An Implementation of GEM —
supporting a semantic data model on a relational back-end.

Shalom Tsurt
Carlo Zaniolo

ATAT Bell Laboratones
Murray Hill, NJ 07974

ABSTRACT

This paper presents a simple approach for extending the
relational system INGRES into one supporting a semantic data
mode! It describe a DBMS consisting of (1) a user-friendly
front-end, supporting the GEM semantic data model and query
language under the UNIX°® time-sharing system, and (n) a
dedicated back-end processor providing efficient support for
database transactions, concurrency control and recovery GEM
extends the relational model to support the notions of entities
with surrogates, the relationships of aggregation and
generalization, null values and set-valued attributes, and
provides simple extensions of QUEL to handle these new
constructs In this proposed mmplementation of GEM, the
relational database processor IDM 500 by Britton-Lee 1s used
as the back-end machine

1 Introduction

Data Base Management Systems (DBMSs) based on the
relational approach have gained wide populanty due to therr
ability of providing users with a simple tabular view of data and
high-level set-oriented Data Manipulation Languages (DMLs) for
querying and updating the database These features enhance
the ease of use and data independence of these DBMSs, thus
reducing the cost of database-intensive application programming
[Codd1], they are also important for providing a good
environment for back-end support and distributed databases
(particularly, because they reduce communication overhead)

The main limitation of the relational model 18 its semantic
scantiness, which often prevents relational schemas from
modeling completely and expressively the natural relationships
and mutual constraints between entities This shortcoming has
motivated the introduction of semantic data models, such as
that described in [Chen] where realty 18 modeled in terms of
entities and relationships among entities, and that presented in
[SmSm] where relationships are characterized along the

Permussion to copy without fee all or part of this matenal 1s granted
provided that the copies are not made or distnbuted for direct
commercial advantage, the ACM copynght notice and the title of the
publication and 1its date appear, and notice 1s given that copying 1s by
permussion of the Association for Computing Machinery To copy
otherwise, or to republish, requires a fee and/or specific permission

© 1984 ACM 0-89791-128-8/84/006/0286 $00 75

286

orthogonal coordinates of aggregation and generalization
Semantic data models provide a good basis for enterprise
modeling and conceptual schema design, and for integrating
programming languages and database facilities [Taxis, Brod,
KiMc, Adplx, Catt]

An obvious approach to semantic data models consists of
abandoning relational DBMSs and buiiding new systems based
on the new models Of particular nterest to us, because it
focuses on high-level DML, 18 the work on DAPLEX [Ship] that
provides a user-friendly DML supporting the notions of
aggregation and generalization

Here instead we explore the evolutionary approach of of adding
semantic data model capabilities to relational systems This
approach s attractive from a practical viewpont, since it
ensures compatibility with existing systems and the preservation
of the considerable know-how acquired in buillding DBMSs,
database machines and distributed databases using the
relational approach This approach was previously advocated in
[Codd2], where surrogates and null values were found necessary
for the task However, Codd concentrated on conceptual
1ssues, without describing a specific architecture or how current
relational systems can be modified to provide the new
functionahty

A first objective of this research i1s to combine the advantages
of the relational approach with those of semantic data models, a
second I8 to preserve compatibiity with existing relational
DBMSs Therefore, GEM was designed as an extension of
INGRES that adds a rich set of semantic constructs to the
relational model (such as the notions of entiies with surrogates,
generalization and aggregation, null values and set-valued
attributes) and provides an easy-to-use and general-purpose
DML for the specification of high-level set-oriented queries and
updates on such a model

A second objective of this work 18 to provide for better recovery
and performance by building GEM on the top of a back-end
gystem rather than on the current UNIX* file system, thus
avoiding the problems described in [Stone] We also wanted to
design a system for experimenting with various front-end and
back-end combinations all communicating through a standard
interface Thus we have an architecture based upon multiple
layers of data representation along the lines recommended in
[ANSI]

1 Currently with the iBM Scientific Center Haifa lsrael
* UNIX is a trademark of AT&T Bell Laboratories

Finally, we wanted to assess the suitability of current database
machines to support semantic data models Under the infiuence
of [DeHa), we have selected an evolutionary and inductive
solution approach to the problem Thus, rather than postulating
a new architecture and new commands to support GEM’s new
semantic constructs, we have decided to experiment first with a
commercial back-end machine to determine its suitability to the
new task, hoping to formulate recommendations for architectural
improvements based upon lessons learned from this experience
The IDM 500 by Bntton-Lee, used as our pnmary vehicle of
back-end support, has influenced the design of our interface and
provided ready-made software very expedient in our endeavor
[IDM]

USERS

VAN

4
SEMANTIC SCHEMA
QUERY LANGUAGE

XHMZC

gt

! "‘INT'ER—NAL SCHEWA TRELATIONS]
IDL PARSE TREES

IDM 500

(D

DATA
BASE

Figure 1 Architecture of the system

Figure 1 shows the general architecture of our system There
are basically two levels of data defimtion and manipulation The
external level, consisting of GEM semantic schemas and data
manipulation commands, supphes the interface to users ' The
internal level congisting of a relational storage schema and of
IDM’'s commands already in therr IDL parse-tree form directly
processable by the back-end? The translation between the
upper and the lower level 18 handled by the host, and users
communicate with the back-end machine through the host-
resident UNIX system There, data definmtions and quenes are
parsed and translated into corresponding parse-trees, which are

1 A third possible rep level, of DML embedded views such as

those of INGRES is not considered here
2 IDL is the QUEL like DML supported by the DM 500

287

then passed to the back-end machine Finally the processed
results are returned to the user via the host system

The mam focus of this paper i1s on the translation of GEM
semantic schemas and data manipulation commands into
equivalent constructs processable by the relational back-end
We begin with a bnief discussion of GEM's DDL and DML and
then proceed with the specifics of the translation

2 The GEM Data Model

Figure 2 gives the GEM schema for an exampie adapted from
[LaP1]

SUPPLIER (Company c, Address c¢) key(Company),
DEPT (Dname c, Floor 12) key(Dname) ,

ITEM (Name ¢, Type c null ", Colors {c}) key(Name),
SUPPLY (Comp SUPPLIER, Dept DEPT, ltem ITEM, Vol i2),

EMP (Name c, Spv EXMPT null allowed, Dept DEPT,
[EXMPT(Sal 14), NEXMPT(Hriwg 14, Ovrt 14)],
{EMARRIED (Spouse 14), others])

key (Name), key (Spouse),

Figure 2 The GEM schema describing the following database

SUPPLIER the names and addresses of supplier companies

DEPT for each department its name and the floor where it is
located

ITEM for each item, its name, its type, and a set of colors

SALES for each department and item the volume of sales

SUPPLY what company supplies what item to what department in
what volume (of current stock)

EMP the name, the supervisor, and the department of each
employee,

EXMPT employees can either be exempt (all supervisors are) or

NEXMPT non-exempt, the former earn a monthly salary while the
latter have an hourly wage with an overtime rate

EMARRIED Employees can either be married or not, the spouse’s

social security number is of interest for the married ones

Figure 3 gives the syntax of the GEM DDL (GEM'’s data types
— not defined in Figure 3 — include 1-, 2- and 4-byte integers,
respectively denoted by 11, 12 and 14, character strings, denoted
by ¢, and all the remaming IDM's types) A GEM schema
consists of a set of uniquely named entities, and one or more
keys specified for each entity Thus, if we let relations
correspond to entities, the relational model and GEM basically
share Productions 1 and 2 The big difference 18 in the
declaration of attributes Whereas a relational system would be
hinmited to the pattern used to generate SUPPLIER and DEPT,

<AttrSpec> — <SimpleAttr> — <DataAttr>,

GEM provides varous extensions The first is the option of
adding a <null spec> to specify that an attribute can be null,
by either designating a value from the attribute’s domain to
serve in this role, or by asking the system to handle this
problem (at the cost of additional storage) For instance in
ITEM the user lel a hyphen denote a null value for the attribute

Type

Also, GEM supports get-valued attnbutes (Productions 4 and 6),
eg, "Colors [c]" in ITEM defines an attribute having as value
a set of (zero or more) data-items of type ¢ (character string)

The relationship of aggregation 18 supported in GEM via
reference attributes, which have entity occurrences as their
values Thus the attnbute Dept in SALES has its value an
occurrence of the entity DEPT, and Item has an occurrence of

ITEM as its value Null values can also be allowed for reference
attnbutes (Production 7)

1 <Schema> | <Entity> ,}

2 <Entity> <EntName>

(<AttrSpec> {, <AttrSpec> }) {Key}

<AttrSpec> <SimpleAttr> | <SetAttr>
| <RefAttr> | <Generalization sublist>

<SimpleAttr> <DataAttr> [<null spec>]
<DataAttr> <AttrName> '’ <DataType>

<null spec> mull'' <datavalue> | mull’ ° system
<RefAttr> <AttrName>'' <EntName> {null allowed]
<SetAttr> <AttrName> ’ ' '{' <DataType> '}’

© 0 N O O a

<Generalization sublist>
'[' <Entity> {, <Entity>} , <Entity> ‘1" |
'I' <Entity> {, <Entity>], others T’

The syntax of GEM DDL (Braces denote zero or
more occurrences of the enclosed substring
while brackets denote zero or one occurrence of
the same, braces, brackets and colons
enclosed in semiquotes denote themselves
[IDM])

Figure 3

Finally (Production 9), an <AttrSpec> can be a generalization
syblist that specifies two or more disjoint alternatives enclosed
in brackets the keyword others is used to denote that the entity
need not belong to one the subentities in the st For instance
n EMP we find two generahzation sublhists The first captures
the employment status of an employee and consists of the two
mutually exclusive subentites EXMPT and NEXMPT (an
employee cannot be at the same time exempt and nonexempt)
The second describes the marital status of an employee where
one can either be an employee-married (EMARRIED) or belong
to the others category Although not shown in this example, each
subentity can be further subclassified in the same way as shown
here, producing a generalization hierarchy called an entity
family Within an entity family, attribute names must be unique

Any subset of the attributes from the various entities in a family
can be specified to be a key, no two occurrences of entities in
the family can have the same non-null key value Name and
Spouse are the two keys for the EMP family However, the
uniqueness constraint is waived for key values that are parhally
or totally null, thus the effect is the same as if Spouse were
declared a key for the subentity EMARRIED

DBMS users’ prevailing view of schemas and data 18 graphical
(e g, tabular, hierarchical or network-like), rather than syntactic
Therefore, we want a graphical — preferably a tabular —
representation for our schemas A simple solution to this
problem 18 shown in Figure 4

There I8 an obvious correspondence between the in-line schema
in Figure 2 and its pictorial representation in Figure 4, all entity
names appear in the top line, where the nesting of brackets
defines the generalization hierarchy A blank entry represents
the option others Under each entity-name we find the various
attributes applicable to this entity * We found this representation

d ER or f

3 One could also give this rep
favor by rep: ing entities

a more p
by pointed arrows

288

most useful for formulating queries and update requests, also it
defines the skeletons and headings of the row-columns tables
used to present query results to users

3. The GEM Query Language

GEM 18 designed to be a generalization of QUEL [INGR]
Whenever the underlying schema s stnctly relational (ie, all
attributes are <DataAttr>) GEM reduces to QUEL with which
we assume that our readers are already famihar However, GEM
allows entity names to be used as range vanables without
explhicit declarations Thus the query, "Find the names of the
departments located on the third floor," that in QUEL can be
expressed as

range of dep 1s DEPT
retneve (dep Dname)
where dep Floor=3

Example 1 List each department on the 3rd floor

in GEM can also be expressed as

retrieve (DEPT Dname)
where DEPT Floor = 3

Example 2 Same as Example ¥

In the syntactic context of the retmeve and where clauses, the
previously undeclared identifier DEPT 18 interpreted by default as
a range variabie over the entity DEPT

This option of omitting explicit range declarations improves the
conciseness and expressivity of many queres, particularly the
simple ones, nor does any loss of generality occur since range
declarations can always be included when needed

31 Aggregation

A reference attribute, as seen by a GEM user, has an entity
occurrence as its value For instance in the entity SALES, the
attribute Dept has an entity of type DEPT as value, and ltem an
entity of type ITEM, much in the same way as the attribute Vol
has an integer as value Thus, while SALES Vol 18 an integer,
SALES Dept 18 an entity occurrence of type DEPT and
SALES Item 18 one of type ITEM No entity occurrence can be
pninted as such Thus, the statement

range of S 18 SALES
retneve (S)

Example 3 A syntactically incorrect query

18 incorrect in GEM, as it would be in QUEL Since S Dept
denotes an entity occurrence (of type DEPT), the following
statement is also incorrect

range of S s SALES
retneve (S Dept)

Example 4 Another incorrect query
While reference attributes cannot be printed, single-valued and

set-valued attributes can be obtained by using QUEL's usual dot
notation Thus,

retneve (SALES Vol)
Example § Find the volumes of all SALES
will get us the volumes of all SALES Moreover, since

SALES Dept denotes an entity of type DEPT, we can obtain the
value of Floor by simply appending " Floor™ to it Thus,

SUPPLIER
Company l Address

DEPT
Dname l Floor

ITEM
Name | Type [{ Colors }

SALES
Dept DEPT | item ITEM | Vol

SUPPLY

Comp SUPPLIER | Dept DEPT | item ITEM | Vol

EMP

[EXEMPT

NEXMPT] [EMARRIED |]

Name | SpvEXMPT | Dept DEPT | Sal

Hriwg rOVn] Spouse

Figure 4 A graphical representation of the GEM schema of Figure 2

retrieve (SALES Dept Floor)
where SALES ltem Type="sport”

Example 8 Find all the floors where departments selling

items of type sport are located

will print all the floors where departments that sell sport items
are located The convenience and naturalness of this extension
of the dot notation, also used in [Taxig), cannot be
overemphasized, as illustrated by numerous examples {Zam2] it
supplies a very convenmient and natural construct that ehminates
the need for complex join statements in most quenes (much in
the same way as DAPLEX does [Ship]) For instance, consider
the classic example

retneve (EMP Name)
where EMP Sal > EMP Spv Sal

Example 7 Find all employees that make more than their supervisor

Since the dot notation can be viewed as denoting a functional
composition, joins imphicitly specified through the use of the dot
notation will be called functional joins An alternative way to
specify joins 18 by using explicit entity jomms, where entity
occurrences are directly compared, to venfy that they are the
same, using the identity test operator, i1s * For mstance to find all
the employees working in the same department as J Black we
can write

range of E 18 EMP
retnieve (EMP Name)
where EMP Dept 1s E Dept and E Name = "J Black"

Using an entity join to find all persons working
i the same department as J Black

Example 8

4 The operator ismot is used to test that two objects are not identical Valued based
comparison operators such as = {= >, >= < and <= are not applicable to
entity occurrences

32 Genershzation

Subentities’ names can be used in two bagic ways The first 18
as default range vanables Thus, to request the name and the
salary of each marned employee one can write

range of e 1s EMARRIED
retnieve (e Name, e Sal)

Example 9 Find the name and salary of each married employee

or simply,
retnieve (EMARRIED Name, EMARRIED Sal)

Example 10 Same as in example 9

Thus any attribute within an entity family can be applied to an
occurrence ranging over any subtype in the family (without
ambiguity since each name is unique within the family)

Subentity names can also be used i the quahficatron conditions
of a where clause For instance, an equivalent restatement of the
last query 18

retrieve (EMP Name, EMP Sal)
where EMP 1s EMARRIED

Example 11 Same as Examples 9 and 10
(Retrieve the name and salary of each employee who I8 an
employee-married) For each employee who 18 married but non-

exempt the last three quenes return his or her name and a null
salary Thus, they are different from

retnieve (EXMPT Name, EXMPT Sal)
where EXMPT 1s EMARRIED

Example 12 Find all exempt employees that are married
that excludes all non-exempt employees at once The query

retneve (EMP Name)
where EMP 1s EXMPT or EMP 1s EMARRIED

Example 13 Find all employees that are exempt or married

289

retrieves the names of all employees that are exempt or
marned

4 Mapping the GEM Schemas mto Internal Relations

An important decision, affecting the complexity of query
translation mechanisms and the efficiency of query execution
and storage utiization, 1s the mapping of an entity family into
internal relations For instance in [SmSm], a family 18 partitioned
vertically and the fragments are linked together using the
Codasy! set-coupling mechanism, while the Local Database
Manager described in [ChDa} supports various options including
vertical and honzontal partitioning, and physical clustering of
fragments However, additional joins are needed for supporting
queries 1n the presence of vertical fragmentation and set
differences and intersections are needed with horizontal
fragmentation (direct control of pointers and storage structures
can mimimize the cost of these operations [ChDa], but this
capabibty 18 not at hand here since we build on top of a
relational system) Aiso we want to keep the query mapping as
simple as possible, and take direct advantage of the IDM's
indexing and clustering capabilities All these considerations
lead to an implementation where a whole entity family 18 mapped
into one internal relation The main drawback of this solution 18
the additional storage often required, although this 18 minimized
with a technique described later

Given a family with E as its top entity, the internal relation
storing all family entihes will be denoted by IE Thus IEMP is
the internal relation corresponding to EMP and all its subentities
(namely EXMPT, NEXMPT and EMARRIED)

41 Surrogates and Reference Attributes

Each entity occurrence 18 uniquely identified by the value of its
surrogate, that will be denoted by the symbol "#" Reference
attributes are implemented by linking entity occurrences wvia
therr surrogate values Thus in Figure 4, the reference attributes
Dept and Item in SALES are respectively implemented by the
integer attributes Dept# and Item# that hold surrogate values of
DEPT and ITEM

Surrogates are inaccessible to users, stored as integers in the
internal relations, and maintained by the system by means of the
following dictionary table

SURRGT (Entity c, Count 4)

Counts for an entity are incremented when tuples are initially
loaded, or when new tuples are appended to relations Thus,
upon the addition of tuple t to entity E, t # is assigned the value
of SURRGT Count where SURRGT Entity = "IE"

42 Null Values

Every simple attribute or a reference attribute can be set to nuli
if the user allows this option in the schema Null values for
reference attributes are always internally represented as zeros
For simpie attributes however, the user has the option of either
specifying an internal representation for nulls — e g, zero couid
be used to represent a numeric nul — or using a system
specification Therefore, for each attrnibute E A which 18 null with
the system option, a flag-attribute, A%, 18 added, such that when
E A = null then E A% = 1 and the value of E A is ignored The
value of E A 18 read if E A% = 0

43 Set-valued attributes

Since only normahized relations are supported by the back-end,
we store set-valued attributes n separate user-invisible
relations, where each set member 18 linked to its set-owner

tuple, by pointing to its surrogate value In our sample schema
the Colors attribute of entity ITEM 18 stored as

IITEM_Colors (Ref# 14, Value ¢)

where the column Value holds the color information, and Ref#
holds values of surrogates of ITEM The internal schema for the
example of Figure 2 18 given In Figure 5

4 4 Representation of families and subentities

For each generalization sublist a discnminant field Dj%, invisible
to users, 18 included in the underlying relation For instance, for
a tuple t of EMP, t D1% = 1 denotes an EXMPT and tD1% = 2
denotes NEXMPT Moreover, t D2% = 1 denotes an EMARRIED
and t D2% = O corresponds to others If an employee 18 not
marned, then the value Spouse entered in IEMP becomes
immatenal, and so we set it to save storage Since this 18 a
character string attribute, we set it to a blank and store it as a
compressed data type so that all leading blanks are eliminated
{IDM] Numenic attributes in inapplicable subentities are instead
set to the value zero and stored as compressed data types to
remove all leading zeros [IDM)

5 Mapping of GEM nto QUEL

We will now describe the mapping of default vanables, entity
joins, and imphcit joins into equivalent expressions of QUEL
Here we use QUEL for clanty of exposition, but in reality we map
them into IDL query trees [Tsur]

The translation of Example 2 illustrates the treatment of default
vanables

range of DEPT is IDEPT
retrieve (DEPT Dname)
where DEPT Floor=3

Example 15 The translation of the query in Example 2

51 Eatity Joins

Identity tests on entity occurrences, specified by is or isnot, are
respectively translated into equality and inequaiity tests on their
surrogates Thus the query of Example 8 is translated as
follows

range of E 1s [EMP

range of EMP 1s IEMP

retneve (EMP Name)

where EMP Dept# = E Dept# and E Name = "J Black"

Example 16 The translation of Example 8
52 Variables ranging over subentities

Variables ranging over subentities are translated into range
variables over the corresponding nternal relation and a
condition on the pertinent discnmmant field For instance, since
D2% =1 in IEMP denotes EMARRIED, Example 9 is transiated
into

range of e 1s [EMP
retneve (e Name, e Sal)
where e D2% = 1

Example 17 Translation of Example 9

Default range varnables are treated in the same way For
instance Example 10 18 translated into

290

ISUPPLIER (# 14, Company ¢, Address c)
IDEPT (# 14, Dname c, Floor 11)

IITEM (# 14, Name c, Type c)

ISALES (# 14, Dept# 4, ltem#t 14, Vol i2)

IITEM_Colors (Ret# 14, Value c)

ISUPPLY (# 14, Comp# 14, Dept# i4, Itemi#t 14, Vol 12) ,
IEMP (# 14, Name c, Spv# 14, Dept 14, D1% 11, Sal i4, Hriwg 14, Ovrt 14, D2% 11, Spouse 14),

Figure 5 The internal schema corresponding to the GEM schema of Figure 2

range of EMARRIED 1s |[EMP

retnieve (EMARRIED Name, EMARRIED Sal)
where EMARRIED D2% = 1

Example 18 Translation of Example 10

Consider now the query in Example 11 involving an entity jom of
EMP with EMARRIED The translation

range of EMP is [EMP

range of EMARRIED is IEMP
retrieve (EMP Name, EMP Sal)
where EXMPT D2%=1 and
EMP # = EMARRIED #

Example 19 A translation for query of Example 11

18 correct, but not very efficient considering that both entities
EMP and EMARRIED are implemented by the same relation
IEMP, and therefore both varnables in Example 19 denote the
same tuple Therefore, when confronted with an entity jomn, our
translator checks whether this involves subenties from the same
family When 8o, one variable name 18 simply substituted for the
other in all occurrences, and so unnecessary range declarations
and surrogate equality tests are elimnated Thus the previous
query is replaced by

range of EMP 1s [EMP
retrieve (EMP Name, EMP Sal)
where EMP D2%=1

Example 20 An optimized translation for Example 11
Likewise, the translation of Example 13 18

range of EMP is IEMP
retrnieve (EMP Name) where
EMP D1%=1 or EMP D2%==1

Example 21 The translation of Example 13

53 Fumctional Joims

Implicit functional joins are translated into exphcit ones by the
introduction of additional range vanables For instance,

retneve (EMP Dept Floor)
where EMP Name = "T Green"

Example 22 At which floor 18 T Green’s department located?

18 tranglated into the foliowing query (D is a umique name
generated by the translator)

range of EMP 1s IEMP

range of D is IDEPT

retrieve (D Floor)

where EMP Dept# = D # and EMP Name = "T Green"

Example 23 Translation of Example 22

The translation of Example 7 18 (E 18 a unique name generated
by the translator)

291

range of EMP 1s IEMP
range of E is IEMP
retrieve (EMP Name)
where EMP Sal > E Sal
and EMP Spv#t = E #

Example 24 The transiation of Example 7

In the general case, a functional join chain of the form
retnieve (E Ao Ay An
will be translated as

range of £y is

range of E, is
retrieve (En A”)

where E Ag#t = E 1 #
and E1 At =Ex #

llld En-—1 An—1# - En #

The proper range for E{, , Ep 18 derived from the schema
description stored in the data dictionary During this process,
additional checks are performed to ensure that, for each 0 < §
< n, Aj is a reference attribute of E;, and A, 18 either a simple
or a set-valued attribute of Ap

6. Null Values

Our treatment of null values uses three-valued logic as in
[Codd2], but 1t 18 based on a new interpretation of nulls, the no-
information interpretation®, that along with a new treatment of
sets and aggregate operations eliminates the logical problems
besetting Codd's approach [Zani1] Three-valued logic s
needed to handle expressions such as

ITEM Type 1= "sport"
not (ITEM Type = "sport”)

Figure 6 Two logically equivalent conditions

For an ITEM occurrence where the Type attribute 1s null, one
may try to evaluate all comparisons to FALSE, then the first
condition in Figure 6 would evaluate to FALSE and the second to
TRUE, a contradiction However, consider the three-valued logic
approach, all comparisons where one or both operands are null
evaluate to a (logical) null

§ Under this interpretation the system treats a null as an information vacuum — i e,
as & placehoider for value that perhaps doesn't exist or is otherwise unknown In
this respect our approach differs from [Codd2] where a value is assumed to exist
although it is unknow

ORIT| F (mull AND | T | F |[mul NOT
T|T|{T T T T (F |oul T F
F |[T| F |mill F F |F| F F T
sull | T |oull | null wudl |mull | F [l aall | mull
Figure 7 Three-valued logic tables
Then, Boolean expressions of such terms are evaluated

according to the three-valued logic tables of Figure 7

Therefore, both ITEM Type I= "sport” and ITEM Type = "sport”
evaluate to a logical null and, according to Figure 7, so does
the negation of the latter Thus three-valued logic allows a
consistent truth-functional evaluation for expressions involving
negations and null values To answer a query, the systems
selects all tuples for which the where clause evaluates to TRUE,
tuples that yield FALSE or the logical null are discarded ®

While three-valued logic would be simple to implement in a
system that supports a general-purpose programming fanguage,
our IDM 500 only supports the standard two-valued-logic
version of QUEL To overcome this problem, we emulate three-
valued logic by two-valued logic via query reformulation Thus,
for each GEM query Q we generate an equivalent QUEL query
Q’, such that Q' evaluated in two-valued logic produces the
same result as Q evaluated in three-valued logic

To accomplhish this, we parse the where clause of a query and
then transform only its comparnson terms Comparison terms
have the form

tAfk
or,

tAdrB

where, r and t are range variables, k 18 a constant, and 6§ 1s one
of the comparnson operators =, l=, <, <= > >= The
transformation begins by counting the number of negations
between the root of the parse tree to the term, if this number 18
odd the term is negative, otherwise it 18 positive Then, positive
terms in the parse tree are respectively replaced by

(tAsnot null and t A0 Kk)
and
(tAisnot null and t B isnot null and t A6t B)

Negative terms are respectively replaced by
(tAisoull or tAGK)
and
(tAisnull ortBisnullor tA0tB)
(Naturally, if t A or r B are not allowed to be null according to

the schema’s declarations, these transformations will either be
simplified or omitted) Finally, we transform each condition such

6 As shown in [Zani3] this app
(of all obj:

h is also ble of p the MAYBE
for which the where clause does not evaiuste to

FALSE) to q {Codd2] p that the predicates “tA ismull" and % B
isnot mull" are alliowed in qualification expressi: GEM inch such pred
{Zani2)

292

as "tA s null” or "tA isnot mull” by taking into account the
Internal representation of nulls for A Thus if in Production 6, A
was declared null <datavalue>, these two map respectively
into tA = <datavalue> and tA I= <datavalue>
Otherwise the system option was chosen and these two map
respectively mto t A% = 0 and tA% =0

7 Set-Valued Attributes and Set Operations

The availability of set-valued attributes adds to the conciseness
and expressivity of GEM schemas and quenes [Zam2] However,
set valued attributes pose some non-trivial implementation
problems After investigating various approaches we have
chosen to implement each set-valued attribute by an additional
user-invisible internal relation where a tuple stores a set member
with the surrogate value of the parent tuple For example, in our
sample schema tne Colors attribute of entity ITEM and its parent
relation will be stored as the pair

UTEM (#, Name, Type) ITEM_Colors (Ref#, Value)

In GEM, a query such as, "For each item print its name, its type
and the number of colors 1n which it comes,” can be formulated
as follows

range of It 1s ITEM
retrieve (It Name, It Type, Tot=count(It Colors))

Example 25 Using a set-valued attribute

Then, such a query 18 mapped into the following (C 18 a unique
name generated by the translator)

range of It 1s ITEM
range of C1s ITEM_Colors
retnieve (It Name, It Type, Tot=
count (C Value by It # where C Ref# = It #))

Example 26 The translation of the previous query

In order to provide users with the convenience of mampulating
aggregates GEM supports the set-comparison primitives
oniginally included in QUEL [HeSW] Thus, in addition to the set-
membership test, in, GEM supports the following operators

(set) equals
(set) does not equal

> properly contains

> contains

< 18 properly contained In
<= 18 contained in

These set-comparison operators and the aggregate operations
of count and any can also be appled to sets of entity
occurrences (the other aggregate operators cannot) Thus the
query, "Find the items supplied by every department on the 2nd
floor,” can be expressed in GEM as follows (a set is denoted by
the enclosing braces)

retrieve (SALES Item Name)
where {DEPT where DEPT Floor = 2} <=
{SALES Dept by SALES Item}

Example 27 Find the items suppled by every department
at the 2nd fioor

To translate this query we map operations on entity occurrences
into operations on their surrogate values Then we translate
subset relationships into equivalent aggregate expressions that
can be evaluated with reasonable efficiency For instance the
previous query s translated as follows ("It" 18 a new variabie

generated by the translator)

range of SALES 1s ISALES
range of DEPT 1s IDEPT
range of it 1s ITEM
retnieve (It Name)
where count (DEPT # where DEPT Floor=2) =

count (DEPT # by SALES ltem# where

DEPT Floor = 2 and DEPT # = SALES Dept#)
and SALES ltem# = It #

Example 28 The translation of the previous query

These two queries are equivalent since R 18 a subset of S if and
only if the cardinalty of R N S is equal to the cardinality of R
More generally the pattern

{X1 by ¥1 where Z{} <= {X2 by y2 where Z2)
18 implemented as follows

count (X 1 by 1 where Z{) =
count (X1 by y1,¥2 where Z; and Z2 and X1=X2 and ¥ 1™=Y/2)

The remaining set relationships are implemented in a similar
fashion, except for the membership test m A membership test,
say x m S, 1s implemented by checking that the intersection
{x} N S is not empty This test can then be performed efficiently
using the aggregate operator sny that returns zero if a set 18
empty and one otherwise

In the presence of null values, the set operators must be
properly extended A comprehensive solution of this interesting
problem 18 presented in [Zami1], for the specific case at hand
(sets of values rather than sets of tuples), it reduces to the
following simple rule Null values are excluded from the
computation of all aggregate functions or expressions,
moreover, they must also be disregarded in the computation of
subset relationships

8. Updates

GEM supports QUEL's standard style of updates, via the three
commands, append to, replace, and delete, which generalize the
corresponding relational operators in a natural fashion

81 Append

The first example involves nserting an occurrence in an entity
that contains only simple atiributes

append to DEPT (Dname = "toys", Floor =2)
Example 29 Adding the "toys" department at the second floor

This 18 translated into (the IDL parse-tre representation of)
append to IDEPT(#=NEXT(DEPT), Dname="toys", Floor=2)
Example 30 The translation of Example 29

The function NEXT generates a new surrogate value by iooking
up m SURRGT the current counter value (for DEPT), then
incrementing it by one The relationships of aggregation and
generalization are handied in a naturai fashion, as illustrated by
the following example

append to NEXMPT (Name = 'T Jones", Spv = EXMPT,

Dept = DEPT, Hrlwg = 5 0, Ovrt= 1 8)
where EXMPT Name = "F Green" and DEPT Dname = "toys"

Example 31 T Jones is hired in the toys department, under
F Green

This request s translated into

range of DEPT 1s IDEPT

range of EXMPT 1s IEMP

apperd to [EMP(# =NEXT(IEMP), Name = "T Jones",
Spv# = EXMPT #, Dept# = DEPT #, D1% = 2,
Hriwg = 5 0, Ovrt =1 8, D2% = 0)

where EXMPT Name = "F Green”

and DEPT Dname = "toys" and EXMPT D1% =1

Example 32 The transiation of Example 31

In parsing Example 31, EXMPT and DEPT were interpreted as
default variables and given the respective ranges [EMP and
IDEPT, since EXMPT s a subentity of EMP the condition
EXMPT D1%=1 was also added to the where clause However
NEXMPT, since 1t follows append to, was syntactically interpreted
as an entity name, not as a range vanable, thus it was
translated into the relation name |EMP and the assignment D1%
-2

Example 31 involves an explicit assignment to a subentity,
implicit assignments are also supported in GEM For instance
the result of the previous query does not change If we replace
"NEXMPT" by "EMP" since the assignment of a value to Hriwg
and Ovrt would cause the entity to be assigned to the NEXMPT
subtype, anyway — a case of redundant but consistent
assignment Symmetncally the absence of an assignment for
Spouse results n the entity being classified as others than
EMARRIED (thus D2% = 0) The transiator deduces implicit
assignments and checks for consistency by consulting the
dictionary tables containing the schema description

An interesting problem arises when several tuples are added at
once Take for example the following request

append to SALES (Dept=~ DEPT, ltem= ITEM, Vol = 100)
where ITEM Name = "catalog”

Example 33 Send 100 catalogs to each department
Conceptually, this can be translated as follows

range of DEPT is IDEPT

range of ITEM 18 HITEM

append to ISALES(#=NEXT(ISALES), Dept#= DEPT #,
Item#=ITEM #, Vol=100)

where ITEM Name = "catalog"”

Example 34 The translation of Example 33

Here we want NEXT to generate a new number for each new
tuple appended to ISALES The simplest way to accomplish this
1s to increase a counter by one, for each tuple appended
Unfortunately even this simple operation cannot be requested
from the IDM machine (as it exceeds the power of the so-called
complete relational caiculus or algebra) Instead, we have to
bring each target tuple into the host, assign a unique value to its
surrogate, and finally return it to the back-end and append it to
ISALES

82 Replace

Updating simple and reference attributes 1s easy n GEM For
instance, to transfer a certain type of item from one department
to another, one only needs to say

replace SALES (Dept = DEPT)
where SALES Item Name = "sport-clothes"”
and DEPT Dname = "sport”

Example 35 Reassigmng sport clothes to the sport department

293

The translation of this request proceeds along the lines of query
translations previously discussed, yrelding ("it" 18 a unique name
generated by the translator)

range of SALES is ISALES

range of DEPT 1s IDEPT

range of It 1s ITEM

replace SALES (Dept# = DEPT #)

where SALES ltem# = It # and it Name ="sport-clothes"
and DEPT Dname="gport"

Example 36 The translation of Example 35

The ease of use of GEM is well illustrated by a companison of
Example 35 with Example 36 that is basically what a user of
INGRES, using a relational schema, would have to wrnte to
express an equivalent request

83 Delete

Referential integrity constraints demand that all the reference to
an entity occurrence must be set to null (if this is allowed)
before the occurrence can be eliminated For instance, since
null is allowed for the Spv attnbute in EMP, the request

delete EMP where EMP Name = "T Green"

Example 37 Remove employee T Green

will result in the removal of T Green's tuple from the database
and In the setting to null of the Spv references for employees
working for T Green However, since the reference attributes
Item in SALES and Item in SUPPLY point to ITEM and null 18
dissallowed for both, the update

delete I[TEM
where ITEM Name = "soap-dish”

Example 38 Dropping the item soap-dish from the stock

will be executed only if no SALES or SUPPLY record refers to
this "soap-dish” ITEM, otherwise the update will be rejected and
an error-message generated

Among the alternative solutions considered for maintaiming the
referential integrity constraint, one consists of linking together
the referred tuple with the referring ones in the style of
Codasyl's owner-coupled set implementations A second
consists in keeping a reference count in each tuple referred by
others [ChDa)] Both approaches require some additional
operations, not only upon deletions, but also upon executions of
replace and append In the end, we opted for a solution that
keeps the query mapping simpler and confines all integrity
maintenance operations within deletions This solution employs
the temporary relaton ITEMP(No i4) and the statements
begin transaction and end transaction Thus the query of Example
37 18 translated as follows

begin transaction
range of EMP is IEMP
retrieve into ITEMP(No =~ EMP #)
where EMP Name = "T Green"

range of TEMP 1s ITEMP
delete EMP where EMP # = TEMP No

replace EMP (Spv# = 0) where EMP # = TEMP No
end transaction

Example 39 Translation of Example 37

The transiation of Example 38 18

294

begin transaction
range of ITEM 1s lITEM
retrieve ito ITEMP (No = ITEM #)
where ITEM Name = "soap-dish”

range of SALES 1s ISALES

range of SUPPLY 1s ISUPPLY

range of TEMP 1s ITEMP

delete ITEM where ITEM # = TEMP No

and any(SALES ltem# = TEMP No) = 0

and any(SUPPLY Itemi# = TEMP No) = O
end transaction

Example 40 Translation of Example 38

Only when there 18 no reference pomnting to ITEM, the any
functions in Example 40 evaluate to zero and the tuple s
deleted The IDM returns to the host a tally for the number of
tuples nserted in ITEMP and those deleted from IITEM This 1s
sufficient to determine whether the request was correct or it did
not execiuie becaise the existence constraints were violated, in
which case an error message Is returned to the user

9 Conclusion

In an attempt to demonstrate the feasibiity of extending a
relational DBMS into one supporting a semantic data model, we
have presented a system that consists of a UNIX-based front-
end that maps the GEM semantic data model and query
language to an underlying IDM 500 relational database machine
By means of representative examples we have illustrated the
nature of the mapping, underscoring both the feasibility and the
hmitations of our approach Here, we would ke to summarize
the positive and negative lessons learned in the course of this
research

A main positive conclusion 18 that relational query languages and
interfaces are more robust than they are generally given credit
for GEM shows that it 18 possible to extend the relational
approach to achieve (1) a modeling power that matches that of
other semantic models, and (n) a high-level and set-oriented
DML that matches and In many ways surpasses (eg., by
allowing functional joins) the ease of use and power of relational
languages In a way, GEM adds a distinct Entity-Relationship
favor [Chen] to relational schemas, and the expressivity of
functional languages to relational queries It 1s aiso suitable for
embedding database facilities in programming languages [Andr]
These conclusions, reforced by the basic simplicity of the
mapping from GEM to QUEL, demonstrate the feasibility and
desirabiity of the evolutionary approach to semantic data
models This approach preserves compatibility with existing
relational systems, since users who don't want the extra
semantic features need not learn nor use them, for these users
GEM reduces to QUEL

It 18 too soon to evaluate the effectiveness of the specific
architecture chosen here to implement this evolutionary
approach, since this work 18 currently at an early implementation
stage But a few interesting lessons have already been learned
One 1s that it 18 easier to support entities, aggregation,
generalization and null vaiues than sets or set-valued attributes
Another 1s the pros and cons of using a commercial database
machine Our work has benefited a great deal from our decision
of basing our internal representation on an IDM_§00-compatible
interface The availabiiity of ready-made software i1s the most
obvious advantage Moreover, the availability of a high-level
well-documented interface allowed us to concentrate on
conceptual 18sues, rather than on implementation details, and to
complete and document our design with less effort The

increased productivity claimed in [Codd 1) became real to us

On the negative side, we found the IDM 500 interface lacking in
functionality and filexibility since all it offers 18 a relational DDL
and DML With such an interface, complex database operators
are expressed easily, but even the simplest procedural function
becomes impossible to compute For instance, 1t is impossible
to count the tuples of a relation assigning a sequence number to
each, without streaming them through the host, also, conditional
procedure calls are not provided These
Iimitations forced us to move much computation to the host, thus
reducing the benefits of off-loading, and creating unnecessary
communication costs We also found that certain improvements
are desirable with respect to the storage organization Thus,
binary data types and bit operations would be desirable (at the
present, bytes are the smallest unit ot data and no boolean
operator is supported), also, internal support for null values
would be very useful Finally, one needs better control on the
placement of stored data (e g, to allow clustering, or value-
dependent placement) All these features are important and apt
to influence the performance of the system, however, the
problem of providing a measure of extensibiity, e g via some
procedural capabilities, 18 even more critical since it constitutes
the sine qua non tor relational machines to be used as general-
purpose back-end systems, as demanded by many applications
These enhancements should provide a focus for further work

Acknowledgments

The authors are grateful to J E Andrade tor helpful discussions
and comments

References
[Adpix] Smith, JM, S Fox, T Landers, "ADAPLEX The
integration of the DAPLEX Language with the Ada
Programming Language,” Technical Report, Computer
Corporation of America, 1982

[Andr] Andrade, J M "Genus A Programming Language for
the Design of Database Applications,” Internal

Memorandum, Bell Laboratories, 1982

Tsichntzis, DC and A Klug (eds) “The
ANSI/X3/SPARC DBMS Framework Report of the
Study Group on Database Management Systems,”
information Systems, Vol 3, pp 173-191, 1978

[ANSI]

[Brod] Brodie, M L, "On Modelling Behavioural Semantics of
Databases," 7th Int Conf Very Large Data Bases,

Cannes, France, 1981, pp 32-42

Cattel, R GG, "Relationship-Entity-Datum Data
Model,” Technmical Report CSL 83-4, Xerox Palo Alto
Research Center, 1983

Chan, A, Danberg, S, Fox, S, Lin, WK, Nori, A,
Ries, D, "Storage and Access Structures to Support
a Semantic Data Model,” Proc Very Large Data Base
Conference, Mexico City, 1982, pp 122-130

Codd, EF, "Relational Database A Practical
Foundation for Productivity” Comm ACM, 25, 2, pp
109-118, 1982

Codd, EF, '"Extending Database Relations to
Capture More Meaning,” ACM Trans Data Base
Syst, 4,4, pp 397-434, 1979

[Catt]

[ChDa]

[Codd1]

[Codd2]

[Chen)

[DeHa])

[HeSW]

KiMc]

[IDM]

[INGR]

[LaPi]

[Ship]

[SiKe]

[Stone]

[SmSm]

[Tsur]

[Taxis]

[Ulim]

[Zam1]

[Zam2]

[Zam3]

295

Chen, P P, "The Entity-Relationship Model — Toward
an Unified View of Data,” ACM Trans Database Syst,
1, 1, pp 9-36, 1976

Dewitt DJ and P Hawthorn, "A Performance
Evaluation of Database Machine Architectures,” 7th
Int Conf Very Large Data Bases, pp 199-215, 1981

Held, GD, MR Stonebraker and E Wong, "INGRES
a Relational Data Base System," AF/PS Nat
Computer Conf, Voi 44, pp 409-416, 1975

King, R and D McLeod, "The Event Database
Specification Model," 2nd Int Conf Databases —

Improving Usability and Responsiveness, Jerusalem,
June 22-24, 1982

IDM 500 Software Reference Manual Ver 13, Sept
1981, Britton-Lee Inc, 90 Albright Way, Los Gatos,
CA, 95030

Stonebraker, M, E Wong, P Kreps and G Held "The
Design and Implementation of INGRES", ACM Trans
on Database Syst 13, pp 189-222, 1876

Lacroix, M and A Pirotte, "Example queries min
relational languages,” MBLE Tech note 107, 1976
(MBLE, Rue Des Deux Gares 80, 1070 Brussels)

Woodfill, J et al, "INGRES Version 6 2 Reference
Manual,” Electronic Research Laboratory, Memo
UCB/ERL-M78/43, 1979

Shipman, D W, "The Functional Model and the Data
Language DAPLEX," ACM Trans Data Base Syst,
8,1, pp 140-173, 1982

Sibley, EH, and Kerschberg, L "Data Architecture
and Data Model Considerations,” Proc AFIPS Nat
Computer Conf, Dallas, Tex, June 1977, pp 85-88

Stonebraker, M, "Operating System Support for
Database Management,” Comm ACM, 24 7, 1981, pp
412-417

Smith, JM and CP Smith, "Database Abstractions

Aggregation and Generalization," ACM Trans
Database Syst, 2, 2, pp 105-133, 1977
Tsur, S, "Mapping of GEM into IDL," internal

Memorandum, Bell Laboratories, 1982

Mylopoulos, J, P A Bernstein and HKT Wong, "A
Language Facility for Designing Database-intensive
Applications,” ACM Trans Database Systems, 5, 2,
pp 185-207, June 1980

Uliman, J., 'Principles of Database Systems,”

Computer Science Press, 1980

Zaniolo, C, "Database Relations with Null Values,”
Journal of Computer and System Sciences, 28, Feb
19084 (abstract in the ACM SIGACT-SIGMOD
Symposwm on Principles of Database Systems,
1982)

Zaniolo, C, "The Database Language GEM,” ACM
SIGMOD Conference, May 1983

Zaniolo, C, "A Formal Treatment of Nonexistent
Values in Database Relations,” manuscript submitted
for publication, 1983

