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Abstract — A simple on-line interactive computing methodology for determining static parameters of
targe-signal semiconductor models is described. The procedure makes use of: (1) an automatic data
collection scheme, (2) a single search, three-parameter optimization method for computing diode
parameters, and (3) a partitioning scheme to separate the defining transistor equations into two single
search, three-parameter problems which are solved by the diode optimization method described in (2},

The method is described by means of the CIRCUS diode and transistor models, and is compared
experimentally with Sokal’s method[1, 2]. The new approach is shown to be superior.

1. INTRODUCTION

THE AssUMPTIONS under which the charge control,
Ebers-Moll, and Linvill models[3-5] have been
derived are valid only for moderate current con-
ditions. For high currents however, no a priori
guarantee of the soundness of the analogs exists,
even when a variable current gain, Beta, is in-
¢cluded in tabuiar form, as is done in the modified
charge-control model used in the CIRCUS pro-
gram[6]. Additional resistances are also added at
the terminals to ensure a first order correction on
the model characteristics. For this reason, as indi-
cated by Lindholm[7], model parameter values, for
device operations over a wide range of currents,
obtained by the state of art methods should be
viewed with a great deal of uncertainty.

Probably one of the first significant attempts in
overcoming this difficulty was made by Sokal{l, 2].
In Sokal’s method just enough experimental data
points are taken so that the defining model equa-
tions can be solved explicitly. Although the method
has been applied successfully to diode and transis-
tor models alike, experiments have proved that a
small error in a data point can be reflected as large
errors in the model parameters|[8].

Another approach to the problem has been pre-

sented by Bailey[9] who recommends a ‘cut and
try’ method of fitting experimental data to the volt-
age-current characteristics of a given device. Even
though a large number of data points are taken, thus
encompassing more fully the performance of the
device, the method is time consuming and is subject
to human error. '
More recently two highly sophisticated ap-
proaches have been presented by Parker and
Wether[10], who advocate a classical pseudo-
inverse technique, and by Rohrer et al.[11], who
utilize the adjoint network method to implement a
least square fit of experimental data. Both methods
are computationally elaborate. Neither method
realizes the possibility of maximizing the informa-
tion which is obtained from the measurements by
using a judiciously chosen data collection scheme.
It is the purpose of this paper to describe a
simpler technique which is applicable to the
CIRCUS class of models. The basic procedure is
designed for the diode case and consists of a special
data collection scheme and an optimization method
that employs a single search, three parameter algo-
rithm and sensitivity functions to determine step
sizes. This procedure is then extended to include
the transistor case for which the model equations
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are separated into two sets so that the basic diode
case algorithms can be employed. The last part of
the paper compares the new method to Sokal’s
method with experimental data obtained for both
the diode and transistor cases.

2. THE BASIC METHOD: THE CIRCUS DIODE
MODEL

The optimization procedure is best described by
example. Consider the CIRCUS diode model
shown in Table 1, where the defining circuit equa-
tion can be expressed by

I=1I{exp [(F—RI8]—1}. (1)

The parameters I,, 6, and R are to be determined
by fitting the known (measured), but judiciously
collected, quantities of ¥ and 1.

Data collection.* Recall the nonlinear diode

*A programmable test is available. Therefore, it is
preferred to use a judicious distribution of the data set to
insure the best estimate of the parameter value,
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characteristics whose current values are plotted on
a logarithmic scale against voltage values on a linear
scale. The region of interest is bounded by I, and
Inax. In the lower part of the V-I characteristics,
the curve is linear indicating that the voltage drop
due to the resistance R and the /, term in equation
(1) can be neglected. With these assumptions, the
diode voltage equation reduces to

V=—=(Inl~-Inl,), (2)

D |-

a straight line (on the log scale) with slope 1/8 and
intercept /,. If equal increments of AV are taken,
Al between consecutive points is a constant, i.e.,
Al = AV - 61, (3)
assuming AV is small enough. In other words in the
linear (lower) portion of the diode characteristics.
the current data should be collected according to a
geometric progression.
At high current levels (the upper part of the diode

Table 1. CIRCUS models

1. D.C. diode model
Ip = Is[exp (8Vp) — 1]
R = Diode ohmic series resistance
R, = Junction ohmic leakage resistance
6=M(q/KT)
M = Emission constant for diode Jjunctien
15 = Saturation current
Vb = Junction voltage
2, D.C. npn transistor model
Ige= (1/By+ 1)Iy—1,
IBC = _IN+ (I/B['i" l)[,{
Iy=Igs[exp (65Vy) —1]
Iy =1Ics[exp (8,V)) —1]
R,y = Emitter-base junction ohmic
leakage resistance
R, = Collector-base junction ohmic
leakage resistance
R = Extrinsic emitter resistance
Rjp = Extrinsic base resistance
R = Extrinsic collector resistance

[ — v i

1 Cathode

Oy = My(q/KT)
My = Emission constant for
emitter-base diode
8= M, (q/KT) =
M; = Emission constant for
collector-base diode
Bx = D.C. current gain under normal operation
B, = Inverse d.c. current gain
1gs = Emitter saturation current
Icg = Collector saturation current

RL2
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L
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characteristics), the series resistance is dominant;
therefore according to equation (1) a constant inter-
val Al between successive values should exist
between measurements.

The conflicting requirements for A/ between the
linear and nonlinear portions of the characteristics
have to be correlated. Suppose N + 1 data points /;
of current are taken between I, and [,.,, where
Iy = Inn <€ Iy = I« Defining [N/3] as the smal-
lest integer = N/3, and Al; the interval between
consecutive points, the current values are given by
1.1 = I;+ Al,. The upper [ N/3] points are measured
according to an arithmetic progression, while the
remaining points are taken according to the geo-
metric progression’ specified by equation (3). The
interval is therefore a function of the current such
as shown in Fig. 1. .

Once the current interval limits I, and /., and
the number of data points, indicated by N + 1, are
specified, the experiments can be conducted starting
with 1., and run through to I .4 in increments of

AI_,'=K'IJ for 0$J<N_[N/3]

and
Alj=K Iyv.nm for N—[N3]=<jsN
Noting that

Tn-tw = T (1 + KNN3
= ['nax = [N/3] * Kl in—nsan 4)

the value of X can be solved for implicitly from the
expression,

I
—max __ (l+k[N/3])(l+k)‘”‘w’3]) (5)
Imtn
Al
//
Pd
(S W W N U R S " he o o e d "
01 2 3 4 Fn\‘ mN - 2 I
4 z 2z z
IMIN IMA)(

Fig. 1. Distribution of the values of current intervals to
be used in the measurements.
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quite conveniently by a computer program. The
current settings necessary to conduct the experi-
ments can now be specified.

In order to assume that the measurements on the
device are taken at constant temperature, pulses
whose duration are at least four or five times longer
than the electric and much smaller than the thermal
time constants of the device are employed. For the
experiments conducted in the present research, a
Fairchild 600 tester proved to be excellent.

Problem formulation. In the treatment of the
experimental data, i.e., the pairs, (I;, V), j=0,
1,..., N, the current /; is considered the inde-
pendent variable, while V; is considered the depen-
dent variable. Consequently (1) is rewritten as

V() =%ln (;’-+ 1) +RI 6)

so that the voltage variable is a function of I. Then
defining the point-by-point error as

E;=V;—V(l;) j=0,1,...,N €))
an error function can be formulated. It was found
that excellent results, speedy convergence and

computational simplicity could be achieved with
the error function,

2 |E)°
Ec(o’ ln R) = C\/ {=0 (8)
N+1

for ¢ == 1. (Different values of ¢ between 1 and 2
were tested and essentially the same results were
obtained. So ¢ =1 was chosen for computational
simplicity.) Finding the minimum value of E, while
8, I, and R are treated as parameters constitutes the
optimization problem.

Search procedure. Among the various search
procedures amenable to digital computer imple-
mentation, a single-parameter search procedure
seemed best for the problem at hand, since it offers
the best compromise between computation time
and ease of programming. A three-parameter search
problem is substituted by a single-search problem
attacked iteratively, a situation readily suited for
on-line computation. The single-search algorithm is
described in the appendix.

The selection of good starting values and incre-
ments of the parameters are crucial to the success
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of the algorithm. In fact, convergence to an absolute
minimum will definitely not occur unless the initial
starting point is taken close enough to the minimum
such that a monotonically decreasing path between
the two points exists. Likewise if improper incre-
ments are chosen, the minimum can be bypassed
without really knowing it.

These difficulties are easily remedied however. A
good estimate to the starting values is found by
Sokal’s method which computes a first order ap-
proximation to the diode parameters. [t has proved
to be highly successful in making the initial guess.

The most critical factor for the success of the
parameter search procedure rests with the proper
choice of parameter increments. Too long a step
can lead to divergence while too short of one will
increase the time needed to locate the minimum.
This difficulty can be overcome by making use of
sensitivity functions. Therefore, a step size inverse-
ly proportional to the sensitivity of the diode charac-
teristics to each parameter should then be employed
in the search. Defining the sensitivity function as,

v (Byly) diny
Sat= (Ax{x) dilnx’ ©)

for the diode case expressed by equation (1), the
sensitivities of ¥ to 8, 1, and R are respectively:

SeV = (1 —&)

V
1
¥ _—
S’-‘ oV
IR
v IR
Sr 7

For asilicon diode, assuming that the voltage varies
between 0.5 and 1.5 V, while the ohmic drop due to
R varies between 0 and 0.5V, the sensitivities
varies according to

1 =5//=<-0.7,033 < S}; < 0.1,
and
0= 5,Y =0.33,
Using the sensitivity coefficients obtained above,

the size of the steps which ensure the fastest con-
vergence are given in the table below where the
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stepsize range is expressed as a percentage of the
parameter value.

Range 9 1, R

A% min 1 7 4
A% max 3 24 12

The sensitivity coefficients are also useful to evalu-
ate the consistency of the results of parameter
determination methods by comparing the dispersion
of the outcomes for each parameter against its
sensitivity coefficient,

2.1 A separation technique: the transistor case

The three-parameter search algorithm can be
extended to include the transistor case. Consider
the CIRCUS transistor model shown in Table |.
The quantities measured or directly derived from
the measurements are the terminal voltages and
currents Vg, Ve, Iz, and I, and the current gains
B; and By. The unknown parameters are Igs, Ics,
Ov, 81, Ry, Ry, Rc. The leakage resistances, R,
R, are neglected.

For this case a seven parameter optimization
problem is defined. Fortunately not all parameters
need be considered at one time, since the original
problem can be recast into two four parameter
problems, one involving the base-emitter diode
equation, the other the base-collector diode equa-
tion. One of the parameters is common to both
equations and can be determined by a separate
measurement. As will be shown below, by manipu-
lating the equations, the four parameter problem is
solved by means of the three parameter search
algorithm, applied*to each case, and iterating be-
tween the two.

First consider the base-emitter diode equation,

Iy = Igs{exp [BN(VBE+REIE__RBIB)] —1}. (10)

Noting that Ry/,— Rpl, in the argument of the
exponential function can be rewritten as

_ ——p. By o I
Rylg—Rplp REBN+110 RBBN
By Rs)

=—] (R = o8
ARy +1 By

and assuming that /. = [, > | 1» the collector cur-
rent can be expressed as

(11)
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R
Io= Igs {exp [9_\»(VBE—IC(RE B\Bi 1 +—/3—f)] — 1}_
' a2

Similarly, the emitter current, for the inverse
characteristics,
Ig=lcs{exp [6:(Vac+Relc—Rglg)] —1} (13)

can be manipulated to

oo afregley 2]

1 .

e=lcs {CXP [GI(VB( IE(RC Bi+1 + 3, 1
(14)

assuming I, = I, » I,.

The current equations (12) and (14) have the
identical form as (1), for the diode, except that a
more complicated resistance expression appears in
each equation. These resistances can be lumped as
. asingle equivalent value given by

By | Rp
Ryeq= REBN+1+B (15)
B; RB

which are correct only when 8y and 8, are constant.
On a practical basis, when 8y and 8, are treated as
variables. experience has shown that any effort to
determine both values of Ry and Rj in (15), via
data obtained in the forward bias condition proved
to be unsuccessful. This is due to the fact that a
locus of minima is found rather than a unique one.
Similar comments can be made concerning the
resistances R, and Ry in (16). It is for this reason
that only three parameters are determined from the
forward active characteristics and three from the
inverse mode of operation. Three measurements,
I Ipg,. and Ve . are taken in the saturation
region to determine the last remaining parameter.
This also has the effect of improving the per-
formance of the model operating there. These data
are substituted intc (10) and (13), which are
rearranged as:

1
Ve ="Relg, +Relc, + 5 ln( "’+1)

Igs
I
——ln ( L4 1)
8, Ics

Combining two three-parameter searches with

(17
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(17) produces a sufficient number of relations to

uniquely determine the seven parameters. Since no

explicit formula can be given to compute them, a

simple iteration routine is employed instead.

The initial values for the three-parameters
searches are obtained by applying Sokal's diode
method to the (12) and (14). Data are also collected
just as if two separate diode problems at hand. A
guess for one of the resistance parameters in (15) or
(16) must be given at the start however. The logical
candidate Ry, which is common to both, is initially
set to zero.

The entire procedure therefore consists of the
following steps:

T0: Set Rgto zero

T1: By, Igs, Ry are computed by the three para-
meter search algorithm operating on the
forward active characteristic data.

T2: 6,, Ics, R are computed by the three para-
meter search algorithm operating on the inverse
active characteristic data.

T3: Recompute the values of Rz, Ry, R to satisfy
an.

T4: Stop if convergence is met; otherwise go to
step T'1.

At T3 the updating of the unknown parameters
Rg, Rz, Re to new values Rg, Rj, Rl takes place.
All the other parameters remain constant at this
point. However by rewriting (17) as

: | (l‘ +1)
== In
By gy

1o/
|
Gn(lcs+1) (18)

it can be seen that a non unique set of values of
Ry and R{ can satisfy the equation, This dilemma
can be eliminated by ensuring that the previous
values of Ry, and R ., given by (15) and (16), are
maintained. Thus

- RJ’E'!Esat + R:T"Csal = VCsal -

f B\ &_ BN RB
PRyl B, Regoritp, 1Y

I B 1 B

B+RCBI+1 RBB+RC,B;+1 (20)

Equations (18), (19), and (20) form a system of three
linear equations in three unknowns R}, R}, and R},
which is easily solved by Kramer's method. The
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procedure then proceeds to step T4 to check
convergence.

As a computational detail, it is observed in (18)
that the values of Iy and I, must be known before
the equations can be solved. These values can be
obtained by setting the external currents I Egq, @nd
I, in the equations (see Table 1),

fe=1y—(1/8;+ 1)1, (22)
and solving for I, and I. That is,
o dp, (14 1/Bx} g,
v usyarugy 0
= e, H O+ UB!)[Ew_. 24)
L= (1+ 1UB) (1+ 1/8y)
Note that
By=Bn(ly) (25)
B, = B:(Ip) (26)

in (23) and (24) are functions of I and I, and are
known only experimentally. Values for Iy, /,, By,
and B, can be determined by iteratively solving
(23)-(26). Note that a linear interpolation scheme
is required to represent (25) and (26).

2.2 Experimental results and model modification

Experiments were conducted to compare the
new method with Sokal's. The Fairchild FD77
diode and a Fairchild 2N3009 transistor were em-
ployed in both sets of experiments. The results are
shown in Table 2.

The average error for the diode case, shown in
the last column was computed using (8). The maxi-
mum deviation from the average is tabulated for
each parameter and appears in the last row. Note
that the average error is reduced by an order of
magnitude with the new method and that the maxi-
mum deviation is 16~30 times smaller than the
corresponding deviations obtained by Sokal's
method.

Observation of the values calculated by Sokal’s
transistor method reveals a wide dispersion, there-
by indicating a large inconsistency of parameter
values. With the new method. the results are con-
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tained within an acceptable margin (10 per cent at
worst but usually much less in general).

In order to fully test the reliability of the method,
different data of the active characteristics were
employed first; then this data was kept constant
while the saturation characteristics were measured
atdifferent points. As can be seen by the two sets of
results at the bottom of Table 2, the dispersion of
parameter values obtained is reasonable in both
instances. Moreover, the average error is, likewise,
consistently small.

The value obtained for R, in Table 2 is negative.
This should not be surprising since the terminal
resistances of the model constitute a mathematical
rather than a physical analog. In fact such a value
ensures a first order correction on the exponential
characteristics of the model, and accounts not only
for the extrinsic resistance of the device regions,
but also for all the complex phenomena which
occurs under high current rates. Moreover, notice
that the equivalent impendance which is seen at
the terminals [see (15) and (16)] remains positive
under normal operation conditions, When the
particular configuration in which either the collec-
tor or the emitter is left open, an equivalent nega-
tive resistance is seen at the terminals, and the
validity of the derived mode under these conditions
becomes questionable. This means the model is
reliable only when a sound method for determining
its parameter values from measurements covering
the intended region of operations of the device is
used. The results of Table 2 which are based upon
the device being driven from low to high current
rates, indicate that, with the above mentioned
limitations, the CIRCUS model can provide
excellent analogs for large signal semiconductor
devices.

Consistent results of the new method have also
shown that for the diode, the calculated value of /,
is much larger than the reverse leakage current /,
measured directly from the reverse characteristics
(see Table 1). Whenever 7, is forced to equal /, a
deterioration of model performance in the active
region occurs. For this reason, it is proposed by the
authors that two different values of /, be employed,
one for the negative function voltage, the other for
positive function voltage.

This small change can easily be implemented in
most prestored models of the currently available
computer circuit analysis programs. If such a modi-
fication can not be reasonably done, an alternate
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method making use of the original model, a depen-
dent current source, and a switch will produce the
same effect[8].

- 3. SUMMARY AND CONCLUSIONS

The new method provides a simple, inexpensive
(about 30 sec. CPU on a Burroughs B5500 com-
puter) on-line procedure to determine static para-
meters for the CIRCUS diode and transistor class
of models. Particular features of the method are:

(a) The collection of experimental data and initializ-
ation of parameters in the search procedure have
been automated.

(b) The single parameter search algorithm in con-
junction with the separation technique is prob-
ably one of the most economicgl as well as most
convenient method for handling such problems,
One particular disadvantage to the new method is

that it is not applicable to the more complex models

such as Gummel-Poon[13]. For these cases, the
more sophisticated optimization methods are
recommended.

REFERENCES

- N. O. Sokal, J. ). Sierakowski and J. J. Sirota,
Eleciron. Des. 13,60 (1967),

. N.O. Sokal, Electron. Des. 14,80 (1967).

. R. Beaufoy andJ. ], Sparkes, ATE J. 13,310 (1957).

. J.J. Ebersand ). L. Moli, Proc. IRE. 42, 1761 (1954).

. J. Linvill, Proc. IRE, 46, 949 (1958).

. L. D. Milliman, W. A, Messena and R. H. Dickhault,
CIRCUS —A Digital Computer Program for Trans-
ient Analysis of Electronic Circuits, User's Guide.
Harry Diamond Labs. 346-1 (1967).

. F. A. Lindholm, Solid-5t. Electron. 12, 831 (1969).

. €. Zaniolo. M.S. Thesis, University of California,
Los Angeles (1970).

9. R. L. Bailey, IEEE Trans. on Electron Devices

ED-17, 108 (1970).
10. S. R. Parker and M. H. F. Werther, Proceedings of
International Conference on Microelectronics. Cir-

—

[= WL N SRS I 18 ]

[= RN}

C. ZANIOLO and L. P. MCNAMEE

cuits and system Theory, 1970, The University of
New South Wales, Sydney, Australia, pp. 58-59.

1l. R. A. Rohrer, S. B. Fan and L. Claudio, /EEE J.
Solid-St. Circuits, 6,260(1971).

12. D. Knuth, Fundamental Algorithms,
Wesley, New York (1968).

13. H. K. Gummel and H. C. Poon, Bell Syst. Tech. J.
(1970),

Addison

APPENDIX

The single parameter search algorithm for up to three
parameters can be summarized using the notation of
Knuth[13]. The following program variables are used:

X, Jj=1,2.3—search variables {corresponding to #, Iy
and R respectively in the diode case).

Xo Jj=1,2,3—variables storing the parameter values at
the local minimum.

AX; j=1,2,3—theinitial step sizes, specified by the user
as a percentage of parameter values.

DIFF —the increment in the search step.

FLAG —a flag indicating that a change in the
search direction occurred in last opera-
tion.

E,, E,—error values computed according to (8).

K —a parameter directly proportional to the
precision desired at the local minimum,
CONTRL - aparameter that takes on a value of three
if the search algorithm reaches a mini-
mum,

A single-search, three parameter algorithm

$0: Initialize X;, (j=1,2,3), and set J<1, and
CONTRL « Q.

S1: Set DIFF <« AX,, X0, « X;, FLAG « 0; Compute
E}-

§2: SetX; « X,+DIFF.

§3: Compute E,;ifE, < E, then set FLAG « 0,E, « E,
and go to S, otherwise set X; «— X;—DIFF.

$4: If FLAG =0thenset DIFF < —DIFF, FLAG « 1,
20 t0 52, otherwise go to the next step.

§5: If |DIFF| < |JAX/K| go to §6, otherwise set DIFF «
DIFF[4, FLAG « 0,and goto §2.

$6: If X;# X0, then set CONTRL « 0, otherwise
CONTRL «— CONTRL+1.

§7: IfFCONTRL = 3 then go to $8, otherwise setje j+1
mod = 3,andgotoS1.

§8: End of the search.




