Provenance Management in Databases Under Schema Evolution

Shi Gao, Carlo Zaniolo

Department of Computer Science
University of California, Los Angeles
{gaoshi,zaniolo} @cs.ucla.edu

Abstract

Since changes caused by database updates combine with
the internal changes caused by database schema evolu-
tion, an integrated provenance management for data and
metadata represents a key requirement for modern infor-
mation systems. In this paper, we introduce the Archived
Metadata and Provenance Manager (AM&PM) system
which addresses this requirement by (i) extending the In-
formation Schema with the capability of representing the
provenance of the schema and other metadata, (ii) pro-
viding a simple time-stamp based representation of the
provenance of the actual data, and (iii) supporting power-
ful queries on the provenance of the data and the history
of the metadata.

1 Introduction

The importance of recording the provenance, or lineage,
about information of significance is now widely recog-
nized, and a large body of research has been produced
on provenance management in scientific workflows and
databases [4, 15, 19]. Existing provenance systems fo-
cus on capturing the “why”, “where” and “how” facets of
provenances [5, 12] and support a rich set of provenance-
related functions and queries. Unfortunately, most previ-
ous works assume that the database schemas and work-
flows are fixed and do not change with time.

In reality, modern information systems, particularly
big science projects, undergo frequent database schema
changes as illustrated by the UCLA testbed collecting the
schema history for 20 large information systems, includ-
ing Mediawiki/Wikipedia, Ensembl GeneticDB and var-
ious CERN Physics DBs [1]. For instance, the database
of Mediawiki software supporting Wikipedia has expe-
rienced more than 300 schema versions in its nine years
history and similar observations hold for the rest. Very
often, when a mistake is found in the latest version of the
database, it is hard to trace the provenance of this mistake
in early versions since the schema has changed.

When the schema evolves, the database under old
schema is migrated into the new one conforming to new
schema. Therefore, the current database snapshot is the
combined result of (i) the external actions that entered the
original information (e.g., via SQL inserts or updates),
and (ii) the migration steps that have then transformed
the data as part of the schema evolution process. Thus the
history of schema changes since a piece of information
was first recorded becomes an integral part of its prove-
nance. A combined provenance management system for
data and metadata can be used to meet many important
requirements [6, 15], including the following ones:
Provenance Tracing. Users may be interested in the
provenance of both data and metadata. The provenance
of metadata allows users to audit the process of schema
evolution and examine its history.

Provenance Verifying. The combined provenance of
data and metadata gives users an effective way to audit
suspectable data updates and schema changes.

Source Data Recovery. The source database can be re-
covered from data and archived versions of database.
This can also be used to correct faulty source data.

The Archived Metadata and Provenance Manager
(AM&PM) proposed in this paper is the first system de-
signed to address the problem of supporting provenance
under schema evolution. AM&PM achieves this goal by
(i) extending the SQL information schema facility with
timestamp based archival capability to store the prove-
nance of data and metadata, (ii) using Schema Modifica-
tion Operators (SMOs) and Integrity Constraints Modifi-
cation Operators (ICMOs) [9, 10] to express the schema
mapping between different versions of the database after
database upgrades, and (iii) supporting efficiently pow-
erful queries on both data provenance and schema prove-
nance.

2 Background

Schema Evolution Language The Schema Modifi-
cation Operators (SMOs) were introduced in [10] as a

Table 1: Schema Evolution Language: SMO and ICMO

SMO

CREATE TABLE R(a,b,c)

DROP TABLE R

RENAME TABLE R INTO T

COPY TABLERINTO T

MERGE TABLER, SINTO T

PARTITION TABLE R INTO S WITH cond, T
DECOMPOSE TABLE R INTO S(a,b), T(a,c)
JOIN TABLE R,S INTO T WHERE cond
ADD COLUMN d [AS constjfunc(a; b; ¢)] INTO R
DROP COLUMN ¢ FROM R

RENAME COLUMN b INR TO d

ICMO
ALTER TABLE R ADD PRIMARY KEY pkl(a; b) [policy]
ALTER TABLE R ADD FOREIGN KEY fkl(c; d)
REFERENCES T(a; b) [policy]
ALTER TABLE R ADD VALUE CONSTRAINT vcl AS
R:e =0 [policy]
ALTER TABLE R DROP PRIMARY KEY pkl
ALTER TABLE R DROP FOREIGN KEY fk1
ALTER TABLE R DROP VALUE CONSTRAINT vcl

very effective tool for characterizing schema upgrades
and automating the process of migrating the database
and upgrading the query-based applications. Since in
many situations, the schema integrity constraints are
also changed along with schema structure, Integrity
Constraints Modification Operators (ICMOs) were
introduced in [9] to characterize integrity constraints
and automate the upgrading of applications involving
integrity constraint changes. Three types of integrity
constraints are considered: primary key, foreign key, and
value constraint. Extensive experience with the schema
evolution testbed [1] shows that the combination of
SMOs and ICMOs displayed in Table 1 can effectively
capture and characterize the schema evolution history of
information systems. We would next present a simple
example to show how our schema evolution language
works. Consider the table customer in a SALES database
shown in Figure 1. Underlines indicate the primary
keys. The initial schema version is V;. Then the schema
evolves into V,. Assuming that the data type of the
attribute city in V, is the same with the attribute location
in V}, the transformation from V; to V5 can be described
as follows:

1. ADD COLUMN birth DATETIME INTO customer
2. RENAME COLUMN location IN customer TO city

The combination of these two SMOs defines the
schema evolution script, which describes the mapping
between different versions of database schemas in a con-
cise and unambiguous way. Moreover, it is easy to con-
vert schema evolution scripts into standard SQL scripts,
as proved in [10].

V. customer

1 id | name | age | location

V. customer

2 id | name | age | city | birth

Figure 1: Two schema versions for table customer

Temporal Data Model The temporal data model
tracks the time when data is valid. The relational
schemas in the temporal data model have timestamp
attributes to record the valid time intervals of tuples.
Two temporal dimensions are discussed in past tempo-
ral database research [14, 21]: valid time and transaction
time. Valid time denotes the time period when entities are
valid in the real world. Transaction time denotes the time
period when entities are valid in the database system. A
temporal data model is called bi-temporal if both of them
are recorded.

In this paper, we focus on the transaction-time model
and the transaction-time database. In the transaction-
time database, the tuples created or updated are times-
tamped with the current system time. The deletion of
a tuple causes the tuple to be labeled as deleted and
its time-stamp to be updated. Many transaction-time
database implementations are now available, including
those of IBM DB2 10, Teradata 13.10, PostgreSQL [18],
and ArchlS [20]. These systems provide automatic tem-
poral updates processing and support temporal queries.

Information Schema In relational databases, the In-
formation Schema [11], also called data dictionary or
system catalog, is a standard database which archives the
metadata of the databases.

For instance, the table COLUMNS in the informa-
tion schema of MySQL 5.1 is defined with 19 at-
tributes. These attributes include Table_Schema, Ta-
ble_Name, Column_Name, Column_Default, Data_Type,
and others which are not discussed here since they are
not important for provenance. These attributes provide
meta information about columns in tables. The informa-
tion schema of MySQL 5.1 uses 28 tables to store all
kinds of structural information on database schema. In
other words, the information schema is the database of
other databases and widely supported in the commercial
database systems.

3 Approach

In AM&PM, we archive the schema evolution and the
provenance information using an enhanced information
schema, in order to support the queries on the provenance
of data and metadata discussed next.

Provenance Queries Our approach supports three
types of provenance queries:

Data Provenance Queries: Given a data tuple d in
database D derived from source database S, where does d
come from? When is d inserted? How is d derived from
S§? All the information about where-, when-, and how-
provenance will be stored in the database of AM&PM
system. For example, the when-provenance can be pro-
vided by the timestamp of relevant tuples.

Schema Provenance Queries: Our system allows users
to retrieve past versions of database schema along with
the SMOs and ICMOs used to upgrade past data and ap-
plications. Similarly, we can answer where-, when-, and
how- queries for the basic elements of the schemas, such
as tables and columns.

Queries on Statistics: AM&PM supports statistical
queries about the database content and schema, such as
the number of primary keys and the schema lifetime.

Metadata and Provenance Model We integrate the
data provenance, the schema evolution history, and other
supporting information (such as database statistics) in
one simple model. The provenance of both data and
metadata is stored in the relational tables of AM&PM’s
provenance database, where the schema evolution his-
tory works as the bridge connecting the provenance of
data created under different schema versions.

In order to integrate the data provenance with the
schema evolution history, our provenance database en-
hances the SQL information schema in the following
three aspects:

(i) AM&PM introduces two tables Transaction and
Transaction_Text to archive the history of data updates.
The transactions related with data updates are stored in
these two tables with transaction time. Besides, for every
table in the current database, there is one corresponding
timestamp table to store the timestamps of the values in
the current database.

(ii) The SMO table and the ICMO table are created
to store the schema evolution operators generated in the
transformation from one schema version to another ver-
sion. Examples of these two tables are shown in Table 2.
SID and ICID are the primary keys. Source and Target at-
tributes denote the source schema and the result schema.
For instance, in Table 2, the tuple sl in the SMO table
represents one schema change in the transformation of
schema V; to V5.

(iii)) AM&PM introduces some auxiliary tables to pro-
vide more information about provenance, such as the re-
moved values before data updates and database statistics.

AM&PM provenance database is a transaction-time
database where the values are valid from their times-
tamps to NOW. For instance, a tuple with times-
tamp “2006-08-20 12:38:44” is valid from “2006-08-20

Table 2: An example of AM&PM provenance database

(a) SMO
SID | SMO_Text | Source | Target Timestamp
sl smoy 4 1% 2006-11-20 12:38:44
s2 SMoy Vi \%3 2006-11-20 12:42:07
(b) ICMO
ICID | ICMO_Text | Source | Target Timestamp
il icmo Vi V3 2007-02-01 13:04:46

(c) Transaction

PID | DB_User | Schema Timestamp
pl Guestl Vi 2006-09-15 11:09:12
p2 Guestl Vi 2006-10-16 17:26:09

(d) Transaction_Text

PID | Transaction_Text
pl tran)
p2 trany

(e) Customer_Timestamp

Tuple ID | Attribute Timestamp
100 id 2006-09-15 11:09:12
100 name 2006-09-15 11:09:12
100 age 2006-09-15 11:09:12
100 city 2006-10-16 17:26:09
100 birth 2006-11-20 12:38:44

smoyp: “ADD COLUMN birth DATETIME INTO customer”

smoy: “RENAME COLUMN location IN customer TO city

icmo: “ALTER TABLE customer ADD FOREIGN KEY pk1(id)
REFERENCE customer_payment (customer-id)”

tran;: “INSERT INTO customer VALUES (100, ‘Sam’, 30, ‘San
Francisco’)”

trany: “UPDATE customer SET location = ‘Los Angeles’ WHERE
name = ‘Sam’ ”

12:38:44” to the current timestamp. For transactions and
schema changes, the timestamp denotes when the trans-
actions or schema changes took effect. Any tuple whose
valid period overlaps the time point of a transaction is
affected by that transaction. Provenance query answer-
ing is performed by evaluating all the transactions and
schema changes happening in the valid period of queried
values.

Table 2 illustrates how to query provenance under
schema evolution. Suppose that there is one table cus-
tomer in our database. The table definition is the same as
that of Figure 1. The transactions and schema evolution
operators are listed at the bottom of Table 2. The query
is: find the how-provenance of “Los Angeles” in the at-
tribute city of table customer. The valid period of this
value is from “2006-10-16 17:26:09” to NOW. There-
fore, we search all the transactions and schema evolution
operators whose timestamps overlap this period. Then
we get icmo, smo1, smoy, and trany. After evaluation,

only trany and smo, affect this value. We return times-
tamped tran, and smo; as the how-provenance of “Los
Angeles”.

4 The AM&PM System

Figure 2 depicts the architecture of the AM&PM sys-
tem. An advantage of AM&PM is that the provenance
database is stored as relational databases, and thus suit-
able for any commercial RDBMS. The AM&PM con-
sists of two main components: the provenance database
manager and the query parser. Provenance database
is a combined database of schema evolution tables and
data provenance tables. Schema evolution tables include
schema information of past database versions, SMOs,
ICMOs, and database statistics, while data provenance
tables (e.g. tramsaction table) store the information of
transactions applied to the content of database. Query
parser rewrites XQuery to SQL and checks the syntax of
the provenance queries.

Schema evolution tables are filled by parsing the
past schemas of the database and the schema evolution
scripts. Each schema evolution script consists of the
SMOs and the ICMOs used to upgrade database as de-
fined in Section 2. In AM&PM, the schema evolution
scripts are produced by a module called PatchGenerator.
The basic idea of PatchGenerator is to compare different
schemas and express the changes using the schema evo-
lution language. The content of data provenance tables
is extracted from the instance of current database and the
database history log. The current database provides cur-
rent data and schema. The database history log offers the
source values and relevant transactions.

Once the provenance database is filled, users can is-
sue the provenance queries expressed in SQL or XQuery.
XQuery is introduced to facilitate the expression of com-
plex temporal queries[20]. Provenance queries written in
SQL are directly executed in our provenance database.
For queries expressed in XQuery, they are rewritten to
SQL statements by the AM&PM parser. Many propos-
als have been made to tackle the problem of translat-
ing XQuery to SQL. We exploit the algorithm presented
in [20], based on the SQL/XML standard [16] which sup-
ports XML views on relational databases.

Extended Functionality Examples of meta-level
functions being considered for AM&PM include:
Provenance Query Rewriting Suppose we have a prove-
nance query set, and some changes occur in the current
database schema. Can the current provenance query set
be automatically upgraded to work on the new schema?
We will take advantage of the query rewriting techniques
developed in PRISM [9] to solve this problem.
Provenance Propagation If a value in the source
database is changed, how can we propagate this change

s
Database D ']
1
DB Log

!

| Schema Data
Schema .
R 1 Evelution Provenance
Evolution —)I
Script \
n ~
PatchGenerator
Schemas | [Parser]
1 1
1
Provenance Query Results 1
/ XQuery 1
1
v
Users

Figure 2: Architecture of AM&PM System

to the current database? This problem was previously
studied for data warehousing in [13]. We plan to extend
the algorithm in [13] to the schema evolution environ-
ment of AM&PM.

5 Related Work

An overview of database provenance research is pre-
sented in [6, 19]. The data provenance in relational views
was first studied in [8]. The authors proposed an algo-
rithm to capture the provenance by analyzing the syntax
of queries. In [5], the where- and why- provenance are
discussed for the data derived by database queries. These
works didn’t propose a general model for the provenance
of data and underlying metadata.

MMS [17] proposes a relational model which uni-
formly models data and metadata in database. How-
ever, the evolution of metadata is not discussed. SPI-
DER [3, 7] comes closer to our proposal. SPIDER uses
nested relational model and mapping language to com-
pute provenance over schema mapping. Our work is dif-
ferent from SPIDER since we archive provenance and
schema evolution in a simple relational model and use
SQL as query language (also XQuery on temporal views
of archived information).

6 Conclusion

In this paper, we presented an integrated approach to
manage the provenance of both data and metadata un-
der schema evolution. The provenance of data and meta-
data is archived using relational databases. The schema
evolution history is stored using the PRISM [9] schema
evolution language. Thus, AM&PM provides a sim-
ple way to support provenance management in relational
databases. Powerful provenance queries expressed in
SQL and XQuery are efficiently supported.

7 Availability

The implementation of AM&PM is in progress. We have
constructed a provenance database on Mediawiki data set
with 323 schema versions [1]. The SQL script for build-
ing the provenance database and the schema evolution
scripts for Mediawiki schemas are available in [2].

8 Acknowledgement

The authors would like to thank Mohan Yang, Kai Zeng,
and Seyed Hamid Mousavi for their insightful comments
and suggestions on this research. This work was sup-
ported in part by NSF Grant No. IIS 0917333, entitled
“III: Small: Information Systems Under Schema Evo-
lution: Analyzing Change Histories and Management
Tools.”

References

[1] Pantha rhei benchmark datasets. http://yellowstone.cs.
ucla.edu/schema-evolution/index.php/Benchmark_

home.

[2] Schema evolution script for the database of mediawki. http:
//yelloustone.cs.ucla.edu/provenance/.

[3] ALEXE, B., CHITICARIU, L., AND TAN, W.-C. Spider: a

schema mapping debugger. In Proceedings of the 32nd inter-
national conference on Very large data bases (2006), VLDB ’06,
VLDB Endowment, pp. 1179-1182.

[4] BOSE, R., AND FREW, J. Lineage retrieval for scientific data
processing: a survey. ACM Comput. Surv. 37, 1 (Mar. 2005),
1-28.

BUNEMAN, P., KHANNA, S., AND TAN, W. C. Why and where:
A characterization of data provenance. In ICDT ’01: Proceedings
of the 8th International Conference on Database Theory (Lon-
don, UK, 2001), Springer-Verlag, pp. 316-330.

BUNEMAN, P., AND TAN, W.-C. Provenance in databases. In
Proceedings of the 2007 ACM SIGMOD international conference
on Management of data (New York, NY, USA, 2007), SIGMOD
07, ACM, pp. 1171-1173.

CHITICARIU, L., AND TAN, W.-C. Debugging schema map-
pings with routes. In Proceedings of the 32nd international con-
ference on Very large data bases (2006), VLDB ’06, VLDB En-
dowment, pp. 79-90.

[8] CulL Y., WIDOM, J., AND WIENER, J. L. Tracing the lineage of
view data in a warehousing environment. ACM Trans. Database
Syst. 25, 2 (June 2000), 179-227.

[9] CURINO, C. A., MOON, H. J., DEUTSCH, A., AND ZANIOLO,
C. Update rewriting and integrity constraint maintenance in a
schema evolution support system: Prism++. Proc. VLDB Endow.
4,2 (Nov. 2010), 117-128.

CURINO, C. A., MOON, H. J., AND ZANIOLO, C. Graceful
database schema evolution: the prism workbench. Proc. VLDB
Endow. 1, 1 (Aug. 2008), 761-772.

EISENBERG, A., MELTON, J., KULKARNI, K. G., MICHELS,
J.-E., AND ZEMKE, F. Sql: 2003 has been published. SIGMOD
Record 33, 1 (2004), 119-126.

GREEN, T. J., KARVOUNARAKIS, G., AND TANNEN, V.
Provenance semirings. In Proceedings of the twenty-sixth

[5

=

[6

=

[7

—

[10]

[11]

[12]

ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems (New York, NY, USA, 2007), PODS *07, ACM,
pp. 31-40.

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

IKEDA, R., SALIHOGLU, S., AND WIDOM, J. Provenance-
based refresh in data-oriented workflows. In Proceedings of the
20th ACM international conference on Information and knowl-
edge management (New York, NY, USA, 2011), CIKM ’11,
ACM, pp. 1659-1668.

0OZSOYOGLU, G., AND SNODGRASS, R. T. Temporal and real-
time databases: A survey. IEEE Transactions on Knowledge and
Data Engineering 7 (1995), 513-532.

SIMMHAN, Y. L., PLALE, B., AND GANNON, D. A survey of
data provenance in e-science. SIGMOD Rec. 34, 3 (Sept. 2005),
31-36.

SQL/XML. http://www.sqlx.org/.

SRIVASTAVA, D., AND VELEGRAKIS, Y. Intensional associa-
tions between data and metadata. In Proceedings of the 2007
ACM SIGMOD international conference on Management of data
(New York, NY, USA, 2007), SIGMOD *07, ACM, pp. 401-412.

STONEBRAKER, M. The design of the postgres storage sys-
tem. In Proceedings of the 13th International Conference on Very
Large Data Bases (San Francisco, CA, USA, 1987), VLDB 87,
Morgan Kaufmann Publishers Inc., pp. 289-300.

TAN, W. C. Provenance in databases: Past, current, and future.
IEEE Data Eng. Bull. 30, 4 (2007), 3—12.

WANG, F., ZANIOLO, C., AND ZHOU, X. Archis: an xml-
based approach to transaction-time temporal database systems.
The VLDB Journal 17, 6 (Nov. 2008), 1445-1463.

ZANIOLO, C., CERI, S., FALOUTSOS, C., SNODGRASS, R. T.,
SUBRAHMANIAN, V. S., AND ZICARI, R. Advanced database
systems. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1997.

