -1 In IEMP denotes EMARRIED, Example 9 Is translated

into

raage of e IS IEMP

retrieve (e Name, e Sal)

where eD2%-1

Example 17 Tranelatron of Example 9

Default range variables are treated in the same way For
instance Exsmple 10 18 translated into

290

ISUPPLIER (# 14, Company c, Address c)

IDEPT (# 14, Dname c, Floor 11)

IITEM (# 14, Name c, Type c) !ITEM-Colors (Ref# 14, Value c)
BALES (# 14, Dept# 14, Item# 14, Vol 12)
ISUPPLY (# 14, Comp# 14. Dept# 14, Item# 14, Vol 12) ,

IEMP (I# 14, Name c, Spv# 14, Dept 14. Dl% 11, Sal 14, Hrlwg 14, Ovrf 14, D2% I 1, Spouse 4,

Figure 5 The internal scheme correepondmg to the GEM schema of Figure 2

rsnge of EMARRIED IS IEMP

retneve (EMARRIED Name, EMARRIED Sal)
where EMARRIED D2% - 1

Example 18 Trenelatron of Example 10

Consider now the query in Example 11 mvolvmg an entity join of

EMP with EMARRIED The translation

raage of EMP is IEMP

raage of EMARRIED is IEMP

retrieve (EMP Name, EMP Sal)

where EXMPT D2%- 1 asd
EMP # - EMARRIED #

Example tg A trenelatron for query of Example 11

IS correct, but not very efllcient considering that both entities

EMP and EMARRIED are implemented by the same relation
IEMP, and therefore both variables in Example 19 denote the

same tuple Therefore, when confronted with an entity join, our

translator checks whether this involves subenhes from the same

family When so, one variable name IS simply substituted for the

other in all occurrences, and so unnecessary range declarations

and surrogate equality tests are eliminated Thus the previous
query is replaced by

we of EMP ts IEMP

retrieve (EMP Name, EMP Sal)

where EMP D2%- 1

Example 20 An optimized translation for Example 11

LikewIse, the translahon of Example 13 IS

range of EMP is IEMP

retrieve (EMP Name) where
EMP Dl%-1 or EMP D2%-1

Example 2 1 The traneletron of Example 13

53 Flmcrkt6atJ*

lmplrcrt funchonal joins are translated into explicit ones by the

mtroduction of addrtional range variables For instance,

retrieve (EMP Dept Floor)

where EMP Name - “T Green”

Example 22 At which floor IS T Green’s department located?

IS translated into the followmg query (D IS a unique name

generated by the translator)

range of EMP M fEMP

range of D is !DEPT

retrieve (D Floor)
where EMP Dept# - D # sud EMP Name - “‘T Green”

Example 23 Treneletron of Exemple 22

The translation of Example 7 IS (E IS a unique name generated

by the translator)

range of EMP rs IEMP
rsnge of E is IEMP

ntrteve (EMP Name)
where EMP Sal > E Sal
aod EMP Spv# - E #

Example 24 The trenelation of Example 7

In the general case, a functional join chain of the form

ntneve (E A0 A 1 A n)
will be translated as

raogeefE1 Is

reoge of En is

wieve (En An)
wbere~Ao#-El#

mdElAl#-E2#

d En-t A”-,# - E,, #

The proper range for El, , En IS derived from the schema

descrrphon stored in the data dictionary During this process,

additional checks are performed to ensure that, for each 0 < J

< n, Aj is a reference attribute of El, and An IS either a simple

or a set-valued attribute of An

6. NoUVahes

Our treatment of null values uses three-valued logic as In

[CoddB], but it 1s based on a new mterpretation of nulls, the no-

information interpretation’. that along with a new treatment of

sets and aggregate operations eliminates the logical problems

besetting Codd’s approach [Zarnl] Three-valued logic IS

needed to handle expressions such as

ITEM Type I- “sport”

oet (ITEM Type - “sport3

Figure 6 Two logically equrvalent condrtrone

For an ITEM occurrence where the Type attribute is null, one

may try to evaluate all comparisons to FALSE, then the first

condition in Figure 8 would evaluate to FALSE and the second to

TRUE, a contradiction However, consider the three-valued logic

approach, all comparisons where one or both operands are null

evaluate to a (logical) q afj

291

NOT

T F

F T

daall

Flgure 7 Three-valued logrc tables

Then, Boolean expresslons of such terms are evaluated

accordmg to the three-valued logic tables of Figure 7

Therefore, both ITEM Type I- “sport” and ITEM Type - “sport”

evaluate to a loglcal null and, accordmg to Figure 7, so does

the negation of the latter Thus three-valued logic allows a

consistent truth-functional evaluation for expresslons mvolvmg

negations and null values To answer a query, the systems

selects all tuples for which the whsra clause evaluatea to TRUE,

tuples that yield FALSE or the loglcal aaJf are discarded a

While three-valued logic would be slmple to implement in a

system that supports a general-purpose programming language,
our IDM 500 only supports the standard two-valued-logic
version of QUEL To overcome this problem, we emulate three-

valued logic by two-valued logic via query reformulabon Thus,
for each GEM query Q we generate an equivalent QUEL query

0’. such that Q’ evaluated in two-valued logic produces the

same result as Q evaluated in three-valued logic

To acoompksh this, we parse the when clause of a query and
then transform only its comparison terms Comparmon terms

have the form

tABk

or,

tABrB

where, r and t are range variables, k IS a constant, and 0 IS one

of the comparison operators -, I-, C. <-, >, >- The
transformation begins by counting the number of negations

between the root of the parse tree to the term, if this number IS
odd the term IS negabve, otherwise it IS posrbve Then, positive

terms m the parse tree are respectively replaced by

(tArswtaaU aad tAlk)

and

CtAisaatnaU sadtB=tnaU sad tABtB)

Negative terms are respectively replaced by

(tAuraaU or tABk)

and

(tAlsnaU ortBaauUor tAfJtB]

(Naturally, If t A or r B are not allowed to be null according to

the schema’s declarations, these transformations will either be

slmpllRed or omitted) Finally, we transform each condition such

as “t A IS null” or “t A mot null” by taking into account the

internal representation of nulls for A Thus If m ProductIon 6, A

was declared null <datavalue>, these two map respectively

IntO t A - <datavalue> and tA I- <datavalue>
Otherwise the system option was chosen and these two map
respectively into t A% I- 0 and t A% - 0

7 Set-Valued Attnbutes and Set Operahorn

The availability of set-valued attributes adds to the conciseness
and expresslvlty of GEM schema8 and queries [Zam2] However,
set valued attributes pose some non-trivial lmplementatlon

problems After investigating various approaches we have
chosen to implement each set-valued attribute by an additional

user-mvlslble internal relation where a tuple stores a set member

with the surrogate value of the parent tuple For example, m our

sample schema tne Colors attribute of entity ITEM and Its parent
relation will be stored as the pair

IITEM (I#, Name, Type) IITEM-Colors (Ref#, Value)

In GEM, a query such as, “For each Item print Its name, its type
and the number of colors in which it comes,” can be formulated
as follows

raage of It IS ITEM

rstrieve (It Name, It Type, Tot-caaat(lt Colors))

Example 25 Usmg a set-valued attrrbute

Then, such a query IS mapped mto the followmg (C IS a unique
name generated by the translator)

rsage of It 19 lITEM

nage of C 19 IITEM-Colors

retrwe (It Name, It Type, Tot-

count (C Value by It # where C Ref# - It I#))

Example 26 The translabon of the prevrous query

In order to provide users with the oonvonience of manipulating

aggregates GEM supports the set-comparison primitives
originally Included in QUEL [HeSW] Thus, in addition to the set-

membership test, m, GEM supports the following operators

(set) equals
I- (set) does not equal

> properly contains

>- contains
< IS properly contained in
<= IS contained m

These set-comparison operators and the aggregate operations
of coast and any can also be applied to sets of entity

occurrences (the other aggregate operators cannot) Thus the

query, “Find the Items supplied by every department on the 2nd
floor,” can be expressed in GEM as follows (a set is denoted by

the enclosmg braces)

rstneve (SALES Item Name)
where (DEPT wbcre DEPT Floor - 2) <-

(SALES Dept by SALES Item)

Example 27 Fmd the rtems supphed by every department

at the 2nd floor

To translate this query we map operations on entdy occurrences

into operations on their surrogate values Then we tranalate
subset relationships mto equivalent aggregate expressions that
can be evaluated with reasonable efficiency For matanoe the
previous query 13 translated as follows (“It” IS a new variable

292

generated by the translator)

rsnge of SALES IS ISALES

range of DEPT IS !DEPT
rsnge of It IS IITEM
retneve (It Name)
where count (DEPT # where DEPT Floor-P) -

count (DEPT # by SALES Item# wbers

DEPT Floor - 2 sod DEPT # - SALES Dept#)
snd SALES Item# - It #

Example 28 The translatron of the prewous query

These two querres are equivalent smce R IS a subset of S If and

only if the cardmakty of R fl S is equal to the oardmakty of R

More generally the pattern

1x1 by Yf where 21) <- (X2 by Y2 where 22)

IS implemented as follows

cetmt(xl byyfwbsrezl)-

count Clef by yf,y2 where 21 sad ~2 ad x1=x2 and y1-y2)

The remammg set relationships are Implemented in a srmrlar
fashron, except for the membership test ut A membership test,

say x III S, IS Implemented by checking that the intersection

(x) fl S IS not empty This test can then be performed efficiently
usmg the aggregate operator any that returns zero if a set IS

empty and one otherwise

In the presence of null values, the set operators must be

properly extended A comprehenarve solution of thus interesting
problem 18 presented In [Zanii], for the specdfc case at hand

(sets of values rather than sets of tuples), It reduces to the

followmg simple rule Null values are excluded from the
computation of sll aggregate functions or expressions,
moreover, they must also be disregarded in the computation of

subset relationships

8. updates

GEM supports QUEL’s standard style of updates, vra the three

commands, append to, replsce, and delete, whrch generakre the

corresponding relational operators in a natural fashion

81 Appeod

The first example involves inserting an occurrence in an entity

that contains only simple attributes

append to DEPT (Dname - “toys’, Floor -2)

Example 29 Addmg the “toys” department at the second floor

Thus IS translated into (the IDL parse-tre repreaentabon of)

appsed to IDEPT(#-NEXT(DEPT), Dname-“toys”, Floor-2)

Example 30 The translatron of Example 29

The functton NEXT generates a new surrogate value by looking

up m SURRGT the current counter value (for DEPT), then

mcrementmg It by one The relabonships of aggregation and

generakrabon are handled in a natural fashion, as illustrated by

the following example

appsnd to NEXMPT (Name - “T Jones”, Spv - EXMPT,
Dept - DEPT. Hrlwg - 5 0, Ovrt- 1 8)

where EXMPT Name - “F Green” sad DEPT Dname - “toys”

Example 31 T Jones IS hrred m the toys department, under
F Green

This request IS translated mto

range of DEPT IS IDEPT
rsnge of EXMPT IS fEMP

append to IEMP(# -NEXT(IEMP), Name - “T Jones”,
Spv# - EXMPT #, Dept# - DEPT #, Dl% - 2.
Hrlwg - 5 0, Ovrf -1 8, D2% - 0)

wbcre EXMPT Name - “F Green”
ssd DEPT Dname - “toys” pad EXMPT Di% -1

Example 32 The transfafron of Example 3 1

In parsing Example 31. EXMPT and DEPT were interpreted as

default variables and given the respective ranges IEMP and
IDEPT, since EXMPT IS a subentity of EMP the condition

EXMPT Dl%-1 was also added to the whsrs clause However
NEXMPT. since it follows append to, was syntactically interpreted

as an entity name, not as a range varrable, thua It was

translated into the relation name IEMP and the assignment Dl%

-2

Example 31 involves an explicit assignment to a subentity,

rmplrcrt assignments are also supported in GEM For instance
the result of the previous query does not change if we replace

“NEXMPT” by “EMP” since the assignment of a value to Hrlwg
and Ovrf would cause the entity to be assigned to the NEXMPT

subtype, anyway - a case of redundant but consistent

assrgnment Symmetrically the absence of an assignment for

Spouse results a the entity being classrged as ethers than

EMARRIED (thus 02% - 0) The translator deduces implicit

assignments and checks for consistency by consultmg the

dictionary tables contammg the schema description

An interesting problem arises when several tuples are added at

once Take for example the following request

appsmf to SALES (Dept- DEPT, Item- ITEM, Vol - 100)

where ITEM Name - “catalog”

Example 33 Send 100 catalogs to each department

Conceptually, this can be translated as follows

we of DEPT IS IDEPT

rsnge of ITEM IS IITEM

appead to fSALES(#-NEXTWALES), Dept#- DEPT #,
Itemtt-ITEM SC, Vol- 100)

wkers ITEM Name - “catalog”

Example 34 The translation of Example 33

Here we want NEXT to generate a new number for each new
tuple appended to BALES The simplest way to aocompkah this

IS to increase a counter by one, for each tuple appended
Unfortunately even this simple operation cannot be requested

from the IDM machine (as it exceeds the power of the so-called

complete relatronal calculus or algebra) Instead, we have to
bring each target tuple into the host, assign a unique value to Its
surrogate, and finally return it to the back-end and append It to

ISALES

82 Rephe

Updating simple and reference attributes IS easy in GEM For
Instance, to transfer a certam type of Item from one department
to another, one only needs to say

replace SALES (Dept - DEPT)
where SALES Item Name - “sport-clothes”

and DEPT Dname - “sport”

Example 35 Reassrgnmg sport clothes lo the sport department

293

The translation of this request proceeds along the lines of query

translations prevrously dtscuased, yielding (‘It” ra a umque name

generated by the translator)

rsage of SALES is ISALES
raage of DEPT UI IDEPT
raage of It u1 IITEM

repface SALES (Dept# - DEPT #)
where SALES Item# - It X sad lt Name -“rportclothea”
aad DEPT Dname-“sport”

Example 36 The translation of Example 36

The ease of use of GEM ia well illustrated by a comparison of

Example 35 with Example 36 that is basically what a user of

INGRES, using a relational schema, would have to write to
express an equivalent request

83 Delete

Referential integrity constraints demand that all the reference to

an entity occurrence must be set to null (if this is allowed)

before the occurrence can be eliminated For instance. since
null is allowed for the Spv attribute in EMP. the request

d&e EMP wkers EMP Name - “r Green”

Example 37 Remove employee T Green

WIII result in the removal of T Green’a tuple from the database

and in the setting to null of the Spv references for employees

working for T Green However, since the reference attributes

Item in SALES and Item In SUPPLY point to ITEM and null IS

dissallowed for both, the update

delete ITEM
wbsn ITEM Name - “soap-drab”

Example 38 Dropping the item soap-dish from the stock

WIII be executed only if no SALES or SUPPLY record refers to

thus “soap-dish” ITEM, otherwise the update will be rejected and

an error-message generated

Among the alternative solutions considered for maintauung the

referential mtegrrty constraint, one consists of linking together

the referred tuple with the referring ones in the style of
Codasyl’s owner-coupled set rmplementations A second
consmts In keeping a reference count in each tuple referred by

others [ChDa] Both approaches require aome addrbonal

operahons. not only upon deletiona, but also upon exe&ions of
rsptsce and append In the end, we opted for a solution that

keeps the query mapping simpler and confines all integrity
maintenance operations within deletions This solution employs
the temporary relabon ITEMP(No 14) and the atatements

b&a truructzaa and sad tramactfsa Thus the query of Example
37 IS trenslated as follows

bcgln trMsectien
rsage of EMP is IEMP

rstrieve tato ITEMP(No - EMP #)

wbcre EMP Name - “T Green”

raage of TEMP rs ITEMP

delete EMP wksrs EMP # - TEMP NO

@see EMP (Spv# - 0) wbsrs EMP # - TEMP No
end tramachea

Example 39 Translatron of Example 37

The translation of Example 38 IS

bagm trsasaction

range of ITEM IS IITEM

retrieve into ITEMP (No - ITEM #)

where ITEM Name - “soap-dish”

raage of SALES IS ISALES
rsage of SUPPLY IS ISUPPLY
rsage of TEMP IS ITEMP

delete ITEM where ITEM # - TEMP No
sad aay(SALES Item# - TEMP No) - 0
sad my(SUPPLY Item# - TEMP No) - 0

end transaction

Example 40 Translatron of Example 38

Only when there IS no reference pointing to IITEM, the my

functrons in Example 40 evaluate to zero and the tuple IS

deleted The IDM returns to the host a tally for the number of
tuples inserted In ITEMP and those deleted from IlTEM This IS

sufficient to determine whether the request was correct or rt did

not execute because the existence constramts were violated, in
which case an error message IS returned to the user

9 conclusloll

In an attempt to demonstrate the feasrbility of extending a
relational DBMS mto one supporting a aemanbc data model, we

have presented a system that consists of a UNIX-based front-

end that maps the GEM semantic data model and query
language to an underlymg IDM 500 relational database machine

By means of representative examples we have rllustrated the

nature of the mapping, underscoring both the feasibrlrty and the

limitations of our approach Here, we would like to summarize

the positive and negative lessons learned m the course of this
research

A main positive conclusron IS that relational query languages and
interfaces are more robuat than they are generally grven credrt
for GEM shows that rt IS possible to extend the relational

approach to achieve (I) a modelmg power that matches that of
other semantic models, and (II) a hrgh-level and set-oriented

DML that matches and In many ways surpasses (e g , by

allowing functional Joins) the ease of use and power of relational
languages In a way, GEM adds a distinct Entity-Relationship

flavor [Chen] to relatronal schemes, and the expressivity of
functronal languages to relatronal querres It IS also suitable for

embeddmg database facilities in programming languages [Andrl

These conclustons, reinforced by the basic simplioity of the
mapping from GEM to QUEL, demonstrate the feasibility and
desirability of the evolutronary approach to semantic data

models This approach preserves compabbrkty wrth existing

relational systems, smce users who don’t want the extra
semantic features need not learn nor use them, for these usors

GEM reduces to QUEL

It IS too soon to evaluate the effectiveness of the specrfic
architecture chosen here to implement this evolutionary

approach, since this work IS currently at an early implementation

stage But a few mterestmg lessons have already been learned

One IS that rt IS easier to support enbtres, aggregabon,

generakzabon and null values than sets or set-valued attributes

Another IS the pros and cons of using a commercral database
machine Our work has benefited a great deal from our decmron
of basing our internal representatron on an IDM-500~compatible

mterface The avarlabrkty of ready-made software IS the mO8t
obvious advantage Moreover, the availability of a high-level
well-documented interface allowed us to concentrate On

conceptual issues, rather than on rmplementatron details, and to
complete and document our design with less effort The

294

Increased produchvrty claimed in [Coddl] became real to us

On the negative side, we found the IDM 500 interface lacking in

functionality and floxrbrlrty since all it offers IS a relational DDL

and DML With such an interface. complex database operators
are expressed easily, but even the srmplest procedural function
becomes impossible to compute For instance, it is impossible
to count the tuples of a relation assrgnmg a sequence number to
each, without streaming them through the host, also, conditional

statements or procedure calls are not provlded These

limitations forced us to move much computation to the host, thus

reducing the benefits of off-loading, and creating unnecessary
communrcatron costs We also found that certain improvements

are desirable with respect to the storage organization Thus,

binary data types and bit operations would be desrrable (at the
present, bytes are the smalleat unit of data and no boolean

operator IS supported], also, internal support for null values
would be very useful Finally, one needs better control on the
placement of stored data (e g , to allow clustering, or value-

dependent placement) All these features are important and apt

to influence the performance of the aystem, however, the

problem of provrdmg a measure of extensrbrlrty, 8 g via some

procedural capabilities, IS even more critical since it constitutes

the sine qua non for relational machines to be used as general-

purpose back-end systems, as demanded by many applications

These enhancements should provide a focus for further work

Ackaowkdgwats

The authors are grateful to J E Andrade for helpful dmouasrons

and comments

Wplxl

[Andr]

[ANSI]

[Brad]

[Catt]

[ChDa]

[Codd 1 I

[CoddP]

Smrth, J M , S Fox, T Landers, “ADAPLEX The

mtegratron of the DAPLEX Language with the Ada

Programming Language.” Technical Report, Computer
Corporehon of America. 1982

Andrade, J M “Genus A Programming Language for

the Design of Database Applicationa.” Internal

Memorandum, Bell Laboratonea, 1962

Tsrchrrtzm, D C and A Klug feds) “The

ANSIIXSISPARC DBMS Framework Report of the
Study Group on Database Management Systems,”

Information Systems, Vol 3. pp 173-191, 1978

Brodre, M L , “On Modellmg Behavroural Semantics of
Databases,” 7th Int Conf Very Large Data Bases,

Cannes, France, 1981, pp 32-42

Cattell, R G G , “Relationship-Entity-Datum Data

Model.” Technrcal Report CSL 83-4, Xerox Palo Alto

Research Center, 1983

Ghan, A, Danberg, S , Fox, S , Lm, W K , Nori, A,
Rres, D , “Storage and Access Structures to Support

a Semantic Data Model,” Proc Very Large Data Base

Conference, Mexico City. 1982, pp 122-130

Codd. EF, “Relatronal Database A Practical
Foundation for Productivity” Comm ACM, 25, 2, pp

109-I 18, 1982

Codd, E F, “Extending Database Relatrons to

Capture More Moerung,” ACM Trans Data Bsse

syst , 4,4, pp 397-434, 1979

[Chen]

[DeHa]

[HeSW]

[KiMc]

WMI

[INGR]

[LaPi]

[QUEL]

[SW

[SrKe]

[Stone]

[SmSm]

[Tsur]

[Taxis]

[Ullm]

[Zanil]

[Zani2]

[i!anr3]

Chen, P P , “The Entity-Relationship Model - Toward

an Urufied View of Data,” ACM Trans Database Syst ,
1. 1, pp 9-35, 1976

Dewitt D J and P Hawthorn, “A Performance

Evaluatron of Database Machine Architectures,” 7th
Int Conf Very Large Data Bases, pp 199-2 15, 108 1

Held, G D , M R Stonebraker and E Wong, “INGRES
a Relational Data Base System.” AF/PS Nat
Computer Conf, Vol 44, pp 409416, 1975

King, R and D McLeod, “The Event Database

Speorlcabon Model,” 2nd Int Conf Databases -

Improving Usabrlrty and Responsrveness, Jerusalem,
June 22-24, 1982

IDM 500 Software Reference Manual Ver 1 3. Sept
1981, Brrtton-Lee Inc , 90 Albright Way, Los Gatoa.

CA, 95OSO

Stonebraker, M , E Wang, P Kreps and G Held “The
Deargn and Implementation of INGRES”, ACM Trans

on Database Syst I 3, pp 189-222, 1976

Lacrorx, M and A Prrotte, “Example queries in

relatronal languages,” MBLE Tech note 107, 1976

(MBLE. Rue Des Deux Garea 60, 1070 Bruaaels)

Woodffll, J et al , “INGRES Version 6 2 Reference

Manual,” Electronic Research Laboratory, Memo

UCBIERL-M70l43, 1979

Shipman. D W , “The Funcbonal Model and the Data

Language DAPLEX,” ACM Trans Data Base Syst.
&I, pp 140-173, 1982

Sibley, E H, and Kerachberg, L “Data Architecture

and Data Model Considerations,” Proc AFlPS Nat

Computer Conf , Dallas, Tex, June 1977, pp 65-86

Stonebraker, M , “Operating System Support for
Database Management,” Comm ACM, 24 7. 1981, pp

412-417

Smith, J M and C P Smith, “Databare Abstractions

Aggragation and Generalizaticn,” ACM Trans

Database Syst, 2, 2, pp 105-133, 1977

Tsur, S , “Mapping of GEM into IDL,” Internal

Memorandum, Bell Laboratories, 1982

Mylopoulos, J , PA Bernstein and H K T Wong. “A

Language Facikty for Designing Database-Intensive
Appkcatrons,” ACM Trans Database System& 5. 2,

pp 185-207, June 1980

Ullman, J , “Prmcrples of Database Systems,”

Computer Science Press, 1980

Zaniolo. C , “Database Relabons with Null Values,”
Journal of Computer and System Science& 28, Feb

1984 (abstract m the ACM SfGACT-SfGMOD

Symposrum on Prmciples of Database Sy8tems,

1982)

Zanrolo, C, “The Database Language GEM,” ACM

SIGMOD Conference, May 1983

Zaniolo. C , “A Formal Treatment of Nonexmtent

Values In Database Relations.” manuscript submitted
for publication, 1983

295

