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A b s t r a c t  

In the recent years, Deductive Databases have been the focus of intense research, which has 

brought dramatic advances in theory, systems and applications. A salient feature of deductive 
databases is their capability of supporting a declarative, rule-based style of expressing queries 
and applications on databases. As such, they find applications in disparate areas, such as 

knowledge mining from databases, and computer-aided design and manufacturing systems. 
In this paper, we briefly review the key concepts behind deductive databases and their 

newly developed enabling technology. Then, we describe current research on extending the 

functionality and usability of deductive databases and on providing a synthesis of deductive 
databases with procedural and object-oriented approaches. 

1 M o t i v a t i o n s  

There are a number  of applications that  have a database "flavor, ~ and yet are not well-addressed 

by conventional database  management  systems. Examples of such applications are 

1. Computer-a ided design and manufacturing systems, 

2. Scientific databases,  often involving feature detection and extraction, such as studies involving 

chemical structures (e.g., the human genome), or analysis of satellite data .  

In addition to the t radi t ional  requirements of databases (such as integrity, sharing and recovery), 

these new applications pose demands tha t  are not answered by conventional DBMS, such as the 

following: 

• The need to deal wigh complex sgructures and recursively detiaed objects. For example,  a 

VLSI CAD system typically allows the definitions of "cells, ~ which are designs having other 
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cells as subparts. Operations on such a design often begin by expanding out the design, say, 

to create a checkplot. The expansion must be carried on to arbitrary depth, so a recursive 

logic program is appropriately used to define the operation of cell expansion. 

The need for active database components. For example, in a software engineering database, a 

change to one aspect of the design may trigger changes to other components. 

The need to support browsing and complex ad-hoc queries. For example, a medical researcher 

may wish to examine a database of medical histories to test a variety of hypotheses about 

possible causes of diseases. 

Conventional Database Systems fail to address these needs, and in addition, they suffer from 

the limited power of their query languages. Since conventional query languages, as exemplified 

by SQL, are only capable of accessing and modifying data in limited ways, database applications 

are now written in a conventional language with intermixed query language calls. But since the 

nonprocedural, set-oriented computational model of SQL is so different from that of procedural 

languages, and because of incompatible data types, an "impedance mismatch" occurs that hinders 

application development and causes expensive run-time conversions. It has thus become generally 

accepted that for applications at the frontier we need a single, computationally complete language 

that answers the needs previously discussed and serves both as a query language and as a general- 

purpose host language. 

Object-oriented systems, where the database is closely integrated with languages such as Smalltalk 

or C++,  address many of the previous requirements, and support useful concepts, such as object- 

identity and a rich type structure with inheritance of properties from types to their subtypes. The 

main limitation of object-oriented systems is that, for application development, they are heavily 

dependent on procedural languages, even though some systems offer a limited declarative query 

capability. Now, relational databases, have demonstrated the desirability of using a declarative 

logic-based language, whereby substantial portions of the algorithm required to meet a user's re- 

quest are left to the system. This ability is essential for ease of use, data independence and code 

reusability. Therefore, deductive databases take the declarative approach in addressing those re- 

quirements: they provide a declarative, logic-based language for expressing queries, reasoning, and 

complex applications on databases. 

2 Dec larat ive  P r o g r a m m i n g  

The declarative nature of deductive database languages manifest itself in two important ways: 

1. The order in which goals are written in the rules does not determine their actual execution 

order, which is controlled by the system rather than the programmer. 

2. The selection between forward-chaining and backward-chaining execution is automatic--i t  is 

done by the system, rather than the programmer. 

Point 1 generalizes to rule-based languages the nonnavigational paradigm of relational query 

languages, where select/join expressions are executed in an order chosen by the query optimizer 
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according to performance considerations (pertaining, e.g., to the selectivity of the various conditions 

and the availability of indexes.) As in relational systems, this promotes ease of use, since the 

programmer is relieved of performance-related concerns, such as navigating through the database 

and using access structures; furthermore, data independence is greatly enhanced since the resulting 

code can be reused even after physical changes have occurred in the database. 

Point 2 is one of the most novel features of deductive databases, which sets them apart from 

current rule-based systems. Some of the latter, such as OPSS, only support forward-chaining; others, 

such as Prolog, only support backward-chaining. Some expert system shells support both, but the 

programmer must select the better strategy for the situation at hand, and code it as part of the 

actual program. In systems such as ~D~ [NaTs] and NAIL! [Metal, instead, the system will make the 

proper choice for the user, who can now focus on logical correctness rather than execution strategy. 

The significance of this point may be better illustrated by an example. A methane molecule consists 

of a carbon atom linked with four hydrogen atoms. An ethane molecule can be constructed by 

replacing any H of a methane by a carbon with three Hs. The respective structure of methane and 

ethane molecules are as follows: 

H H H 
I I I 

H - - C - - H  H - - C - - C - - H  
I I I 

H H H 

methane ethane 

More complex alkanes can be obtained inductively in the same way: that  is, by replacing an H 

of a simpler alkane by a carbon with three Hs. We can now define alkanes using Horn clauses. A 

methane molecule will be represented by a complex term c a r b ( h ,  h,  h) ,  and an ethane molecule 

by ca rb  (h,  h, c a rb  (h, h,  h) ). In general, alkane molecules can be defined inductively as follows: 

all_mol(h, O, Max). 

a11_mo1(carb(M1, M2, M3), N, Max) ~- 

allunol(M1, N1, Max), 

all_mol(M2, N2, Max), 

all.mol(M3, N3, Max), 
N = N1+N2+N3+l, N <= Max. 

In addition to defining alkanes of increasing complexity, these nonlinear recursive rules count 

the carbons in the molecules, and ensure finiteness in their size ~nd number by ensuring that  the 

tally of carbons never exceeds a Max. This example illustrates the need for recursion in representing 

complex objects, and the simplicity and versatility of declarative programming. Indeed, our alkane 

definition can be used in different ways. For example, to generate all molecules with no more than 

four carbons, one can write 

? a l l . m o l ( M o l , C s ,  4 ) .  
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To generate all molecules with exactly four carbons, one will write 

? all_mol(Mol, 4, 4). 

Furthermore, if the relation alk(Name, Str) associates the names of alkanes with their structure, 

the following rule will compute the number of carbons for an alkane given its name (assuming that 

10000 is a large enough number for all molecules to have a lower carbon complexity): 

find(Name, Cs) 4--alk(Name, St r ) ,  a l lnnol(Str ,  Cs, 10000). (1) 

The first two examples can be supported through a forward-chaining computation, which in turn 

translates naturally to the least-fixpoint computation that defines the model-theoretic semantics of 

recursive Horn-clause programs [Llo, NaTs]. The least-6.xpoint computation amounts to an itera~ 

tive procedure, where partial results are added to a relation until steady state is reached. Because 

of its simplicity, this execution model is more suitable for handling data on secondary store than 

backward-chaining, which leads to main-memory-based, stack-oriented implementations. Thus de- 

ductive databases support well the first two examples, whereas Prolog and other backward-chaining 

systems would fa/l. In the last example, however, the first argument, Str, of allunol is bound to 

the values generated by the predicate alk. Thus a computation, such as Prolog's backward-chaining 

which recursively propagates these bindings, is significantly more efficient than forward chaining. 

Deductive databases solve this problem equally well by using techniques such as the Magic-Sets 
Method, or the Counting Method that simulate backward-chaining trough a pair of least-fixpoint 

computations [BMSU, SaZ1, SaZ2]. For rule (1}, the magic-sets method will produce the following 

modified definition of a11.mo1: 

allnnol(h, O, Max) ~-- m_all_mol(h, Max). 

allnnol(carb(M1, M2, M3), N, Max) 4-- 

a11_mo1(M1, N1, Max), 

a11_mol(M2, N2, Max), 

all_mol(M3, N3, Max), 

N I Nl+NR+N3+l, N <= Max, 
m.all_mol(carb(M1, M2, M3), Max)). 

Thus, the magic-sets method rewrites the original rules by adding the magic predicate m_allnnol. 

This is defined on the arguments that would be bound in a backward-chaining execution. (In rule 

(i) the first argument and the third one of allJol are bound, and these bindings propagate in the 

backward-chaining execution of the original allnnol rules.) Then, our magic predicate is defined 

as follows (in actual systems the determination of bound arguments and the resulting generation of 

magic rules and modified rules are done at compile-time [UII]): 

re_all_tool (Str, I0000). 

m_all_mol(M1. Max) 4--m_all_mol(carb(Ml, MR, M3), Max). 
re_all_tool(M2, Max) 4--m_all_mol(carb(M1, M2, M3), Max). 
re_all_tool(M3, Max) +--m_a11_mol(carb(M1, M2, M3), Max). 
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Once the variable Stz in the first rule is initialized with a value passed down from rule (1), the 

recursive magic rules construct all subcomponents for such a Str.  For an ethane molecule Str  = 

carb(h,  h, carb(h,  h, h)) ,  the magic rules produce the molecule itself, and its subcomponents: 

carb (h. h, h) and h. Thus the magic predicate in the modified rules ensures that no molecule is 

returned unless it is one of these three. Therefore the fixpoint computation of all_tool using these 

rules completes in three iterations. 

Deductive databases handle cycles automatically and efficiently. This is a most useful feature 

since cyclic graphs are often stored in database relations, and derived relations can also be circular. In 

our alkane example there are many equivalent representations for the same alkane. To generate these, 

equivalence-preserving operations are used, such as rotation and permutation on the molecules--but 

repeated applications of these operations bring back the initial structure. When using a language 

such as Prolog, the detection of cycles must be built into the program at the price of complications 

and inefficiency (e.g., by carrying along a bag with all solutions). In deductive databases, the 

checking of new solutions against the set of old ones is automatically performed as part of the 

6xpoint computation. 

Research on deductive databases has also contributed to areas such as nonmonotonic reasoning 

and knowledge representation by extending the declarative semantics of Horn Clauses (based on the 

concepts minimal model and least-fixpoint [Llo, NaTs]) to nonmonotonic constructs such as negation 

and sets. Concepts, such as stratification [VG1, ApBW, Prz2, Naq], well-founded models [VRS, 

VG2], and stable models [GeLi] have shed new light on various aspects of nonmonotonic reasoning 
and knowledge representation [MaSu, Prz2], and have also provided formal semantics to seemingly 

unrelated concepts such as nondeterminism [SaZ3]. Many of these theoretical contributions had a 

practical impact: current deductive database systems provide efficient support for stratified negation, 

which is more powerful than Prolog's negation-by-failure; work is progressing on finding efficient ways 

to support more powerful semantics (e.g., well-founded models). 

One of the most interesting aspects of programming with a declarative language is debugging. 

The trace-based approach taken by debuggers of procedural languages and Prolog is not applicable 

here, since the actual execution is controlled by the system and takes place in an order that might 

not resemble that of the original program. On the other hand, the declarative semantics makes it 

possible to build a truly logical debugger. For example, the/~D/~ system provides a why and whynot 

explanation capability, whereby the system carries out a conversation with the user explaining why a 

certain tuple was part of the answer, while another was missing [ShTs]. Again, a person's attention 

can focus on the logical correctness of a program rather than on its physical behavior. 

3 Systems and Applications 

Space constraints preclude us from discussing various prototypes, such as [Boo, Ceta, CeGT, KiMS, 

LeVi, Meta, RaSh], and comparing their architectures. Many of these systems [Ceta, Metal, however, 

share a common trend, namely tight coupling with existing relational databases and SQL servers. 

Thus, most deductive database systems position themselves as extensions to and improvements of 

existing relational databases rather than as their replacement. (However, it has become normal for 
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deductive database systems to trade some of the requirements of conventional database systems, 

such as absolute resilience, for performance improvements.) This evolutionary approach, combined 

with the ability to access existing databases, has been found to be critical for making successful 

inroads into real-life applications. These include traditional database applications, such as bills 

of materials and various inventory control functions that are poorly served by current relational 

systems, as well as applications from new areas. The latter include scientific applications, e.g., in 

the molecular biology area [Tsur], semantic prototyping from E-R based specifications [Teta], and 

data dredging and complex analysis [Tsur]. The many applications that emerged in the short while 

since a viable prototype was completed, suggest that deductive database systems offer significant 

practical benefits in several areas, and that their use can spread rapidly as systems become more 

usable and their role is better understood. 

A second ingredient found critical in many applications is an open and extensible architecture. 

For instance, ~D ~ applications compile into equivalent C programs that are then linked with external 

routines with close coupling of data structures. This makes it easier to build on existing software, to 

enhance performance by coding critical rules or predicates in a procedural language, and to extend 

the language by introducing meta-level predicates as externals [CGK]. 

4 F u t u r e  D i r e c t i o n s  

Deductive databases have made great strides in the last five years, in terms of theory, systems and 

applications, and their technology is now mature enough for commercial deployment. They also 

remain a vibrant field of research marked by a close interaction between theoretical and practical 
problems. Current work, for instance, addresses the problem of finding an attractive confluence of 

the declarative logic-based paradigm with the object-oriented and procedural paradigm to support 
a superior environment for the next generation of database applications. For instance, works, such 

as [KiLa, KiWu, Zani] have demonstrated the feasibility and/or desirability of merging the 0 - 0  

paradigm m with notions such as object identifiers, inheritance and methods--with logic. Also, for 

an its merits, a declarative formulation cannot compete with the cogency and optimality of textbook 

algorithms for specific problems. These situations call for a mixed programming mode, and for the 

harmonious cooperation between the two modes at the language and system levels. We are looking 

forward to a new generation of deductive database systems that embody these new advances, along 

with the know-how acquired in building the first generation of research prototypes. 

5 C o n c l u s i o n  

Aiming to extend relational databases while preserving their declarative programming style, de- 

ductive databases support a rule-based language capable of expressing complete applications. We 
believe that this technology will improve substantially the ability of database systems to cope with 

future demands, such as expressing very complex exploratory queries to identify elaborate patterns 

in large databases, and dealing with heterogeneous distributed databases. 
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