
XML Document Versioning

Shu-Yao Chien Vassilis J. Tsotras Carlo Zaniolo
Dept. of Computer Science Dept. of Computer Sci. & Eng. Dept of Computer Science

UCLA UC Riverside UCLA
Los Angeles, CA 90095 Riverside, CA 92521 Los Angeles, CA 90095

csy@cs.ucla.edu tsotras@cs.ucr.edu zaniolo@cs.ucla.edu

Abstract

Managing multiple versions of XML documents rep-
resents an important problem, because of many appli-
cations ranging from traditional ones, such as software
configuration control, to new ones, such as link perma-
nence of web documents. Research on managing mul-
tiversion XML documents seeks to provide efficient and
robust techniques for (i) storing and retrieving, (ii) ex-
changing, and (iii) querying such documents. In this pa-
per, we first show that traditional version control meth-
ods, such as RCS, and SCCS, fall short from satisfying
these three requirements, and discuss alternative solu-
tions. First, we enhance RCS with a temporal page clus-
tering policy to achieve objective (i). Then, we discuss
a reference-based versioning scheme that achieves both
objectives (i) and (ii) and is also effective at supporting
simple queries. The topic of supporting complex queries,
including temporal ones, meshes with the burgeoning in-
terest of database researchers in XML as a database de-
scription language, and in XML query languages. In this
context, the XML versioning problems are akin to those
of transaction time management for databases of objects
and semistructured information. Nevertheless, the need
to preserve the natural ordering of XML documents fre-
quently requires different techniques.

1. Introduction

The management of multiple versions of XML doc-
uments finds important applications [15] and poses in-
teresting technical challenges for database researchers.
A first reason for exploring the problem is traditional
application domains that rely on version management,
such as software configuration and cooperative work.
As these applications migrate to a web-based environ-
ment, they increasingly use XML for representing and
exchanging information, often seeking standard vendor-
supported tools for processing and exchanging their
XML documents.

New applications domains are also emerging for
XML versioning: an important and pervasive one is as-

suring link permanence for web documents. Any URL
becoming invalid causes serious problems for all docu-
ments referring to it. The problem is particularly seri-
ous for search engines that then direct millions of users
to pages that no longer exist. Replacing the old ver-
sion with a new one, at the same location, does not cure
the problem completely, since the new version might no
longer contain the keywords used in the search. The
ideal solution is a version management system sup-
porting multiple versions of the same document, while
avoiding duplicate storage of their shared segments. To
assure link permanence, many professionally managed
sites will rely on document versioning; furthermore,
they will often support search and queries on multi-
version documents. Specialty warehouses and archives
that monitor and collect content from websites of inter-
est, will also rely on versioning to preserve information,
track the history of downloaded documents, and support
queries on these documents and their history [7].

In the database community, there is much interest
in XML as a general vehicle for data definition, and
in powerful query languages for XML documents. In
this context, XML versioning becomes yet another in-
stance of the various issues pertaining to transaction-
time databases [9]. Indeed, many of the techniques pre-
sented in this paper are inspired by similar concepts used
in temporal databases. However, there are important
differences, inasmuch as the reconstruction of complete
documents, or large segments thereof, is here required.
Thus the logical order of the document objects must now
be preserved, whereas the order of tuples is immaterial
in relational databases. Likewise, the version manage-
ment techniques proposed for object oriented databases
[9] and semistructured information [11] assume that the
order between objects is not significant, while this is es-
sential for reconstructing an XML document.

Many traditional document versioning systems, such
as RCS [13], are edit-based. They use edit scripts to
represent document changes and to reconstruct different
versions incrementally. For instance, RCS [13] stores
the most current version intact while previous versions
are stored as reverse editing scripts. These scripts de-

1

scribe how to go backward in the document’s develop-
ment history. For any version except the current one,
extra processing is needed to apply the reverse editing
script to generate the old version. Rather than append-
ing version differences at the end as RCS, SCCS [12]
inserts editing operations in the original (source code)
document and associates a pair of timestamps (version
ids) with each document segment to specify its lifespan.
Versions are retrieved from an SCCS file via scanning
through the file and retrieving valid segments based on
their timestamps.

Both RCS and SCCS may read segments which are
no longer valid for the retrieved (target) version, causing
additional processing costs. For RCS, the total I/O cost
is proportional to the size of the current version plus the
size of changes from the retrieved version to the current
one. For SCCS, the situation is even worse: the whole
version file needs to be read for any version retrieval.
To reduce version retrieval cost, RCS maintains an in-
dex on the valid segments of each version, but still these
segments might be stored sparsely among pages gener-
ated by different versions, and this lack of clustering can
cost many additional page I/Os.

Moreover, neither RCS nor SCCS preserve the log-
ical structure of the original document. This makes
structure-related searches on XML documents difficult
and expensive to support—reconstruction of a whole
version might be needed before its component objects
can be identified. An additional requirement is for the
versioned document to be easily exchanged at the trans-
port level. However, the edit scripts used in RCS rep-
resent a special object that cannot be easily accommo-
dated at the transport level without XML extensions.
Ideally, we would like the versioned document to be rep-
resentable as an XML document, too.

Hence new approaches are needed that will effi-
ciently perform (i) storage and retrieval, (ii) web ex-
change and, (iii) querying of XML multiversion docu-
ments. In this paper, we start by showing how an edit-
based versioning scheme like RCS can be enhanced with
a temporal page clustering policy to achieve better stor-
age and retrieval. Then we discuss a reference-based
versioning scheme that achieves all three requirements.

The paper is organized as follows: in the next sec-
tion we discuss the improved edit-based scheme while
in Section 3 we present the reference-based solution.
A performance comparison between the two approaches
appears in Section 4 while directions of future research
are discussed in the conclusions (Section 5).

2. The Edit-Based Approach
For simplicity, assume that the document’s evolution

creates a linear sequence of temporally ordered versions:
V1, V2, : : :, Vj , where Vj is the current version. A new

version (Vj+1) is established by applying a number of
changes (object insertions, deletions or updates) to the
current version (Vj); these changes are stored in a for-
ward edit script. The reverse edit script instead records
the changes that take us from a version to the previous
one. There is complete duality between the two repre-
sentations, and all techniques described here work with
both. Thus in our discussion, we will use forward scripts
which appeal to the intuition, since they represent the
history of the evolution of the document. Such scripts
could be generated directly from the edit commands of
a structured editor, if one was used to revise the XML
document; in most situations, however, they will ob-
tained by applying, to the pair (Vj ; Vj+1), a structured
diff package [6].

The RCS scheme performs well when the changes
from a version to the next are minimal. For instance,
if only 0:1% of the document is changed between ver-
sions, reconstructing the 100th version requires only
10% retrieval overhead. But if 70% of the document
changes between versions, then retrieving the 100 th ver-
sion could cost 70 times the effort of retrieving the first
one! In this second case, storing complete time-stamped
versions is a much better strategy, costing zero overhead
in retrieving each version and only a limited (43%) stor-
age overhead. Most real-life situations range between
these two cases—with minor revisions and major revi-
sions often mixed in the history of a document. Thus,
an adaptable self-adjusting method is needed, that for
small revisions operates as RCS, and stores only the
delta changes, and in the case of a major revision, it
stores a new version in its entirety. Furthermore, the
method must be applied to individual pages, since revi-
sions are normally not distributed uniformly through the
document, and different stored pages experience differ-
ent change rates.

2.1. Page Usefulness
The objects of successive versions are stored sequen-

tially; the first version is stored in its entirety, while only
the new objects (i.e., the deltas) are stored for the other
versions. A page stored by a previous version contains
several objects that have later been deleted or updated
and are no longer a part of the current version: thus if
read from disk, only a portion of that page is “useful”
for the current version. That is, some objects in an ac-
cessed page may be invalid for the target version. For
example, assume that at version V1, a document consists
of five objectsO1, O2, O3, O4 andO5 whose records are
stored in data page P . Let the size of these objects be
30%, 10%, 20%, 25% and 15% of the page size, respec-
tively. Consider the following evolving history for this
document: At version V2, O2 is deleted; at version V3,
O3 is updated, and at version V4, object O5 is deleted.

VERSION 1

Data Pages UBCC Script E1

+-----------------+ ins(@A1,1),ins(@R1,2),
P1| A1, R1, T1, U1 | ins(@T1,3),ins(@U1,4),

+-----------------+ ins(@P1,5),ins(@I1,6),
P2| P1, I1, N1, M1 | ins(@N1,7),ins(@M1,8),

+-----------------+ ins(@Q1,9),ins(@Z1,10),
P3| Q1, Z1, B1, X1 | ins(@B1,11),ins(@X1,12),

+-----------------+ ins(@D1,13),ins(@H1,14),
P4| D1, H1, K1, L1 | ins(@K1,15),ins(@L1,16).

+-----------------+

VERSION 2

Data Pages UBCC Script E2

+-----------------+ ins(@G2,5),ins(@T2,6),
P5| G2, T2, R2 | ins(@R2,11),

+-----------------+ del(15),del(17).

VERSION 3

Data Pages UBCC Script E3

+-----------------+ del(3),del(4),
P6| Z1, B1, D1 | del(4),del(8),

+-----------------+ del(8),ins(@Z1,8),
del(8), del(9),
ins(@B1,9),del(10),
ins(@D1,10),del(11),
del(11).

Figure 1. Edit-Based UBCC version files

We define the usefulness of a full page P , for a given
version V , as the percentage of the page that corre-
sponds to valid objects for V . Hence page P is 100%
useful for version V1. Its usefulness falls to 90% for
version V2, since object O2 is deleted at V2. Similarly,
P is 70% useful for version V3. For version V4, O3 is
updated and its new value O 0

3 will be stored in another
page since P is full. Thus, P is only 55% useful for V4.

Clearly, as new versions are created, the usefulness
of existing pages for the current version diminish. We
would like to maintain a minimum page usefulness,
Umin, over all versions. Thus, when a page’s usefulness
falls below Umin, for the current version, all the records
that are still valid in this page are copied (i.e., salvaged)
to another page (while preserving their order). The value
of Umin is set between 0 and 1 and represents the main
performance parameter of our scheme. For instance, if
Umin = 60%, then page P falls below this threshold of
usefulness at Version 4; at this point objects O1, and O4

are copied to the new page.

This scheme is similar to the “time-split” operation
in temporal indexing [8] [14] [1]. Reconstructing a
given version is then reduced to accessing only the use-
ful pages for this version.

2.2. The Edit Script
In addition to its usefulness-based management of

data pages, our UBCC scheme is different from RCS
because it stores the edit script separately from the data
pages (while RCS stores them in the same file). To sim-
plify the discussion, our script will only contain inser-
tions and deletions, and we represent an update by a
deletion followed by an insertion.

We represent a document as an ordered list of objects,
with O# denoting the position of object O in such a
list. A simple extension to this list-based representation
to capture the structure of the XML document will be
discussed later.

A version Vj is represented by an edit script contain-
ing elements of two kinds:

� the insertion of object Q at position i of Vj , is rep-
resented by ins(@Q; i), where @Q is the location
(i.e. page number and offset) where the object Q is
actually stored,

� del(i) denotes the deletion of the object that, with-
out this deletion, would occupy position i in V j .

We now introduce the storage representation for the
UBCC script with the help of an example involving three
successive versions of a document. Each version is ex-
ternally represented by a logical edit script, produced,
e.g., by a structured document editor or a diff procedure.

The script for Version 1 is simply a sequence of in-
serts to create the first version: insert A1, R1, T1, U1, P1,
I1, N1, M1, Q1, Z1, B1, X1, D1, H1, K1, L1.
Then, Version 2 is created by the following changes:

insert G2,T2 after U1#, insert R2 after M1#,
delete X1#, delete K1#.

Here delete K1# denotes the deletion of object K1 from
the previous version. Object K1 occupies position 15 in
the list representing the previous version; thus we as-
sume that the diff procedure that computes the changes
between these two versions represents this deletion by
delete 15. Figure 1 shows how Version 1 and Version
2 are stored as two separate files, one containing data
pages and the other containing the UBCC Script. The
data pages simply store the objects in the order in which
they have been created. For the UBCC Script, we have
that, since in Version 1 U1# =4 , then insert G2,T2 after
U1# is represented as ins(G2, 5), ins(T2, 6) in Version
2. Then, insert R2# after M1 is translated into ins(R2, 11),
since M1# =8, in Version 1, and two inserts and no delete
have taken place before this: thus R2# = 8 + 2 + 1 = 11

in Version 2. In general, we find the position for an in-
serted object in the current version, by taking the posi-
tion of the ‘after’ element in the previous version, adding
the number of preceding insertions, and subtracting the
number of preceding deletions. Finally delete X1#, delete
K1# is translated into: del(15), del(17).

Now say that Version 3, is generated by the following
changes:

delete T1#, delete G2#, delete T2#, delete R2#,
delete Q1#, delete H1#, delete L1#,

and that Umin has been set to 70%. Also, assume that
objects are of the same size and four objects fill a page.
Then, pages P3 and P4 are 75% useful for Version 2,
thus no copying was needed. Now, for Version 3, pages
P3, P4, and P5 become 50%, 25%, and 0% useful, re-
spectively. Then, these three pages have fallen below
the threshold of usefulness, and their valid objects—
namely, Z1, B1, and D1—must be copied. New objects
and copied objects are stored into a new data page P6
in their sequential order for Version 3 (thus @Z1 in edit
script, E3, for Version 3, points at Z1 in P6— Figure 1).
For each copied object, a pair of entries—one deletion
followed by one insertion—are added to the edit script.

The policy of copying long-lived objects to new
pages, assures that all the objects valid for a given ver-
sion are clustered closely together.

2.3. Version Reconstruction.

Consider retrieving version Vi. Since the objects of
Vi may be stored in data pages generated in versions V1,
V2, ..., Vi�1 and Vi, these objects may not be stored in
their logical order. Therefore, the first step is to recon-
struct the logical order of Vi objects. The logical order
is recovered in a gap-filling fashion based on the edit
scripts. We will explain the algorithm by describing how
to reconstruct Version 3.

The reconstruction starts by retrieving the first object
of Version 3 from its edit script, E3. The first entry is
del(3): thus, the first two objects are missing and need to
fill the gap from the previous version, Version 2. Recur-
sively, we start to retrieve the first two objects of Version
2. This retrieval starts from the first entry in E2, ins(G2,
5). We get a gap again and need to retrieve two objects
from its previous version, Version 1. From E1, we find
the first two objects of Version 1 and return them to Ver-
sion 2. Recursively, these two objects are sent back to
Version 3 for output. The data page P1 remains in main
memory, where from the next valid object for Version
3, i.e., U1, is retrieved. The reconstruction of Version
3 resumes with del(3). Therefore, Version 3 requests
the next object of Version 2; to answer the request, Ver-
sion 2 needs to retrieve its third object (because its first
two objects have been retrieved in the previous request).
But, since the current entry for Version 2 is ins(G2,5) it
must request this object from Version 1. Version 1 re-
sponds to the request of Version 2 by returning record
ins(T1,3), which is then returned to Version 3, where is
nullified by the delete operation del(3). At this point the
third object of Version 3 has not been retrieved yet. So
another next-object request is issued from Version 3 to

Version 2 and, recursively, to Version 1, thus Version 3
is returned record ins(U1, 4), i.e., the third object of Ver-
sion 3. This gap-filling procedure continues through the
script E3 until all objects of Version 3 are retrieved. A
detailed description of version reconstruction algorithm
was given in [2].

2.4 Performance

An experimental study of the performance the UBCC
scheme is presented in Section 4, where the scheme is
compared to (i) RCS, (ii) storing complete versions, and
(iii) the reference based scheme discussed in the next
section. The results of this comparison show that UBCC
performs well, often achieving both the better storage
performance of (i) and the better retrieval performance
of (ii). Another study presented in [3] shows that this
scheme performs better than techniques such as multi-
version B-trees [1] and partially persistent lists that have
been used in transaction-time databases and persistent
storage managers [8, 14].

The UBCC scheme also provides better support for
queries, since many searches can be performed directly
on the script, rather than the data pages. The overall
length of the script can be kept to a small percentage of
the overall size of the data by taking regular snapshots
of the same. The details of this improvement are given
in [3], where we also prove that the overall storage space
used remains linear in the number of changes in the doc-
ument’s version history.

The average retrieval efficiency grows with Umin.
Assuming a buffer of i pages in memory, to reconstruct
version Vi we need to read edit scripts Ei � � �E1 and the
pages that are useful for version Vi. If B denotes the
page size, the number of useful pages of version V i is
bounded by 1

Umin
� size(Vi)=B.

2.5. Discussion
Several techniques can be used to support the recon-

struction of a structured XML document from the lin-
ear list of its objects. One solution consists in including
more information in the script record denoting the inser-
tion of an object N : for instance, we can include G#,
where G is the parent of N .

A second solution, consists in allowing entries such
as ins(`[0; N#) to denote that a left bracket must be in-
serted before N . Thus, by using left and right brack-
ets, we can represent the structure of the document.
Transformations on the structure of the document are
then specified by deletions and insertions of bracket el-
ements. Bracket elements are only stored in the script
and not in the data pages. A third solution consists of
replacing N# (which basically corresponds to the pre-
order traversal number of node N in the document tree)

VERSION 1

Snapshot Reference-Based

A1, R1, T1, U1, A1, R1, T1, U1,
P1, I1, N1, M1, P1, I1, N1, M1,
Q1, Z1, B1, X1, Q1, Z1, B1, X1,
D1, H1, K1, L1, D1, H1, K1, L1.

VERSION 2

Snapshot Reference-Based

A1, R1, T1, U1, (V1, (1, 4), 1), G1,
G2, T2, P1, I1, T2, (V1, (5, 8), 7),
N1, M1, R2, Q1, R2, (V1,(9,11),12),
Z1, B1, D1, H1, (V1, (13, 14), 15),
L1. (V1, (16, 16), 17).

VERSION 3

Snapshot Reference-Based

A1, R1, U1, P1, (V2, (1, 2), 1),
I1, N1, M1, Z1, (V2, (4, 4), 3),
B1, M3, D1, H1, (V2, (7, 10), 4),
L1. (V2, (13, 14), 8),

M3, (V2,(15,17),11).

Figure 2. The reference-based scheme

with the full tree address of N . This representation is
discussed in [5].

While UBCC provides several improvements with re-
spect to RCS, its generality and flexibility remain lim-
ited, and it is not suitable as an external representa-
tion for exchanging documents. These problems are ad-
dressed by the reference-based versioning scheme dis-
cussed next.

3. The Reference-Based Scheme
While edit-based approaches focus on representing

changes, our new scheme concentrates on representing
the parts that have remained unchanged, i.e., the com-
mon segments between two successive versions.

Versions in the reference-based scheme are repre-
sented as a list of the following two kinds of objects:

� reference records which denote maximum common
segments shared between the new version and the
previous version, and

� actual object records.

Let us use the same example as in the previous sec-
tion. Then, the reference-based representation of the ini-
tial version, Version 1, is the version itself. Then, Ver-
sion 2, is represented by the new objects inserted in Ver-
sion 2 and the five maximal common segments shared
with Version 1, as follows:

(A1,R1,T1,U1), G2, T2, (P1,I1,N1,M1),

R2, (Q1,Z1,B1), (D1, H1), (L1)

where the common segments are shown in parentheses.
In our storage representation each common segment is
represented by a reference record of the form:

(V#, Common Segment Reference, New Position)
where V# denotes the previous version, and Com-
mon Segment Reference is a pair of position values
specifying the starting position and end position of
the common segment in the previous version V#, and
New Position denotes the position of the common seg-
ment in the new version. For example, the reference
record (V1,(1,4),1) refers to the first common segment,
(A1,R1,T1,U1), which starts from the first object of
Version 1 and ends at the fourth object. The position
value, 1, implies that this segment is placed at the be-
ginning (first position) in the new version. Therefore,
Version 2 is represented as the following list:

(V1,(1,4),1),G2,T2,(V1,(5,8),7),R2,
(V1,(9,11),12),(V1,(13,14),15),(V1,(16,16),17)

Similarly, Version 3, is generated from Version 2 by
deleting T1, (G2, T2), (R2, Q1) and adding M3 after B1.
Thus, Version 3 is represented as follows:

(V2,(1,2),1),(V2,(4,4),3),(V2,(7,10),4),
(V2, (13, 14), 8), M3, (V2, (15, 17), 11).

This reference-based representation can be constructed
directly from the edit script, and vice versa.

Restructuring and Duplicating. It is often the case
that two sections of the old version are switched in a
new version. Also some passages and footnotes might
be repeated at various points in the documents. The
reference-based representation handles these changes
via simple reference records, whereas the edit-based
scheme requires the re-insertion of the repeated objects.

3.1. Version Retrieval
When reconstructing a version from the reference-

based representation, some of the version objects are
materialized by traversing reference records. Let’s take
Version 3 as an example. The first reference record of
Version 3, (V2,(1,2),1), refers to the first two ob-
jects of Version 2. To locate the first two objects of Ver-
sion 2 its reference-based representation is checked. The
first reference record of Version 2, (V1,(1,4),1), im-
plies that its first two objects are the first two objects
of Version 1. Therefore, recursively, the first two ob-
jects of Version 3, namely, A1 and R1, are found in Ver-
sion 1. The second record of Version 3, (V2, (4, 4),

3), refers to the fourth object of Version 2. Again, the
first reference record of Version 2 is used to refer to the
fourth object of Version 1 where the actual object, U1, is
found. The above recursive segment locating procedure
is applied to each reference record until corresponding
actual object segments are found.

VERSION 1

Data Pages Page Index
------------------------- ----------------
P1: A1 R1 T1 U1 P1(1,4)
P2: P1 I1 N1 M1 P2(5,8)
P3: Q1 Z1 B1 X1 P3(9,12)
P4: D1 H1 K1 L1 P4(13,16)

VERSION 2

Data Pages Page Index

P5: (V1, (1, 4), 1), P5(1,10)

G2(5), T2(6), P6(11,17)
(V1, (5, 8), 7)

P6: R2(11), (V1,(9,11),12),
(V1, (13, 14), 15),
(V1, (16, 16), 17),

VERSION 3

Data Pages Page Index
------------------------- ----------------
P7: A1(1), R1(2), U1(3), P7(1, 4)

P1(4)
P8: I1(5), N1(6), M1(7), P8(5, 8)

Z1(8)
P9: B1(9), M3(10), P9(9, 13)

(V2,(15,17),11)

Figure 3. The Reference-based scheme
with usefulness-based clustering

3.2. Modified Page Usefulness
To match the performance of the edit-based UBCC

scheme, we need to extend the usefulness clustering ap-
proach to the reference-based scheme. The extension is
not trivial, since pages now contain both data and ref-
erences. To simplify the discussion, let us assume that
reference records and object records have the same size
(whereas the former are normally smaller), and a page
holds four records.

Consider now page P5. This holds two objects and
two references. After recursively expanding these refer-
ences to actual objects, we obtain a “logical” segment
for Version 2 that starts from its first object and ex-
tends until its 10th object. This segment will be denoted
S(P5). To read segment S(P5) we must now access 3
pages (i.e., P1, P2 and P5). Alternatively, we can store
the 10 data records of segmentS(P5) in 2:5 pages. Thus
the overall usefulness of those three pages for Version 2
is 2:5=3 = 83%—or, in terms of records, out of the 12
records read 10 are useful. Then, we will say that the
usefulness of page P5 is 83% (in reality this is the com-
bined usefulness of P5 and the pages transitively refer-
enced by it).

The next four records of Version 2 are stored in a new
page, P6. The logical segment of page P6 starts from

the eleventh object of Version 2 (R2) and extends until
the version’s last object, L1. Materializing this logical
segment requires accessing pages P6, P3 and P4. Since
objects X1 and K1 are deleted, only seven out of the
twelve records from these three pages are useful. As a
result, page P6 is 58% useful. We now define the use-
fulness of a page P that contains object and reference
records for a version V .

Definition: Let S(P) the document segment obtained
by materializing page P , and let n be the number of
pages accessed during the materialization. Then, with
B the size of a page, the usefulness of P is:

size(S(P))

B�(n+1)2

To guarantee low I/O cost, we define a minimum re-
quired usefulness Umin. Before storing a new page P
for the current version, we check its usefulness, and if
it is below Umin, we store S(P) instead of P . For in-
stance, if we set Umin = 40% then we see that the use-
fulness of pages P1–P6 storing the objects of Versions 1
an 2 are above this threshold (Figure 2). But now as we
start a new page, say page P’ for Version 3, we see that
to materialize S(P 0) we must access P5, P1, P2, P3 and
P6, where we find 9 valid objects. Thus, the usefulness
of P’ is 37.5%, which is below the threshold; therefore,
we copy those 9 objects and store them in pages P7, P8
and P9 as shown in Figure 3.

Details of the version retrieval algorithm for the
reference-based scheme are given in [4], where we
also show that its worst-case storage cost and version-
retrieval cost are the same as the UBCC scheme [4].

3.3. Transport Level
An improved reference scheme has been proposed

in [5], where objects are referenced by their tree address
in the XML document. Since such references are al-
lowed for XML documents, it then become possible to
represent the whole history of an XML document as yet
another XML document. In fact, the DTD or the schema
of such a history can be generated the automatically
from those of the original (unversioned) document [5].
This representation is very suitable when multiversion
documents need to be exchanged between different sites
(transport level).

With the help of page indexes, such as those shown in
Figure 3, the reference-based scheme is also conducive
to efficient query processing [5].

4. Performance Analysis
We compared the performance of the reference-based

scheme with the edit-based scheme and the basic RCS
approach. As a baseline case we also report the per-
formance of a “snapshot” scheme, that simply stores a

50

100

150

200

250

300

20 40 60 80 100

V
er

si
on

 R
et

rie
va

l C
os

t (
pa

ge
s)

Total number of versions

Snapshot
Ref-Based Scheme, 50% Useful

UBCC Scheme, 50% Useful
RCS

0

500

1000

1500

2000

2500

3000

20 40 60 80 100

V
er

si
on

 fi
le

 s
iz

e
(p

ag
es

)

Total number of versions

Snapshot
Ref-Based Scheme, 50% Useful

UBCC Scheme, 50% Useful
RCS

Figure 4. Version retrieval and storage cost with 50% usefulness requirement.

0

200

400

600

800

1000

1200

1400

20 40 60 80 100

V
er

si
on

 R
et

rie
va

l C
os

t (
pa

ge
s)

Total number of versions

Snapshot
Ref-Based Scheme, 50% Useful

UBCC Scheme, 50% Useful
RCS

0

500

1000

1500

2000

20 40 60 80 100

V
er

si
on

 fi
le

 s
iz

e
(p

ag
es

)

Total number of versions

Snapshot
Ref-Based Scheme, 50% Useful

UBCC Scheme, 50% Useful
RCS

Figure 5. Version retrieval and storage cost with increasing document size.

copy of each document version. For each method we
observed the version retrieval cost and the space con-
sumption. The page size is set to 4K bytes. In the first
set of experiments, we used a document evolution with
the following characteristics:

� the size of each version is approximately 100
pages;

� each version changes about 20% from the previous
version (half of the changes are insertions and the
other half are deletions);

� changes are uniformly and randomly distributed
among data pages;

� the usefulness requirement is 50%;

� the document evolution had a total of 100 versions.

A second set of experiments evaluated how the
schemes behave when the documents grow in size. In
this second set, insertions add up to 10% of the docu-
ment size and deletions to 5% of document size (for a
5% of net growth).

Figure 4 shows the results of the first set. Version
retrieval cost is measured as the number of page I/O’s
needed to reconstruct a version. Obviously, the snap-
shot scheme has the minimum version retrieval cost, and

the maximum storage cost, since each version is already
stored in its entirety on disk. Symmetrically, the RCS
scheme requires the least storage but has the largest aver-
age retrieval cost. The usefulness-based schemes trade-
off between these two extremes and deliver intermediate
performance. The figure shows that the average retrieval
cost for the usefulness-based schemes remains linear in
the size of the reconstructed version by a coefficient that
is controlled by Umin. In the first experiment, the aver-
age version size was kept unchanged to about 100 pages.
The retrieval cost of the edit-based scheme is approx-
imately parallel to the horizontal axis, for a total cost
near 150 pages, for Umin = 50%.

In the reference-based scheme when the usefulness of
a segment falls below the threshold, several new pages
are normally generated. Because of this larger granular-
ity, retrieval for the reference-based scheme shows more
substantial fluctuations around the smoother line of the
edit-based scheme. Thus, some valleys in the reference-
based curve approach the performance of the snapshot
case; its peaks exceed the 150 page level but remain well
below the theoretical worst case of 200 pages Umin =
50%. On the average, our experiments clearly show that
the retrieval and storage performance of reference-based

and edit-based schemes are very close to each other, for
the same usefulness factor.

Figure 5 results for the second set of data that de-
scribes documents growing in size. The version retrieval
cost for the reference-based scheme fluctuates around
the edit-based scheme, while their storage cost remain
close to each other. Similar results were obtained for
documents which are shrinking in size [4].

5. Conclusions
Versioning schemes for XML documents can play an

important role in the management of web based infor-
mation. However, traditional techniques such as RCS
and SCCS are not up to the task and there is a need for
new and improved techniques that achieve better perfor-
mance at the physical level and the logical level.

For the physical level, we have proposed a temporal
clustering technique based on page usefulness to trade
off storage efficiency with retrieval efficiency and opti-
mize the overall performance. By combining this tech-
nique with an edit-based representation, we have derived
the UBCC scheme, which improves on RCS by reducing
the average version retrieval cost, at the price of a small
storage overhead. By using a separate edit script this
scheme also assures a faster retrieval of selected objects.

Then, we introduced the reference-based scheme
which preserves the basic structure of the document, by
identifying the objects shared with the previous version.
At the logical level, this scheme has better properties
than the edit-based UBCC scheme; in fact, by using tree
nodes address, a multiversion XML document can be
represented as a standard XML document whose schema
or DTD can be constructed automatically from those of
the original (unversioned) document [5]. This repre-
sentation is very suitable when multiversion documents
need to be exchanged between different sites (transport
level). Also this representation is conducive to efficient
query processing [5].

Querying XML document represents a research area
of growing interest. We expect that this trend will
also impact versioning techniques, and present prob-
lems similar to those encountered in transaction-time
temporal databases. In particular, efficient support will
be needed for traditional (snapshot) queries, temporal
queries on the evolution of the document, and vari-
ous combinations of the two. Techniques for support-
ing complex queries on XML databases often decom-
pose the document and rely on various node-numbering
schemes to preserve its structure [10]; these schemes can
be extended to preserve the node-numbers of unchanged
objects when the document is updated [10]. We con-
jecture that, by using such node numbering schemes,
the effectiveness of time-stamping methods of temporal
databases can be extended to XML document version-
ing, and we plan to investigate this approach in the fu-

ture. In general, problems such as, (i) generalizing XML
query languages with constructs for expressing queries
on document evolution, and (ii) ensuring efficient sup-
port for temporal and nontemporal queries under dif-
ferent versioning schemes, provide interesting research
challenges for database technology and web-based in-
formation systems of the future.

References

[1] B. Becker, S. Gschwind, T. Ohler, B. Seeger, P. Wid-
mayer, ”On Optimal Multiversion Access Structures”,
Proceedings of Symposium on Large Spatial Databases,
Vol 692, 1993, pp. 123-141.

[2] S-Y. Chien, V.J. Tsotras, and C. Zaniolo, ”Version Man-
agement of XML Documents”, WebDB 2000 Workshop,
Dallas, TX, 2000, pp 75-80.

[3] S-Y. Chien, V.J. Tsotras, and C. Zaniolo, ”A Compar-
ative Study of Version Management Schemes for XML
Documents”, TimeCenter Technical Report TR-51, Sep.
2000.

[4] S.-Y. Chien, V.J. Tsotras, and C. Zaniolo, ”Copy-
Based versus Edit-Base Version Management Schemes
for Structured Documents,” In Proc. 11-th RIDE
Workhshop, Heidelberg, Germany, April, 2001.

[5] S.-Y. Chien, V.J. Tsotras, and C. Zaniolo, ”Efficient Man-
agement of Multiversion Documents by Object Referenc-
ing”, In Proc. VLDB 2001, Roma, Italy, Sept., 2001.

[6] G. Cobena, S. Abiteboul, A. Marian, ”XyDiff Tools
Detecting changes in XML Documents”. http://www-
rocq.inria.fr/ cobena.

[7] A. Marian, et al., Change-centric management of ver-
sions in an XML warehouse. In Proc. VLDB 2001,
Roma, Italy, Sept., 2001.

[8] D. Lomet and B. Salzberg, ”Access Methods for Multi-
version Data”, In Proc. 1989 ACM SIGMOD Confer-
ence, pp: 315-324, ACM 1989.

[9] G. Ozsoyoglu and R.T. Snodgrass, Temporal and Real-
Time Databases: a Survey, IEEE Transactions on
Knowledge and Data Engineering, Vol. 7, No.4, pp. 513-
532, 1995.

[10] Q. Li and B. Moon, ”Indexing and querying XML data
for regular path expressions”, In Proc. of VLDB 2001,
Roma, Italy, September, 2001.

[11] S. Chawathe, A. Rajaraman, H. Garcia-Molina, J.
Widom, ”Change Detection in Hierarchically Structured
Information”, In Proc. ACM SIGMOD, 1996.

[12] Marc J. Rochkind, ”The Source Code Control System”,
IEEE Transactions on Software Engineering, SE-1, 4,
Dec. 1975, pp. 364-370.

[13] Walter F. Tichy, ”RCS–A System for Version Control”,
Software–Practice&Experience 15, 7, July 1985, 637-
654.

[14] V.J. Tsotras, N. Kangelaris, ”The Snapshot Index, an
I/O-Optimal Access Method for Timeslice Queries”, In-
formation Systems, Vol. 20, No. 3, 1995.

[15] webdav, WWW Distributed Authoring and Versioning
www.ietf.org/html.charters/webdav-charter.html

