Theoretical Computer Science 62 (1988) 187-220 187
North-Holland

THE GENERALIZED COUNTING METHOD
FOR RECURSIVE LOGIC QUERIES

Domenico SACCA*
Dipartimento di Sistemi, Universita della Calabria, Rende, 87036, Italy

Carlo ZANIOLO
Microelectronics and Computer Technology Corporation, Austin, TX 78759, U.S.A.

Abstract. This paper treats the problem of implementing efficiently recursive Horn clauses queries,
including those with function symbols. In particular, the situation is studied where the initial
bindings of the arguments in the recursive query goal can be used in the top-down (as in backward
chaining) execution phase to improve the efficiency and, often, to guarantee the termination of
the forward chaining execution phase that implements the fixpoint computation for the recursive
query. A general method is given for solving these queries; the method performs an analysis of
the binding-passing behavior of the query, and then reschedules the overall execution as two
fixpoint computations derived as results of this analysis. The first such computation emulates the
propagation of bindings in the top-down phase; the second generates the desired answer by
proving the goals left unsolved during the previous step. Finally, sufficient conditions for safety
are derived to ensure that the fixpoint computations are completed in a finite number of steps.

1. Introduction

This work is motivated by the belief that an integration of technologies of logic
programming and databases is highly desirable, and will supply a corner stone of
future knowledge-based systems [15,22]. Prolog represents a powerful query
language for database systems, and can also be used as a general-purpose language
for application development, particularly in the symbolic manipulation and expert
system areas [27]. However, Prolog’s sequential execution model and the spurious
nonlogical constructs thus grafted on the language constitute serious drawbacks for
database applications since

(i) they imply a one-tuple-at-the-time, nested-loop join strategy which is not
well-suited for parallel processing, and tends to be inefficient when the fact base is
stored on disk, and

(ii) the programmer must guarantee the performance and the termination of the
program by carefully ordering rules and goals—a policy that limits the ease-of-use
of the language and the data independence of applications written in it.

* Part of this work was done while this author was visiting at MCC.

0304-3975/88/83.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)

188 D. Sacca, C. Zaniolo

Thus, we should move beyond Prolog, to a pure logic-based language amenable
to secondary storage and parallel implementation, where the system assumes
responsibility for efficient execution of correct programs—an evolution similar to
that of databases from early navigational systems to relational ones. Towards this
ambitious objective, we take the approach of compiling the intentional information
expressed as Horn clauses and queries into set-oriented processing primitives, such
as relational algebra, to be executed on the extensional database (fact base). This
is a simple process for Horn clauses containing only nonrecursive predicates with
simple variables, inasmuch as these rules basically correspond to the derived join-
select-project views of relational databases [21]. Horn clauses, however, contain
two powerful constructs not found in the relational calculus: one is recursion, which,
e.g., entails the computation of closures, the other is general unification, which, via
the use of function symbols, can be used to support complex and flexible structures
(not just flat tuples as in relational databases). The efficient implementation of these
two powerful constructs poses some interesting problems [5, 9, 10, 11, 12, 14, 18,
22, 25, 26, 28]. For instance, the technique of using the query constants to search
the database efficiently (pushing selection) is frequently inapplicable to recursive
predicates [1]. Moreover, the issue of safety, which in relational databases is solved
by simple syntactic conditions on the query language, here requires a complex
analysis on the bindings passed upon unification [23, 297].

This paper studies the problem of implementing safely and efficiently recursive
Horn clauses in the presence of query constants. For this purpose, it introduces a
powerful technique, called the Generalized Counting Method, which, in many cases,
is more effective in dealing with recursive predicates with function symbols than
those previously known [5, 6, 11, 17, 22].

re: SG(x, ¥) - P(x, x;}, SG(x,, v,), P(y, »))-
rio SGix, x):- H(x).

Fig. 1. The same-generation example.

2. Fixpoint evaluation of recursive queries

Take the recursive rule of Fig. 1, where P(x, x,} is a database predicate describing
that x, is the parent of x, and H{x) is a database predicate describing all humans.'
Then, a query such as

Gl: SG(e, v)?

defines all persons that are of the same generation. The answer to this query can

' A predicate that only unifies with facts will be called a database predicate. A database relation can
be thought of as a set of facts with the same predicate symbol and same number of arguments.

Generalized counting method for recursive logic queries 189

be computed as the least fixpoint of the following function over relations:
f(SG)=a, \Hu 7, s((PX;3-; SG) M,» P). (1

Our function f is defined by a relational algebra expression having as operands the
constants H and P and the variable SG. (H and P denote the database relations
with respective predicate symbols H and P and respective arities 1 and 2—whereas
SG is an unknown relation with arity 2.) Therefore, the computation of the least
fixpoint can proceed by setting the initial value of SG to the empty set and computing
F(8G). Then f(SG) becomes the new value for SG and this iterative step is repeated
until no more tuples can be added to SG, which then yields the answer to the
query. Since all goals in a Horn clause are positive, the corresponding relational
expression is monotonic w.r.t. the ordering on relations defined by set containment.
Thus, there exists a unique least fixpoint [20]. The fixpoint computation approach,
refined with the differential techniques, such as those described in [3, 4], supplies
an efficient algorithm for implementing queries with no bound argument. This
approach, however, becomes inefficient for common queries, such as G2 below,
where arguments are either constant or otherwise bound to a small set of elements:

G2: SG(john, »)?

This query retrieves all humans of the same generation as “john”. A naive
application of the fixpoint approach here implies generating all possible pairs of
humans in the same generation, to discard then all but those having “john™ as their
first component. Much more efficient strategies are possible; Prolog’s backward
chaining, for instance, propagates all the bindings downwards, during the top-down
phase (from the goal to database), then, during the bottom-up phase, it uses only
those database facts that were found relevant in the previous phase. (For the example
at hand, the only relevant facts are those describing ancestors of “john™.) In
traditional databases this top-down binding propagation strategy corresponds to
the well-known optimization technique of pushing selection inside the relational
algebra expressions. We need here to extend and generalize this technique to the
case of recursive predicates.

The importance of the problem previously considered is underscored by the safety
problem that may arise for logic programs such as the same-generation example
without the H(x) goal in the rule r, of Fig. 1. In this case, although the answer to
the query SG(john, y)? remains the same according to the fixpoint based semantics
given in [24], a fixpoint computation is no longer a viable approach for constructing
it since in (1) the database relation H is to be replaced by the whole Herbrand
universe. This is, in general, large or even infinite when function symbols or com-
parison predicates are involved. In reality, strategies based on binding propagation
(such as the one of Prolog) avoid this safety problem since they only invoke the
rule r, with the first argument bound. (We note that Prolog may fail if the ordering
of predicates in the rules is not appropriate for its resolution strategy.) We propose
a method, called the Generalized Counting Method, which recasts the query into a

150 D. Sacca, C. Zaniolo

pair of fixpoint computations such that the first computation implements the top-
down propagation of bound values and the second one is a modified and safe
version of the original bottom-up fixpoint computation. More precisely, the basic
approach of the Generalized Counting Method consists of the following steps:

(i) a symbolic analysis of the binding propagation behavior during the top-down
phase, and using the results of this analysis,

(ii) the computation of special sets (i.e., the counting sets and the supplementary
counting sets) that actually implement the top-down propagation of bound
values,

(iii) a modified bottom-up computation that generates the values satisfied by the
queries (independently from the ordering of rules and goals).

The Generalized Counting Method also supports the implementation of queries
on logic programs with function symbols, such as the merge example of Fig. 2.

ror MG(x-p,x -y, x- w) - MGy x, - vy, wh, X2 x;.
ri: MGUx-y, x -y, x - w) - MG(x -y, y, w), x<x,.
ry: MG(nil, x, x).
ry: MG(x nil, x).

Fig. 2. Merging two sorted lists.

The problem of supporting nonrecursive Horn clauses with function symbols was
studied in [28]. Since predicates have structured arguments (for instance, the first
argument in the head of r, in Fig.2 has x and y as subarguments), an Extended
Relational Algebra (ERA) was proposed in [28] to deal with them. A first operator,
called extended select-project, entails the selection of subcomponents in complex
arguments (in this particular case where the dot is our (infix) function symbeol, this
operator performs *“car’” and “cdr” operations on dotted lists). The second operator,
called a combine, allows one to build complex arguments from simpler ones {(on a
dotted list, this corresponds to the “cons” operator). Nonrecursive Horn clauses
can be implemented as ERA expressions [28, 29]. Moreover, since functions defined
using ERA expressions are still monotonic, the basic fixpoint computation approach
(bottom-up execution) remains applicable to predicates with function symbols.

In the case of recursive Horn clauses with function symbols, the safety issue on
the applicability of the fixpoint approach becomes crucial since the Herbrand
universe is infinite. Thus every single step of the fixpoint computation may entail
to consider relational expressions having infinite relations as operands. In addition,
the safety issue concerned with the termination of the fixpoint computation is to
be considered. For instance, the relations representing all possible sets of values
for x and x, in our rules of Fig. 2 are infinite; furthermore, even if we restrict these
variables to a finite set, rules r, and r, would generate longer and longer lists at
each step of the fixpoint computation, which therefore becomes a nonterminating
one. In reality, safety problems are avoided because a procedure, such as that of

Generalized counting method for recursive logic queries 191

Fig. 2, is only invoked as a goal with certain arguments bound, in order to derive
the unbound ones. Typically, for instance, the first two arguments are given to derive
the third one.

In conclusion, an effective usage of the binding information available during the
top-down phase is vital for performance reasons and to avoid safety problems. The
Generalized Counting Method is able ta deal with these problems. In particular,
this method is more powerful than methods previously proposed in the literature
with respect to the treatment of recursive predicates with function symbols. For
instance, the queries on the MG example of Fig.2 cannot be handled with the
methods proposed in [22] that do not allow for function symbols on the right side
of rules.

3. Binding-passing property

In a logic program LP, a predicate P (with symbol p) is said to imply a predicate
Q (with symbol g), written P - Q if there is a rule in LP with predicate g as the
head predicate symbol and predicate symbol p in the body, or there exists a P’
where P> P’ and P’> Q (transitivity). Then any predicate P such that P-> P will
be called recursive. Two predicates P and Q are called muwtually recursive if P> Q
and Q- P. Then the sets of all predicates in LP can be divided into recursive
predicates and nonrecursive ones (such as database predicates). The implication
relationship can then be used to partition the recursive predicates into disjoint
subclasses of mutually recursive predicates, which we shall call recursive strong
components, with their graph representation in mind. All predicates in the same
recursive strong component must be solved together—they cannot be solved one at
a time.

For the LP of Fig. 1, SG is the recursive predicate (a singleton recursive strong
component), and H and P are database predicates. However, in the discussion
which follows, H and P could be any predicates that can be solved independently
of SG; thus they could be derived predicates—even recursive ones—as long as they
are not mutually recursive with SG. Finally, it should be clear that here “john™ is
used as a placeholder for any constant; thus the method proposed here can be used
to support any goal with the same binding pattern.

Formally, therefore, we shall study the problem of implementing a query Q that
can be modelled as triplet (G, LP, D), where
® LPis a set of Horn clauses, with head predicates all belonging to one recursive

strong component, say C;
® G is the goal, consisting of a predicate in C with some bound arguments;
® D is a set of clauses (rules and facts) defining the remaining predicates in the

bodies of the LP-rules, which are either nonrecursive or belong to recursive strong

components other than C.

The predicates in C will be called the constructed predicates (c-predicates for
short) and those in D the datum predicats. For instance, if our goal is G2: SG(john,

192 D. Sacea, C. Zaniolo

x)? on the LP of Fig. 1, then SG is our c-predicate (a singleton recursive strong
component) and P and H are our datum predicates.

In general, datum predicates are those that can be solved independently of the
c-predicates; therefore, besides database predicates, they could also include more
general predicates, such as comparison predicates and recursive predicates not in
the same recursive strong component as the head predicates. Take, for instance, the
LP of Fig. 2, with goal MG(L,, L., y)? where L, and L, denote arbitrary given lists.
Here MG is our c-predicate and the comparison predicates > and < are our datums.
The <-predicate could, for instance, stand for a database predicate (e.g., if there if
a finite set of characters and their lexicographical order is explicitly stored: a <b, b <
¢, ...) or it could stand for a built-in predicate that evaluates to false or true when
invoked as a goal with both arguments bound, or, with integers defined using Peano’s
axioms, it could be the recursive predicate of Fig. 3.

rp: x<s(x}.
rox<s(y)i-x<p

Fig. 3. The “less-than" relationship for integers represented by using the successor notation.

Exit rules and recursive rules: A rule with a recursive predicate R as its head will
be called recursive if its body contains some predicate from the same recursive
strong component as R; it will be called an exit rule, otherwise.

For notational convenience, we shall always index the recusive rules starting from
zero and ending with m —1, ro, ..., r,,_;, where m denotes the number of recursive
rules under consideration. For instance, in Fig. 2, r, and r, are the recursive rules,
while r, and r; are the exit rules.

3.1. Binding propagation

Datum predicates propagate bindings from the bound arguments in the heads of
the rules to arguments of the c-predicate occurrences in their bodies. We assume
that our only datums are database and comparison predicates (in Section 4.4, we
shall discuss the general case). Then the binding propagation in a rule r can be
defined as follows. Say that B is a set of variables of r, {they can be thought of as
bound variables). Then the set of variables bound in r, by B will be denoted B! (or
B* when r, is understood) and is recursively defined as follows:

(i) (Basis): every variable appearing in B is also in B"

(ii) (induction) (a) Database predicates: if some variable in a database predicate

is in B, then all the other variables occurring in that predicate are in B*.

(b) Comparison predicates: if we have an equality, such as x = expression or
expression = x, and all the variables in expression are in B, then x is in
B™ as well.

Let P be a predicate in the body of r,. Then, an argument of P will be said to
be bound by B when all its variables are bound by B. If all arguments of P are
bound by B, then we shall say that the predicate P is solved by B.

Generalized counting method for recursive logic queries 193

Let S be a set of indices denoting bound arguments in the head predicate R of
r., i.e., the index j in § means that the jth argument of R is bound. Let Bs be the
set of all variables, appearing in the S-arguments of R’ Moreover, let T be the set
of indices denoting the arguments bound by Bg in a c-predicate occurrence P in
the body of r; (T may be empty). Then we shall say that r, maps the set of bound
S-arguments of its head into the set of bound T-arguments of P.

Say that

(a) V,, denotes the set of all variables appearing in datum predicates of r, that
are not solved by By, or in unbound arguments of the head of r; (i.e., those not in
S);

(b) V. denotes the set of variables appearing in arguments of c-predicates in the
body of r; that are not bound by Bs.

All variables in URs = B n(Vyw Vi) are called the unreduced variables in r, for
S and play a crucial role in the Generalized Counting Method, as will be shown
later in the paper.

Say, for instance, that the first argument of SG in the head of the rule r, in Fig. 1
is bound, thus §={1}. Then B,={x} and x, is bound by {x} via the database
predicate P, so B, ={x, x,}. Therefore, the bindings propagate from the argument
1 of SG (in the head) to the argument 1 of SG (in the body). P(x, x,) is solved by
B, in r,, whereas P(y, ¥,) and SG{(x,, y,) are not. Moreover, the set of unreduced
variables in the rute r, of Fig. 1 for S={1} is empty. Let us now consider the rule
ro of the example in Fig. 2. If the bound arguments of MG in the head are denoted
by S=1,2, then B,,= Bi,=1{x,»,x,, »,}. The predicate x=x, is solved by B,
whereas the predicate MG in the body is not. We have that V, = {x, w}and V. = {w},
so UR,,= B, n(Vyu Vo) ={x}.

To see an example of an unreduced variable appearing in unsolved datum
predicates, consider the rule r, of the logic program in Fig. 4, where A and B are
database predicates. If the bound argument of R is §={1}, then B, ={x} and
By ={x, x,, X;, x;} and the predicates y =y, and x,>y are not solved by B,.
Moreover, Vi, ={v, x,, v} and Vo={x,, y,} so UR, ={x,, x;}.

rot Rix, ¥) - A(X, X, X2, Xa), R(x), X v), Y2y, <L
r: R{x,y):- B(x,y}.

Fig. 4. A logic program with unreduced variables.

3.2. Binding graph of a query

The binding graph of a query is a directed (multi)graph having nodes of the form
PS where P is a c-predicate symbol and S denotes its bound arguments, and whose
arcs are labelled by the pair [r;, v], where r; is the index to a recursive rule, and v
is a zero-base index to c-predicate occurrences in the body of this rule, i.e., 0 is the

2 By S-arguments we mean the arguments denoted by the set of indices S. Besides, we often represent
an index set without parentheses; thus 1 stands for {1} and 1, 2 stands for {1, 2}.

194 D. Sacca, C. Zaniolo

index to the c-predicate occurrence, 1 to the second one, etc. (the zero base is chosen
to simplify the counting operations). The binding graph M, for a query Q=
{G(x), LP, D}, where x is the list of arguments in the query goal, is constructed as
follows:

(i) If S denotes the nonempty set of bound arguments in the query goal G(x),
then G* is the source node of M.

(ii} If there exists a node R? in M, and there is a recursive rule »; in LP with
head predicate symbol R that maps the hound arguments of the head predicate
into the bound arguments T of the »th c-predicate occurrence and this has
symbol P, then P7 is also a node of My, and there is an arc labelied [#;, v]
from R*® to PT.

Figure 5(a) shows the binding graph for a query on the rules of Fig. 1, that binds

both arguments. (We refer to this as a query SG'? and we shall use the same

Ir, .01

Ir, 0l

Ir, 0 I, .0
b ‘H c

Fig. 5. Binding graphs.

Generalized counting method for recursive logic queries 195

notation for the other queries.) Figure 5(b) shows the graph for a query MG'” on
the rules of Fig.2. Finally, Figs.5(c) and 5(d) show the binding graphs for two
queries R' and R’ respectively, both on the rules of Fig. 4. Figure 5(¢} shows a
binding graph for a nonlinear query (i.e., a query having a rule with more than one
c-predicate in the body). The query is P'? and the logic program is shown in Fig. 6.

We can now enunciate our key property.

Binding-passing property: A query Q will be said to have the binding-passing
property if, for each node RS of its binding graph, S is not empty.

o P(x,y) - Bix,x,, X5), Q(x;,). Bo(x, X4, %), Q(xy,), Bs(y, 2).
rio QUx, y) - Bylx, w, z), P(z,).
r,: P(x,y) - Bs(x, »).

Fig. 6. Nonlinear logic program.

Thus the queries whose binding graphs are shown in Figs. 5(a), 5(b), 5(c) and
5(e) respectively have the binding-passing property, whereas the query whose
binding graph is in Fig. 5(d) does not.

The binding-passing property guarantees that bindings can be passed down to
any level of recursion. Our binding graph is similar to the rule/goal graph described
in [22] and is an extension of the binding graph presented in [i7]. We point out
that we assume that the binding is propagated through an argument of a c-predicate
only if the whole argument is bound. A more detailed analysis could consider that
the binding can also be passed through partially bound arguments of ¢-predicates,
but this is left as a topic for future research.

The binding passing property needs to be checked only once for any given binding
pattern in the query (e.g., at compile time); moreover, the following proposition
guarantees that binding graphs can be constructed efficiently.

Proposition 3.1. Let Q =(G, LP, D) be a query such that there is a bound on the arity
of the predicates in LP. Then
(a) the binding graph of Q can be constructed in time linear in the size of LP and
G,
(b) the binding-passing property of Q can be tested in time linear in the size of LP
and G.

Proof. Let M, be the binding graph of Q. We show that the binding graph can be
actually constructed in O(s+ g) time, where g is the size of the goal G and s is the
size of the logic program LP. We start from the query goal G. Obviously, the source
node is determined in O(g) time. The other nodes and all arcs are determined as
follows. Let R® be a node in M, that has already been determined. Let r, be a
recursive rule such that the predicate symbol of its head is R and let ¢ be the size
of the rule. We determine the set By of all variables in the arguments S of the head
predicate, while reading the rule, in O(¢) time. With a little more effort, but yet in

196 D. Sacea, C. Zaniolo

O(r) time, we construct a bipartite undirected graph whose nodes are all predicates
in the rule (including the head predicate} and all variables in r.. There are arcs from
each of the above predicates to all variables appearing in it. Besides, if the predicate
is an equality predicate x = expression or expression = x, we mark every arc from
the predicate to the variable x (obviously, there can be at most two marked arcs
leaving the equality predicate). Then, we mark all variables in Bg. For each marked
variable, we remove all arcs leaving it. Moreover, for each removed arc, if the target
node is a database predicate, we mark all variables that are the source of other arcs
entering the predicate. If the target node of the removed arc is an equality predicate
with only one remaining incoming arc and if this arc is a marked one, we also mark
the source (variable) node of the marked arc. We continue the above steps until
the arcs leaving all marked (variable) nodes are removed. It is easy to see that the
set B} of variables bound by Bs consists of all marked variables and thus it is
constructed in O(r) time. At this point, all arcs leaving R® in M|, with label r, and
the corresponding target nodes can be easily constructed by just determining the
bound arguments in every c-predicate in the body of #, i.e., those arguments that
do not contain unmarked variables. Therefore, the graph Mo can be constructed
in O(g+2" x s) time since the total sum of the size of the rules is equal to the size
s of LP and the same rule can be used to generate arcs for at most 2* different
index sets S, where £ is the maximum predicate arity. Since k is bound by hypothesis,
the graph is constructed in time linear in the size of the logic program and the query
goal. Obviously, testing whether every node R® has an empty index set S can be
donein O(s + g) time while constructing the graph, thus the binding-passing property
can be tested in linear time as well. [J

We now introduce a characterization of the nodes in the binding graph that will
be used later in the description of the Generalized Counting Method. Let Q be a
query and M, be its binding graph. A node R in My 1s

(a) strongly reduced if, for every arc (AS P") (say with label [r;, v]) in M, such
that the node R® is reachable from PT, no database predicate in the body of r; is
solved by Bg,® thus the binding is directly propagated without using database
predicates; X

(b} reduced if, for every arc (Q®, R®) (say with label [r,, v]), either

(i) the rule r; has only one ¢-predicate in its body and there are no unreduced
variables in r; for S, or

(ii) Q° is strongly reduced and no database predicate in the body of r; is
solved by Bg. Also in such cases, the binding is directly propagated
without using database predicates.

Obviously, if a node is strongly reduced, it is also reduced. We point out that
strongly reduced nodes arise in many logic programs with function symbols (see,
for instance, the list merge example of Fig. 2).

3 Recalt that By is the set of all variables appearing in the §-arguments of the head of r.

Generalized counting method for recursive logic queries 197

A binding graph is reduced if all its nodes are reduced.

Consider the query SG' on the logic program of Fig. 1, whose binding graph is
similar to the one shown in Fig. 5(a). The node of this graph is reduced because
the rule r, has no unreduced variables for S = {1}; so the binding graph is reduced.
Consider now the node MG' in the binding graph of Fig. 5(b). This node is strongly
reduced since the rules Jabelling its incoming arcs have no solved database predicates.
So this binding graph is reduced. The node R' in the binding graph of Fig. 5(d) is
not reduced since the rule r, in Fig. 4 has two unreduced variables for S={1}.
Therefore, this binding graph is not reduced. Finally, consider the binding graph
of Fig. 5(¢). The node P'? is not strongly reduced, so the node Q" (appearing in
a nonlinear rule) is not reduced. Hence, the graph is not reduced.

Proposition 3.2. Let Q =(G, LP, D) be a query such that there is a bound on the arity
of the predicates in LP. Then testing whether the binding graph of Q is reduced can
be done in time O(s+m?), where s is the size of LP and m is the number of recursive
rules in LP.

Proof. We first of all determine strongly reduced nodes. For every arc (Q‘é, Pf)
(say with label [r;, »]), we construct B3 in O(t) time, where 1 is the size of the rule
r, (see the algorithm sketched in the proof of Proposition 3.1). Then we test whether
there is some database predicate in r; that is solved by Bg; if not, we mark the arc.
Obviously, testing and marking the arc can be done in O{r) time. So the complexity
of marking all arcs is 0(2" % s), where £ is the maximum predicate amy in LP. We
now reverse the direction of all arcs in the binding graph. A node R® is strongly
reduced if all arcs reachable from it are marked. Using a transitive closure algorithm,
it is easy to see that condition (a) can be tested in time 025 x m x 2" x m), because
the number of both nodes and arcs is bound by 2* x m. Hence, since k is bound by
hypothesis, the strongly reduced nodes are determined in time O{s+m). In order
to check whether a node R? is reduced, we only need to consider every arc entering
R%, say (Q°, R®) with label [, »] and to construct the set of unreduced variables
in r, for 7. Again, this step can be easily done in O(t) time, where 1 is the size of
the rule r,. On the other hand, it is already known whether or not Q% is strongly
reduced and the number of c-predicates in the body of r, can be computed in O(r)
time. Therefore, the condition for R® to be reduced can be tested in O(r) time. It
follows that all reduced nodes can be determined in time 0(2'2>< s) and, then, in
O(s) time. Hence, testing whether the binding graph is reduced can be done in
O(s+m?). O

4. The Generalized Counting Method

We now present a method to implement logic queries which have the binding-
passing property defined in the previous section. This method, called the Generalized
Counting Method, is an extension of the counting method described in [17] for

198 D. Sacca, C. Zaniolo

solving a particular class of logic queries without function symbols and without
comparison predicates. An informal description of the counting method was first
given in [5].

The generalized counting method recasts a query into a pair of fixpoint computa-
tions that are, in general, more efficient than computing the query via a single
fixpoint computation or using other techniques for its resolution (see [7, 13] for a
description of the efficient behavior of the method). Besides, every step of the two
fixpoint computations is safe (i.e., it can be carried out in a finite amount of time)
in a larger number of cases with respect to the single fixpoint computation (see
Section 5.1). Finally, there are sufficient conditions for the termination of the two
fixpoint computations that cover a large number of cases.

While the pair of fixpoint computations could be expressed directly in terms of
relational algebra [17], reasons of simplicity, expressivity and independence from
the target implementation language suggest to represent it by recursive rules. Thus
the Generalized Counting Method can be viewed as a rule rewriting system that
maps a query Q =(G, LP, D) into an equivalent query Q ={G, LP, D) that can be,
in general, computed safely and efficiently using the fixpoint approach described
in Section 2. In LP we find two new sets of rules, called counting rules and
supplementary counting rules, that perform the top-down propagation of bound
values; in addition, we find every rule of LP transformed into one or more rules
(modified rules) that perform the bottom-up computation of the final answer.

4.1. Counting and supplementary counting rules

The overall translation process consists of

(i) the generation of counting and supplementary counting sets to perform the

top-down propagation of bound values, and

(ii) the modification of the original goal and rules to take advantage of the

counting sets.

To generate counting sets, a number of new predicate symbols are introduced,
one for each node of the binding graph M, of Q. Thus, for each node R®, we
introduce a new predicate cnt.R® with | S|+ 3 arguments. Thus, there is an argument
for each bound argument in the head of the original rule, plus three additional
integer arguments respectively recording

(i) the level of the recursive call,
(ii} the recursive rule used and
(iii) the c-predicate occurrence used in the body of the rule.

Exit counting rules

The first counting rule is generated by the source node in M, say Gs, which
corresponds to the query goal. Say that the query goal has n=|S|=1 bound
arguments with respective values a,, . . ., a,.* Then we introduce the following clause

4 Here and elsewhere, arguments as well as variabies are listed in the order they appear in the original
rule.

Generalized counting method for recursive logic queries 199

for the counting set:
ent. G5(0,0,0, a,, ..., a,).
Recursive counting rules

There is a recursive counting rule for each arc in M, as follows; for an arc
labelled [r;, v] from node R’ to node PT, we add the rule

ent. PT(j+1, mxk+i, pxh+v,y,..., %)
- cnt.RS(j,k,h,xl,...,x,,),Ql,...,Qq

where
(i) xi,..., X, are the bound arguments in the head of r, (i.e., those in S),
(ii) y,,...,y are the bound arguments in the vth c-predicate of r. (i.e., those
in T),

(iii) Q,,..., Q, are all datum predicates of r that are solved by the set of all

variables in the arguments S of the head predicate.

(iv) Jj, k and h are the running indices, while m and p are constants characterized

as follows:
® m is the total number of recursive rules,
® p denotes the total number of ¢-predicates in the body of ;.

It should be clear that in the rule above we have taken liberties with the notation
by representing operations on indices directly by their arithmetic expression rather
than introducing new goals, such as “j’is j+ 17, “k'is m x k+i” and “h'is p x h + 57,
and then writing the head as ent.PT(j, k', h', ¥1, ..., »), as required, say, in Prolog.
But we have used this more concise notation since it is suggestive of the counting
operations to be performed during the fixpoint computation.

Informally described, the counting rules are constructed by eliminating all
unsolved datum predicates and all c-predicates in the body but the one under
consideration by exchanging this c-predicate with that in the head, and by replacing
the unbound arguments of these two c-predicates with the three indices. Note that,
while there are as many counting rules as arcs in the graph, there are only as many
counting predicates as there are nodes. Figures 7(a), 7(b), 7(c) and 7(d) show the
counting rules for the queries SG'?, MG'?, R' and P' on the logic programs of
Figs. 1, 2, 4 and 6 respectively. The figures also contain supplementary counting
rules that will be explained next.

In the top-down generation of the counting sets we often generate additional
values that are needed in the successive bottom-up computation. For instance, in
the merge example of Fig. 7, we generate the values of x in rule r, and those of x,
in r, that must be saved for later use in the bottom-up phase (note that such variables
are unreduced).

Supplementary counting variables
Consider a node R® in M. In My, there is a bundle of arcs leaving Ry labelled
with the same rule r,, one arc for each c-predicate in the body of r,. We may need

200 D. Saccd, C. Zaniolo

Counting rules:

cnt.8G'3(0,0,0, a, b).
ent SGYj+1, Ixk+0, I X h+0,x,, 1) - ent.SG"2(j, k h x,»), P(x, x,), P(y, v,).

Supplementary counting rules: None

(a) Rules for the query SG(a, b)?

Counting rules;

ent MG'%(0,0,0, L, L,).

ent MG (j+1,2xk+0,1xh+0, 1, X, 3) - ent MGV (G kb xey, X), x=x,.

ent MG (j+1,2xk+1,1xh+0,x- y, ¥} - et MG'2(j, k. b, x- y, %, - p), X < x,.
Supplementary counting rules:

spent. MG rg(j+1,2x k+0, 1x h+0, x) - entMG"2(j k h x-v,x, -), X=x,.

spent. MG 2 r (j+1,2xk+0,1x h+0, %) - ent. MG"2(j, k, b, x-y,x, - p,), x <Xx,.

(b) Rules for the query MG(L,, L,, w)?

Counting rules:
cnt.RY0, 0,0, a).
ent. RY(j+1,k b, x,) = ent.R'{(j, k h, x), A(x, x,, x5, X3).
Supplementary counting rules:
spent.RUro(j, &, h, X, x, x5) - ent.R'Y(, k, h, x), Alx, X,, X5, X3).
(c} Rules for the query R{a, y)?

Counting rules:

ent. PY(0,0,0, a).

ent.QM(j+1,2xk 2xh x) - ent.P'(j, k, b, x), Bi(x, x,, X3), Ba(x, x4, x,).
ent.QUj+1,2xk 2xA+1,x,) - ent.P'(j, k, h, x), Bi(x, x;, X3), Ba(x, x,, X3).
et PY{j+1,2xk+1,2xh 2} - ent.Q'(j, k, h, x), Bo(x, w, z).

Supplementary counting rules:
spent.Plrg(j, k, b, x, x;, %5) = ent.P'(j k, b, x), By(x, x,, X3), Ba{x, X4, X5).
spent.Q'.r(j k by x, 2) - ent.Q'(j, k, h, x), By(x, w, 7).
(d} Ruies for the query P{a, y)?

Fig. 7. Counting and supplementary counting rules.

to save the values of some variables in r; for the subsequent bottom-up phase. The
set of such variables, called supplementary counting variables, is denoted by V,, and
is defined as follows. Let Bs be the set of all variables appearing in the bound
arguments of the head of r; (i.e., those in S), let URg be the set of unreduced
variables in r; for §, and B, be the set of all variables appearing in some bound
argument of a c-predicate in the body of r, that is bound by Bs.
(a) If URg is not empty and M, is reduced, then V,,=URjy (see the example
in Fig. 7(b}).
(b) If UR; is not empty and M, is not reduced, then V,, = URsuw Bcu Bg (see
the example in Fig. 7{c)).

Generalized counting method for recursive logic queries 201

(c) If URg is empty and M, is reduced, then V,; is empty (see the example in
Fig. 7(a)).

(d) If URg is empty and R® is not reduced, then V,,= B U Bs (see the example
in Fig. 7(d)).

Supplementary counting rules

We shall add a supplementary counting rule for each bundle of arcs labelled with
the same rule out of a node for which the set of supplementary counting variables
is not empty. If r; is the rule labelling a bundle leaving, say, node R?®, then, using
the counting set for R we write

spent.r . R3(j, k, by zy, ..., 2) == ent.R3(j k hoxy, ..., x.), Q, ...y Qg

where
(i) x,,...,x, denote the bound arguments in the head of r; (i.e,, these in S),
(i) z,,..., z are the supplementary counting variables,
(iii) Qy,..., Q, are the datum predicates of r, that are solved by the set of all
variables appearing in the arguments S of the head predicate of r;.

4.2. Modified rules

Modified recursive rules

A number of new predicate symbols are introduced, one for each node in Mo,
to replace the c-predicate symbols in LP. For each node in Mg, there are as many
modified rules as there are bundles of arcs from the node labelled with the same
rule. Thus, let R® be a node in M, and r, be the labe! of a bundle of arcs leaving
R®: then we introduce the following rule (again we take liberties with the notation
by denoting with (k—i)/m an integer division that succeeds only if the remainder

is zero):
R(j—1,(k—i)/m, hip uy,. .., u,)
-~ spent. R .r(j—1,(k—i}Y/ m hip z,,...,2), 130, e, f’p__l, Wi,..., W,
where
(i) u,,...,u, are the unbound arguments in the head of »; (i.e., those that do

not belong to S} if the binding graph is reduced; otherwise they are all arguments
in the head;

(ii) spent.R%.r(j—1,(k—i)/m, h/p, z,,...,2) is the supplementary counting
predicate, if any, with z,, ..., z, >0 supplementary counting variables;

(iii) Wy,..., W, are the datum predicates of 7, that are not solved by the set of
all variables appearing in the arguments S of the head predicate;

(iv) 130, . 13,,_1 are the modified c-predicate occurrences in the body of r,
constructed as follows: say that there is an arc labelled [r;, »] from R%to P7, and
X,,..., X are the unbound arguments in the vth c-predicate of r; (i.e., those not in

202 D. Sacca, C. Zanioio

T) if the binding graph is reduced, otherwise they are all the arguments in the
predicate; then

ﬁV:PT(j,k,h+V,x],..‘,x');

(v) Jj, k and h are the running indices, while m, { and p are constants respectively
denoting the total number of recursive rules, the index of the rule labelling the arc,
and the total number of c-predicates in the body of this rule. These indexing
operations reverse those performed when building the counting sets.

In other words, one has to take the original rule r,, eliminate all solved datum
predicates, remove the bound arguments of all c-predicates {including the one in
the head) if the binding graph is reduced, introduce the three indexes (after suitable
indexing operations) and, finally, add the supplementary counting predicate, if any.

Figures 8(a), 8(b), 8(c) and 8(d) show the modified recursive rules for the usual
queries SG"*, MG'?, R" and P'. These figures also contain modified exit rules and
goal rules that will be explained next.

Modified exit rules
Say that R® is a node of M, and there is an exit rule r; with head predicate R.
Then we add the following modified exit rule:
R%(j,k, houy,...,u,) - ent R°(j, k, b, x,,...,x), W,,..., W,
where
{i} u,,...,u, are the unbound arguments in the head of r; (i.e., those which
do not belong to S} if the binding graph is reduced; otherwise they are all the
arguments of the head predicate;
(ii) ent.R*(j, k, b, x,, ..., x;) is the counting predicate, with x,, . .., x, the bound
arguments in r;’s head:
(iii) W,,..., W, are the predicates in the body of r..
Thus the exit rules are generated by introducing the indices, removing the bound
arguments in the head if the binding graph is reduced, and then adding the counting
set to the body of the rule.

Goal rule
In order to unify the initial query goal with the corresponding modified c-predicate,
a new rule, called the goal rule, is added to LP. If G(u,,...,u,) is the original

query goal with bound arguments denoted by S, then the goal rule is

é(ul,..., u,) - GS(O,O,O,x.,....,xq),
where
(1) g=p and x,=u,,...,x, = u, if the binding graph is not reduced, or
(2) x,,...,x, are the unbound arguments in G¥ if the binding graph is reduced

(recall that G¥ is the source node of the binding graph).

Generalized counting method for recursive logic queries 203

Modified recursive rule:
SG"(j— 1, k, h) - SG"(j, k. h).
Modified exit rule:
SGY2(j, k, h) - ent.CSG"*(j, k, h, x), H(x).
Goal rule:
8G(a, b) :- SG"*0, 0, 0).
{a) Rules for the query SG(a, b)?

Modified recursive rules:

MG 1,4k b, x - w) - spent MG ry(— 1, bk, B, x), MGY2(j, K, b, w).
MG (-1, Yk —1), h, x, - w) - spent MG 2r (j — 1, 3k — 1), h, x,), MG'2(j, k, b, w).

Modified exit rules:

MG!3(}, k, h, x) :- ecnt. MG'*(j, k, b, nil, x).
MG'2(j, k, k, x) :- ecnt. MG'2(j, k, h, x, nil).

Goal rule:
MG(L,, L, w) :- MG"%(0,0,0, w).
(b} Rules for the query MG(L,, L., w)?

Modified recursive rule:
RYj—1,k B x, y) - spent. RErg(f =1, k, B %, %y, 260), R'G K hoxy, %2), Y20, 6 <)
Modified exit rule:
R'(j, k, b, x, y) i- ent.R'(j, k, h, x), B(x, y}.
Goal rule:
R(a, y) - RY0,0,0, a,).
{c} Rules for the query R(a, »)?

Modified recursive rules:

P'(j— 1,4k 3k, x, ¥} - spent. Plro(j—1, 3k 3h, %, X0, X5), QUi Ky by Xy, 93, Q1L K, B
+1, %, ¥}, Baly, 2).
Q' — 1,3k —1), b, x, ¥)i-spent.Q'r (= 1,3k — 1), b, 2), P'(j, k. by 2,).

Modified exit rule:
PYj k, h, x, y} - cnt. P'(j K A, x), Bs(x, p).
Goal rule:
P(a,y) - P(0,0,0,4,¥)
{(d) Rules for the query P{a, y)?
Fig. 8. Modified and goal rules.

204 D. Sacca, C. Zaniolo

It is easy to see that the fixpoint computation of the modified rules should be
stopped once the indices are returned to zero.

4.3. Properties of the generalized counting method

For the purpose of proving the correctness of the generalized counting method
we can assume that all the datum predicts in D are defined by facts only. Database
predicates are defined by a finite number of facts in D). We can also assume [29]
that comparison predicates are defined by a (infinite) number of facts in D (possibly
with complex arithmetic terms). Finally, all the rules used in defining derived
predicates in D can be replaced by the set of facts that can be inferred using said
rules, without changing the answer to the given query Q. In this framework, we can
focus on the fixpoint-based semantics of the original program vis-a-vis that of the
program produced by the Generalized Counting Method.

Let Q ={G, LP, D) be a query as before and let H be the Herbrand universe of
LPu D (in general, H is infinite and contains complex terms). Consider a fact R{a)
where a is a list of bound arguments. A derivation tree for R(a) is defined as follows.
Each node of the tree is a fact whose predicate symbol appears in LPu D and the
root is R{a). Every non-leaf node (say N }is labelled by a rule (say r;) in LP whose
head predicate symbol is equal to that of the node. Besides, N has as many children
as predicates in the body of r;, each child being a fact with the symbol of the
corresponding predicate. Every leaf node either is a fact in D (datum node) or is
labelled by an exit rule r, with empty body. Every node N labelled by a rule ; is
solved in r,, thus there is an assignment of all variables in # to the elements of H
such that, after replacing the variables with the assigned terms, the head predicate
equals N and every predicate in the body (if any) is equal to the corresponding
child of N. Such a variable assignment is called a solving assignment for N.

We say that R(a) is inferred from LPu D if there is a (finite) derivation tree for
R(a). It also turns out that every fact in a derivation tree is inferred from LPu D
as well.

Let Q ={(G{(x), LP, D) be a query, where x is a list of arguments. The set of
answers of Q is the set of all facts G(a) such that a is a list of bound arguments,
G(a) is inferred from LPu D, and G(x) unifies with G(a).

Two queries are equivalent if they have the same set of answers. Let Q = (G, LP, Dy
be a query that has the binding-passing property and let Q =(G,LP, D) be the
modified query produced by the generalized counting method. We now show that
Q and Q are equivalent. To this end, we need to introduce some notation and four
technical lemmata.

Let a be a list of arguments® and let S be a set of indices denoting some of these
arguments. Then a® denotes the list of all arguments of @ indexed by § and a®

5 From now on, we use bold italic letters to denote lists of arguments. Moreover, we use the first
letters of the alphabet to denote bound arguments.

Generalized counting method for recursive logic queries 205

denotes all the others. For instance, if a={a, b, ¢, d, e) and §={1, 3,4}, then a’=
(a,c,dyand a® =(b, e).

A fact whose symbol is that of a c-predicate or a modified c-predicate is called
a c-fact. A fact whose symbol is that of a counting predicate or a supplementary
counting predicate is called counting fact and supplementary counting fact respec-
tively.

Lemma 4.1. Let Q= (G, LP, D) be a query that has the binding-passing property and
let @ = (G, LP, D) be the modified query produced by the Generalized Counting Method.
If Rs(f, k, ﬁ, b) is a c-fact inferred from LPuU D, then any derivation tree of
Rs(f, 12, ﬁ, b) contains a counting fact cnt.RS(f, IQ, ﬁ, a).

Proof. We carry out the proof by induction on the number of c-facts appearing in
the derivation tree of R"(f, 12, ﬁ, b).

Basis of the induction: only one c-fact in the tree. This c-fact coincides with the
root, i.e., Rs(jA, 12, };, b). Since only a modified rule in LP can unify with a modified
c-predicate and since modified recursive rules have c-predicates in their body, the
root is labelled by a modified exit rule, say

R3(j, k b u) - ent.R°(j, k, b, x), W,,..., W,

Hence, by the definition of a derivation tree, one of the children of Rs(jA, k h, b)
is a counting fact cnt.R3(f, k, h, a).

Induction step: The lemma holds whenever a derivation tree has less than s c-facts,
where s> 1. We now show that it also holds when the derivation tree has s c-facts.
Let us denote this tree by DT. Since s > 1, the root Rs(f, 12, i;, b) of DT is labelled
by a modified recursive rule, say 7,

A

R%(j, k, h,u) :- spent.R%.ri{j, k, h, 2), 130, e, P, WL WL

We recall that the supplementary counting predicate may be missing. Furthermore,
the three indices for the c-predicate If‘y, Osv<p—1l,arej+ 1, kxm+iand hxp+w
Because of the definition of derivation tree, one of the children of the root is a
c-fact corresponding to 130, say POT"(f+ 1, kxm+ i, h % p, ¢). The subtree rooted at
this node is a derivation tree for it and contains less than s facts. Hence, by inductive
hypothesis, there exists a counting fact cnt.P(,Tn(f—F 1, kxm+ i, i x p, d) in the subtree
and, then, in DT.
Consider now the rule r, in LP associated to 7;. We have that r; is

R(t) - Ql)"'aQr:Pl""st*l’W]a"‘swcr

where Q,, . .., Q, are the datum predicates solved by the variables in the $-arguments
of R(1) and P,, 0= v < p —1 are the c-predicates corresponding to P,, 0=v=p—1.

206 D. Sacca, C. Zaniolo

Clearly, since p =1, there is an arc from R® to Pg° with label [#, 0]. The associated
counting rule is

ent. Plo(i+1, mxk+i pxhy) - cnt.R*(j, k hx), Qy,..., Q.

Considering the structure of the indices, this rule is the only one that can label the
counting fact cnt,PoT“(f+ 1, Exm+ i };xp, d). It follows that one of the children of
this node is a counting fact with predicate symbol cnt.R* and indices f, 12, h. Hence,
a counting fact cnt.Rs(f, k, !;, a) is in DT and this concludes the proof. L[]

Lemma 4.2. Let Q ={G, LP, D} be a query that has the binding-passing property and
whose binding graph M, is reduced. Let Q ={(G, LP, D) be the modified query produced
by the generalized counting method. Let R® be a strongly reduced node of M, and let
cnt.RS(f, 12, h a) be a counting fact inferred from LPU D. Then no other counting
fact cnt.RS(j",]2, ﬁ, b) with a # b is inferred from LPL D.

Proof. We - prove the lemma by induction on the depth of the derivation tree for
cnt.R® (j, k, h a) The basis is a derivation tree where the only node is the root.
Obviously, _] =k=h=0and the proof is trivial. Suppose now that the lemma holds
for every derivation tree with depth less than s, s >0 (inductive hypothesis). Let
DT be a derivation tree for cnt.RS(jA, 12, lf, a) with depth equal to s. We now proceed
by contradiction. Suppose that there is another counting fact cnt.RS(f, 12, l;, b) with
b#a that is inferred from LPuD. Let DT be any derivation tree for
cnt.Rs(f, 13, k', b). Because of the structure of the indices, the depth of DT" is s and
the roots of DT and DT’ are labelled by the same recursive counting rule, say the
following rule #:

ent.R3(j', k', h',x) - ent.PT(j k', k', »),Q1\..., Q.

where, by the definition of a strongly reduced node, Q,,..., Q, (if present) are
comparison predicates. Therefore, the children of the root in both DT and DT are
a counting fact (say ent.P"{j, k, h, ¢) and cnt.P"(j, k, h, d) respectively) and, poss-
ibly, the nodes corresponding to the above comparison predicates. Since all the
variables in the comparison predicates are bound by those in the arguments y and
every variable in x appears in the body of 7 as well, b+ a implies ¢# d. On the
other hand, from the fact that R® is reduced and from the definition of strongly
reduced node, it follows that P’ is strongly reduced as well. So, by inductive
hypothesis, ¢ = d (contradiction). Therefore, b = @ and this concludes the proof. 0

Lemma 4.3. Let Q={G, LP, D) be a query that has the binding-passing property and

whose binding graph is Mg Let Q@ ={G, LP, D) be the modified query produced by the

Generalized Counting Method. Then, for every c-fact RS(jA, IE, I;, a) that is inferred

from LP U D, there exists a fact R{b) such that R(b) is inferred from LP L D and
(a) b=a if M, is not reduced, or

Generalized counting method for recursive logic queries 207

(b) b°=c¢ and b* =a, where cnt.RS(ﬁ k, k, ¢) is a counting fact inferred from
LPu D if My, is reduced.

Proof. We proceed by induction on the number of ¢-facts in the derivation tree of
R5(j, k h, a).

Basis of the induction: only one c-fact in the derivation tree. Hence, the only
c-fact is the root, i.e., R%(f, & h, a), and it is labelled by a modified exit rule . in
LP say,

R%(j, k h,u) - ent.R*(j, k, h,x), W,,..., W,

G

Therefore, one of the children of the root is a counting fact with indices]A, k and
h say cnt.R' (J, k h ¢). We now modify this tree as follows. We remove the subtree
rooted at this counting fact. Besides, we replace the root R® (], k h a) with R(b},
where b=a if M, is not reduced or b* =c and b° =a if M,, is reduced. On the
other hand, the leaf nodes corresponding to W,,..., W, remain unchanged.
Obviously, such nodes are facts in D. Finally, we label the root of the new tree after
the corresponding exit rule r; in the original program LP. In order to show that the
so-obtained tree is actually a derivation tree for R(b), we have to prove that there
is a solving assignment for R(b) in r. Consider the solving assignment ¢ for
Rs(f, 12, ﬁ, a) in #;. By construction, the set of all variables appearing in 7; but the
index variables j, k, h is equal to the set of all variables in r;. Therefore, the restriction
of ¢ to all variables in 7 but j, k, h is a solving assignment for R(b) in r;. It follows
that the modified tree is a derivation tree for R(b}, thus R{b) is inferred from LPu D.

Induction step: the lemma holds for any derivation tree with less than s c-facts,
where s> 1 (inductive hypothesis). We prove that it also holds for derivation tree
with s c-facts. Let us assume that a derivation tree DT for RS(j: kf, l;, a) contains s
c-facts. Hence, the root is labelled by a modified recursive rule, say the following
rule 7,

Rs(j:' k) h, u) - SpCl’lt‘RS.rf(j, k’ hs Z), ﬁ(la e ﬁp*la Wla-- [“/q'
The original rule in LP is r;
R(t) = Ql!"'sors Pls"'app—ly Wls'--s Wq'

We recall that if the list z of supplementary counting variables is empty, then the
supplementary counting predicate is missing. Furthermore, the three indices for the
c-predicate P, 0= v==p—1,arej+1, kxm+iand hxp+r. We modify DT into a
new tree DT’ as follows. The possible subtree rooted at the node corresponding to

spent. R%.r,(j, k, b, 2} is pruned, whereas the leaf nodes correspondingto W, ..., W,
remam unchanged The other children of RJ(J, k, h, a} are the c-facts corresponding
to PO, e P . For every P,, 0= =< p—1, the subtree rooted at the correspondmg

c-fact, say P (_}+1 kxm+i, h><p+v d), contains a counting fact cnt.P): (]+
1, kxm+ih X p+ 7, e} by Lemma 4.1. We replace this subtree by a derivation tree
for P.{f) from LPu D, where f=d if M, is not reduced, orfT=eand fM=dif

208 D. Sacca, C. Zaniolo

M, is reduced. By the inductive hypothesis, this derivation tree exists. To complete
DT, we only need to modify the root of DT and to add leaf nodes corresponding
to the datum predicates Q,, ..., Q.. To this end, we distinguish two possible cases:
Case 1: the bmdmg graph Mo is reduced. The derivation tree DT contains the
counting fact cnt. P(,"(J +1, kx m+1i, h xp, e). This node is labelled by the recursive
counting rule associated to the arc from R% ta P with label [r;, 0]; thus,

ent. Plo(j+1, mxk+i,pxh,yp) :- ent.R°(j, k, hx),Q),..., Q..

The children of this node are the leaf nodes corresponding to Q,, ...,Q and a
counting fact with predicate symbol cnt. R® and indices j, k and h say
cnt.RS(], k, h, ¢). Obviously, this counting fact is inferrred from LPu D. We replace
the root Rs(f, /2, ff, a) with R(b), where b*=¢ and b® = a. Finally, we add the
above leaf nodes corresponding to Q,, ..., Q, into DT’ as children of the root.

Case 2: the blndmg graph M, is not reduced Hence, the body of 7 contains
the predicate spent. R°.r:(j, k, h, 2). Then we consider the child node of RS (_], k, h a),
corresponding to the supplementary counting predicate. This node is labelled by
the following supplementary counting rule:

spent.r. R5(j, k, b, 7) - ent.R°(j, k, hx), Qy, ..., Q..

We proceed as for Case 1; so we single out a counting fact cnt.Rs(f, IQ, };, ¢) and
we add the leaf nodes corresponding to Q,, ..., @Q, into DT’ as children of the root.
Finally, we replace the root Rs(f, 12, ff, a) with R(b), where b=a.

In both cases, we label the new root by the recursive rule r; in LP. Since all leaf
children of the root are in D by construction and since all other children are root
of derivation (sub)trees, we only need to prove that the root R(b) is solved in r;.
Thus, we have to construct a solving assignment ¢ for the variables in r;. Let qg be
the solving assignment for RS(jA,J:, 12, a) in 7. Let V; be the set of all variables in
;,- but the index variables j, k, h, and let V, be the set of all variables in .. Obviously,

rS V., . Wesetp(V;)= «;5(V). Let us now consider the nodes of DT corresponding
to the supplementary counting predicate {if present) and to the counting facts of
P,, 0= v=p—1. We denote the solving assignments for these nodes by spent.¢ and
cnt.,, 0= »= p—1 respectively. The following three cases are possible:

Case 1: My is not reduced. Hence, the body of 7, contains the predicate
spent. R r.(j, k, h, 2)- Since all variables in V, —V; appear in the supplementary
counting rule, we can set ¢(V, — V) =spent.dp(V, — V). So, we have defined an
assignment for all variables in r;, We have that r; differs from 7, only because the
datum predicates Q,, . . ., Q, are replaced with the supplementary counting predicate
and because the c-predicates in ' (both in the head and in the body) have three
additional arguments (i.e., the index arguments). Then, after replacing every variable
y with ¢(y), the c-predicates in the body of r, and the datum predicates W,,..., W,
are equal to the corresponding children of R(b), and the head c-predicate is equal
to R(b). Furthermore, since the supplementary variables in the rule F; and in the
supplementary counting rule are the same by construction, it is easy to see that, for

Generalized counting method for recursive logic queries 209

each variable x in the supplementary counting predicate of 7, é(x)=spent.¢(x).
Hence, also the datum predicates Q,,..., Q. in the body of r are equal to the
corresponding child nodes of R(b) after variable replacements. Tt thus follows that
R(b) is solved in r; and therefore, it is inferred from LPuU D.

Case 2: M, is reduced and either there are unreduced variables in the rule r; or
r, contains more than one c-predicate in its body (i.e., p>1). We need the following
claim.

Claim 4.4. Forevery v, 1 <v<p—1,cnt.¢,= cnt.¢, and if the supplementary counting
predicate exists in the body of ¥, cnt.gpy =spent. .

Proof. By definition of reduced binding graph, we have that

(a} R® is strongly reduced, and

(b) no database predicate in r; is solved by By, where Bg is the set of all variables

appearing in the head of r.

Therefore, by Lemma 4.2, there is exactly one counting fact with indices], k, i and
predicate symbol cnt. RS, say cnt.R® (j, E A, ¢). Consider now the nodes in DT
corresponding to the supplementary counting predicate (if present) and to the
counting predicates of Py, ... _,. Since the counting rules and the supplementary
counting rule defining these predlcates have the same body by constructlon the
children of each of the above nodes are a countmg fact with indices _], k, i and with
predicate symbol cnt.R%, i.e., cnt.R® (_], k, h, ¢) and r nodes corresponding to the
solved datum predicates Q,,..., Q, (#=0). Since no database predicate in r; is
solved by By, if Q,, ..., Q, are present in 7;, then they are comparison predicates.
Tt is then easy to see that all of the above nodes have the same children and,
therefore, the statement of the claim holds. [

We continue the proof of the lemma by setting ¢{(V, — V;} = ent.pg(V, — V;). We
now show that ¢ is a solving assignment for R(d) in r,. Obviously, after replacing
every variable y with ¢(y), the c-predicate P, and the datum predicates W\, ..., W,
are equal to the corresponding children of R(b). Let us now consider all other
predicates in r;:

(a): the head predicate R(#) or a datum predicate Q,, 1=t=r,in the body of r.
If all variables in Q, and in the S-arguments of R({t) are in V, — V., then it is
immediate to see that Q, equals the corresponding child of R(#), and R(1) equals
R(b) after replacing every variable y in r; with ¢(y). Suppose now that some variable
of Q, or of the S-arguments of R(t), say x, appears in V. Then x is an unreduced
varlable and appears as an argument of the supplementary counting predicate of

. We have that qb(x)—spcntd)(x) by the definition of a derivation tree and
spcnt &(x)=cnt.¢o(x) by Claim 4.4. Hence, since d)(x)—— {x} by construction,

¢(x)=cnt.¢,(x) and again Q, equals the corresponding child of R(b), and R(z)
equals R{b) after replacing every variable y in r; with &(y).

(b): a c-predicate P,, 0=<»=<p-—1. Consider any variable x in the T,-arguments
of P,. If x is in V, —V;, then ¢(x)=cnt. do(x). But either ¥ =0 or cnt.dy(x) =
cnt.é, (x) by Claim 4.4, so ¢(x)=cnt.¢,(x). On the other hand, if x is in V;, then

210 D. Saccd, C. Zaniolo

x is an unreduced variable and appears as an argument of the supplementary
counting predicate of 7. We have that ¢(x)=spcnt.¢(x) by the definition of a
derivation tree and spent.¢(x) = cnt.gpy(x) = cnt.¢b, (x) by Claim 4.4 Since «;3(x) =
cnt.ho(x) by construction, ¢(x) = cnt.dy(x), and then P, equals the corresponding
child of R(b) after replacing every variable y in r; with ¢(y).

In sum, ¢ is a solving assignment for R(b) in r; and, therefore, R(b) is inferred
from LPu D.

Case 3: M, is reduced and there are no unreduced variables in r; and r; contains
exactly one c-predicate in its body. Hence, every variable x that appears in
Q,,...,0Q,, in the S-arguments of R(r), or in the T;-arguments of Pyisin V, — V;;
50 ¢(x)=ent.gpy(x). It follows that ¢ is a solving assignment for R{d) in r, and,
therefore, R(b) is inferred from LPu D. This concludes the proof. [

Lemma 4.5. Let Q =(G, LP, D) be a query that has the binding-passing property and
whose binding graph is My. Let Q={G, LP, D) be the modified query produced by
the Generalized Counting Method. Let cnt.Rs(jA, 12, ﬁ, a) be a counting fact that is
inferred from LPuU D and let R(b) be a c-fact that is inferred from LPw D such that
b® = a. Then the c-fact R*(J, k, i, ¢) is inferred from LP U D, where b= ¢ if M, is not
reduced, or b°> = ¢ if M, is reduced.

Proof. We carry out the proof by induction on the number of ¢-facts in the derivation
tree DT of R(b).

Basis of the induction: There is only one c-fact in DT. Then this c-fact is the root
R(b) that is labelled by an exit rule in LP, say the following rule r;

R(u) - W,,..., W,

-
The corresponding modified exit rule in LP is the following rule 7,:
R5(j, k, hou) - ecnt.R>(j, k h, x), Wy,..., W,

We construct a derivation tree DT for R%(J, k, h, ¢) as follows. R(}, E A ¢) is the
root and is labelled by 7. The facts corresponding to W,,..., W, in DT are added
to DT as children of the root. Moreover, the non-leaf child cnt.RS(f, !2, F?, a) is
added. Since this fact is inferred from LPU D by hypothesis and the leaf facts are
obviously in D, we only have to show that there is a solving assignment for
Rs(j: ;2, ﬁ, ¢) in #. But r, and 7, have the same variables (besides indices); so the
solving assignment for R(b) in r; is also a solving assignment for Rs(ﬁ IE, };, ¢)in 7.

Inductive step: the lemma holds whenever DT has less than s c-facts, where s> 1
(inductive hypothesis). We prove that it also holds when DT has s c-facts. Say that
the root of DT is labelled by r; where r; is the following recursive rule:

R(t) - Qli""QiﬂPls"'st*l’ Wl""s Wq'
The corresponding modified recursive rule in LP is the following rule 7 :

A

R®°(j, k hyu) - spent. R®.r.(j, k, b, 2), 130, v P WL WL

Generalized counting method for recursive logic queries 211

The supplementary counting predicate (if present) is defined by the following
supplementary counting rule:
spent.ri. R%(j, k, h,2) = ent.R3(j, k b, x), Qy,...,Q..

Y

The counting set associated to every P,, 0<<p<p—1, is defined by the following
recursive counting rule:

ent.Pl(j+1,mxk+ipxh+uvy) - ent.R°(j, k hx), Q,,..., Q.

Hence, it is easy to see that, using the solving assignment ¢ for R(b) and the
hypothesis that cnt.R°(j, k, h, a) is inferred from LP U D, it is possible to infer the
facts

spent.ri. RS(j, k h,d) and cnt.P(j+1, mxk+ipxh+v, e)

such that, for each P,, 0<<v=<<p—1, f'* = ¢, where f are the arguments of the node
in DT corresponding to P,. Hence, by inductive hypothesis, the c-facts P,Tv(jA+ 1, mx
i+ LpX h+ v, g), where f7+ =g, are inferred from LPu D. We can now construct
a derivation tree DT for Rs(ﬁ IG, f;, ¢} using the supplementary fact
spent.r,.R3(f, &, h, d), the c-facts PT<(j+1, mxk+1i, px h+v, g}, and the nodes of
DT cotresponding to W, ..., W,. We have that every variable in F; (except indices)
is also in r;. Moreover, all children of Rs(f, 12, ﬁ, ¢) were generated using the solving
assignment ¢ for R(b). So ¢ is also a solving assignment for Rs(ﬁ IE, ﬁ, ¢). Finally,
all children of this root are either in D or are inferred from LP U D. It follows that
DT is a derivation tree, and then R°(j, k, A, ¢) is inferred from TPuU D. O

Theorem 4.6. Let Q ={G, LP, D) be a query that has the binding-passing property and
let Q = (G, LP, D) be the modified query produced by the Generalized Counting Method.
Then Q and Q are equivalent.

Proof. Let M, be the binding graph of Q and let a be the bound arguments in G,
denoted by S. We first show that any answer of (j, say G(b), is also an answer of
Q. Considering the goal rule in LP, also G®(0,0,0, ¢) is inferred from LPu D,
where b = ¢ if My, is not reduced, or b° =a and b° =c if M, is reduced. By Lemma
4.3, G(b) is inferred from LPw D, i.e., it is an answer of Q.

Let us now prove that any answer G(b) of Q is also an answer of Q. Obviously,
ent.G¥(0, 0,0, a) is inferred from LPuU D. Hence, by Lemma 4.5, G*(0,0,0, ¢) is
inferred from LPu D, where b= c if M, is not reduced, or b*=a and b° =c if
M., is reduced. Considering the goal rule, also G{b) is inferred from LPuD,ie.,
it is an answer of @ [

The next result shows that counting and modified rules can be generated efficiently.

Proposition 4.7. Let Q =(G, LP, D) be a query such that Q has the binding-passing
property and there is a bound on the arity of the predicates in LP. Then the Generalized
Counting Method constructs the modified query Q =(G,LP, D) in time linear in the
size of LP and G.

212 D. Sacca, C. Zaniolo

Proof. Clearly, once the binding graph has been constructed and it has been checked
whether or not it is reduced, every rule in LP can be generated in time linear in the
size of some rule in LP or of G. Moreover, the same rule in LP can be used at most
0O(2%) times, where k is the maximum predicate arity in LP, to generate rules in
LP. Hence, @ can be constructed in time O(2* x 5 + g) time, where s and g are the
size of LP and G respectively. If k is bound, then the generalized counting method
works in linear time in s and g O

As today, we still lack a general framework that allows us to characterize the
performance of the various methods proposed for the compilation of recursive
predicates. However, a clear understanding of the behavior of these methods has
emerged from the study of typical examples [7] or of a particular class of queries
[13]. These examples strongly suggest that the counting method is superior to the
others (in terms of database accesses and computational steps required), particularly
in situations that do not require the elimination of duplicates. Thus, the method is
ideally suited for situations involving function symbols, where a new term is
generated at each step in the fixpoint computations (either by adding some level of
nesting in the structure or by removing some). Recursive predicates such as append-
ing two lists, extracting all the elements of a list, searching and manipulating tree
structures, etc. are ideal candidates for the Generalized Counting Method.

Our confidence in the ability of the Generalized Counting Method to deal with
recursive predicates with function symbols is reinforced by the authors’ experience
with Prolog and the observation that the generalized counting can be implemented
to emulate Prolog very closely. To illustrate this point let us consider the two fixpoint
computations prescribed by the Generalized Counting Method. A possible
implementation strategy consists of computing all counting set and supplementary
counting sets values before going into the fixpoint computation of the maodified
rules (a strategy similar to that used in implementing magic sets [5, 6, 19]). However,
a modified exit rule with a certain index value, can be fired as soon as the counting
set value for that particular index value is obtained. Assuming that no duplicate
elimination is needed, the overall strategy then becomes quite similar to that of
Prolog (and also to that of [11]). However, the Generalized Counting Method also
allows us to use different implementations of joins (including, e.g., a sort-merge
join) since it does not imply a one-tuple-at-the-time join strategy, and the top-down
binding propagation is independent from the ordering of rules and goals.

4.4. Simplifications and extensions

A number of simplifications of the overall Generalized Counting Method can be
introduced to deal with various subcases.

Single recursive rule
When there is a single recursive rule, the second index remains constant and can
be eliminated (see, for instance, Fig. 7(a)).

Generalized counting method for recursive logic queries 213

Single c-predicate in the rule bodies
When there is a single c-predicate in the body of every rule, the third index
remains constant and can be eliminated (see Figs. 7{a) and 7(b)).

Shared solved predicates

Counting rules and supplementary counting rules might share the same solved
predicates. For instance, in Fig. 7, the comparison predicates are evaluated in both
the counting rules and in the supplementary counting ones; this duplicate work
could be eliminated. A general solution to this problem consists in introducing an
allent predicate that computes both the bound arguments and the suppiementary
counting variables. Then, the counting and special counting predicates can simply
be derived from the allcnt predicate by projecting out variables not needed in the
specific case.

Arbitrary datum predicates

As previously mentioned datum predicates need not be restricted to database and
comparison predicates; all that is required is that these predicates can be solved
independently of the recursive strong component under consideration. For instance,
the technique presented in [29] can be used to deal effectively with nonrecursive
rules, possibly containing function symbols. Said technique provides a generalization
of the binding propagation rules described in Section 3.1.

Let us now turn to the problem of determining whether recursive predicates (not
in the same recursive strong component as our ¢-predicates) can be used as solved
datum predicates. This is tantamount to determining whether the corresponding
goal in the rule can be solved for the given set of bindings. To this end, we can
again apply the Generalized Counting Method. Take, for instance, a query
G: MG(L,, L,, X), defined against a logic program consisting of the rules of Figs. 2
and 3 combined. Then, in order to solve this query, we shall also have to solve the goal
G2: C, < C,, where C, and C, stand for arbitrary constants. Thus we get the modified

set of rules of Fig. 9 (since we only have one recursive rule we only use one index).
Finally, we need to link the rules of Fig. 9 with the last counting rule of Fig. 7(b).

This can, for instance, be accomplished by redefining the goal x < x, of Fig. 7(b)
as follows:

x<x, :- assert(ent.<"*(0, x, x,)), <'*(0}.

(This is a rather coarse solution, presented here only as a quick illustration on how
things could function; a more refined solution is given in [8].)

Trivial modified rules

It is easy to see that the only function of the modified recursive rule in Fig. 9, is
to decrement the index to zero one step at a time. We can thus dispense with this
rule and write a new modified goal:

G: ent.<"(_, x, s(x))?

214 D. Sacca, C. Zaniolo

G C1<C2?
LP:
rp: x<s(¥}i-x<yp
ryx<s{x).
Binding graph

[r0 0]

Counting rujes:

cnt.<"*(0, C1, C2)

ent.< " 3(j+1, x, v) - ent.<<"3(j, x, s(3))
Supplementary counting rules: None.
Modified rules and goal:

<"(j) - ent.< (i, x, s(x)).

<"Z(j— 1 <1'2U)-

G: <"*0)?

Fig. 9. Implementation of the “‘less-than” rules of Fig. 3.

We have thus eliminated the second fixpoint computation (tail recursion); moreover,
we can also drop the index from the counting set computation.

Symmetrically, it is easy to identify many situations where the counting set
computation becomes trivial and can be eliminated. Therefore, the counting method
also supplies a good framework for identifying simple cases where recursive queries
with constants can be implemented safely and efficiently by a single fixpoint [1].

5. Safety of queries

A safe query is one that generates only a finite number of answers. Safety for
recursive queries with function symbols is undecidable; thus the best a person can
do is to provide sufficient conditions that cover the cases of practical interests. Cur
domain of interest consists of recursive queries having the binding-passing properties
for which we want to ensure that our methods terminate. Note that the Generalized
Counting Method recasts the original query Q into two fixpeint computations: the
counting set computation and the modified c-predicate computation. Whenever both
these computations terminate in a finite number of steps, we shall say that the
Generalized Counting Method is safe w.r.1. to the query Q.

The first condition for a query to be safe is that every step of the fixpoint
computation can be carried out in a finite amount of time, thus the relational algebra
expression associated to a single rule is effectively computed. In this case, we say
that a query is single-step safe. In dealing with the problem of single-step safety we

Generalized counting method for recursive logic queries 215

see that we have to handle two possible sources of unsafe behaviour. One is dangling
variables, i.e., variables appearing in the head and not in the body. The second is
datum predicates, such as comparison predicates, that are safely solved only when
certain arguments are bound (obviously, database predicates corresponding to finite
database relations are always safely solved). Sufficient conditions for the solvability
of rules containing comparison predicates were given in Section 3.1 in the course of
the binding propagation analysis. Extensions of those conditions to other kinds
of datum predicates, such as derived predicates, is possible but outside the scope of
this paper. Here, instead, we give the conditions that allow us to infer the safety
of the computation prescribed by the counting method from the fact that the only
datum predicates are (finite} database predicates and comparison predicates.

Let #;, be a rule in LP and let I be an index set denoting arguments in the head
predicate of r,. We say that # is solved by I if all variables of r;, are bound by
B' U B.u By, where B' are all variables appearing in the I-arguments of the head
predicate and B, (respectively B,) are the variables of all c-predicates {respectively,
database predicates) in the body of r. For instance, given 7 ={1}, all the rules of
Figs. 1 and 6 as well as the recursive rules of Fig. 2 and the exit rule of Fig. 4 are
solved by I whereas the exit rules of Fig. 2 and the recursive rule of Fig. 4 are not.

The following result directly derives from the definition of variables made bound
by a set of variables (see Section 3.1).

Fact 5.1. Given a query Q ={(G, LP, D), if every rule in LP is solved by § =0, then
Q is single-step safe.

We next show that the conditions for safety for the query generated by the
Generalized Counting Method are much less restrictive, and that this is single-step
safe in many cases when the original query is not. A query @ is said to be solved
if it has the binding-passing property and, for each node R” of its binding graph,
each (recursive or exit) rule r; such that the predicate symbol of its head is R is
solved by §. Note that a solved query is not necessarily single-step safe. For instance,
the query MG'* on the logic program of Fig.2 is solved but not single-step safe.
On the other hand, the corresponding query generated by the Generalized Counting
Method is single-step safe. An example of a nonsolved query is given by the query
R' on the logic program of Fig. 4.

Proposition 5.2. Let Q ={G, LP, Q) be a query with the binding-passing property and
Q the modified query constructed by the Generalized Counting Method. Then,
(a) deciding whether or not Q is solved can be done in time linear in the size of LP
and G,
(b) if Q is solved, then Q is single-step safe.

Proof. (a): We observe that the algorithm, presented in the proof of Proposition
3.1 for finding solved datum predicates, can be easily extended to perform the test.

216 D. Sacca, C. Zaniolo

(b): We consider the two sets of rules generated by the Generalized Counting
Method as two separated logic programs LP, and LP., corresponding to the counting
set computation and the modified c-predicate computation respectively. We observe
that counting predicates and supplementary counting predicates are c-predicates in
LP,; moreover, they are datum predicates in LP,. Let us first of all consider any
(counting or supplementary counting) rule #, in LP,. Let 7, be associated ta an arc
leaving a node RS labelled by a rule #, in LP. Since 7, is solved by S by hypothesis
and the S-arguments appear in the counting predicate in the body of 7, it is easy
to see that the rule 7, is solved by B U By. But B are all variables appearing in
the c-predicate in the body of 7, i.e., the counting predicate. Hence, 7; is solved by
S ={. Tt follows that LP, is single-step safe by Fact 5.1. As a consequence, at cvery
(finite) step of the overall fixpoint computation of LP, the derived relations corre-
sponding to the counting and supplementary counting predicates are finite. There-
fore, such predicates can be thought of as finite database predicates in LP-. Consider
now a modified exit rule # in LP, that is associated to an ar¢ leaving a node R*
and to an exit rule r, in LP. By hypothesis, #, is solved by S. Since all variables in
the S-arguments of the head predicate of r, appear in the counting predicate in the
body of #, it is easy to see that F, is solved by I=¢. Let 7, be now a modified
recursive rule in LP, that is associated to an arc leaving the node R®, whose label
is a recursive rule r; in LP. Again, by hypothesis, r; is solved by S, 1.e., all variables
of r; are bound by B® U B.u By. Let B; and Bj be the set of al variables appearing
in the c-predicates and in the database predicates of # respectively. By construction,
all variables of r, as well as those of 7, are bound by B U B:u B;. On the other
hand, we observe that if a variable x in B® is necessary to bind some variable in
#, then x is in the supplementary counting predicate of 7, i.e., in Ba. Therefore, 7;
solved by I ={. By Fact 3.1, Q is a single-step safe. [J

From now on, we only consider solved queries as input to the Generalized
Counting Method. The following property follows immediately from the definitions.

Proposition 5.3. The Generalized Counting Method is safe w.r.t. a solved query if and
only if the counting set fixpoint computation converges in a finite number of steps.

Proof. At every step of the modified c-predicate fixpoint computation, the three
indices are decreased. Moreover, since the query is solved, by Proposition 5.2, every
step is executed in a finite amount if time. Hence, this computation terminates after
a finite number of steps. [

We now give a sufficient condition for the Generalized Counting Method to be
safe, which appears to cover most of the situations of practical interest.

Generalized counting method for recursive logic queries 217

Term length

The length of a term ¢, denoted |¢|, is defined as follows:

(a) if r is a constant, then |f|=1;

(b) if t=f(t,,..., t), then |¢|=]t,|+- - - +]|t,| +1.

This definition allows to determine the length of constant terms. When the terms
contain variables, then we can express the length of the term in function of those
of the variables. For instance, |x+ x|=|x|+|x|+1=2|x|+1. In general, there is no
information on the actual length of x, except that |x|= 1. Thus |x- x|= 3.

The length of a set of terms § is the sum of the lengths of all terms in S. For
instance, the length of the bound arguments (i.e., x- y, x, - y,) in rule r, of the MG
example in Fig. 7 is |x|+|p|+|x.|+ [y +2.

Arc length balance

Let {R® PT) be an arc in the binding graph with label [#, »]. The length balance
assoctated with this arc is defined as the difference between the length of the bound
arguments in the head of r; (i.e., those denoted by S) and the length of the bound
arguments of the vth c-predicate in the body (i.e., the arguments denoted by T).
For instance, the length balance for the arc labelled [7y, 0] in the binding graph of
Fig. 5(b) is

(xl+iyl+lxl+ Il + 2y =yl + Il +y]+ 1) = x|+ 1.

A lower-bound of the arc length balance can be obtained by replacing the length
of the variables by the lower bound of their length if the coeflicient is positive, or
by the upper bound if the coefficient is negative. For instance, in the previous
example, a lower bound of the arc length balance 1s 2 since the variable x has length
1 or greater.

Cycle length balance

Given a cycle of the binding graph, the length balance associated to it is defined
as the sum of the length balances of its arcs. A lower bound of the cycle length
balance can be obtained as the sum of the lower bounds of the arc length balances.

Theorem 5.4. Let Q be a solved query. If the length balance associaied with every cycle
in the binding graph of Q is positive, then the Generalized Counting Method is safe
w.rt Q.

Proof. Let s be the length of the arguments in the predicate of the counting exit
rule. The first rule fired by the counting set fixpoint computation is the counting
exit rule. Since this rule is actually a fact, the argument length of the counting
predicate is a constant, say s. Every step of the fixpoint computation is carried out
in a finite amount of time because of Proposition 5.2. Furthermore, at every cycle
of the recursion, the length s is decreased because of the condition of the theorem.
Hence, the recursion of the counting set fixpoint computation is “‘well-founded™ in

218 D. Sacca, C. Zaniolo

the sense that some argument length will eventually become 0 and no more recursion
cycles will be possible. It follows that the counting set fixpoint computation termin-
ates. By Proposition 3.3, the Generalized Counting Method is safe w.r.t. Q. O

Thus, the Generalized Counting Method is safe w.r.t. the query MG'* on the
logic program of Fig. 2 and w.r.t. the query <2 on the logic program of Fig. 3.

We note that testing the condition of Theorem 5.4 may require exponential time
in the size of the binding graph. However, this is not a big problem since binding
graphs have a very small number of cycles in many practical cases. The real limitation
is the actual applicability of the theorem since there are many cases where more
elaborated or completely different techniques for testing safety must be used.
Neverthelesss, our belief is that Theorem 5.4 can be very useful in many typical
situations of recursive rules with function symbols, such as appending two lists and
searching and manipulating trees and lists.

A simple extension of Theorem 5.4 is the following. If the arc length balance
computed over all bound arguments is not positive, one may try to find a subset of
the bound arguments for which it is. It is easy to see that this is also a sufficient
condition for safety. More complex situations arise when the cycle length balance
depends upon the lengths of variables, which is in turn determined by other
predicates (including recursive ones). An interesting technique to deal with some
of these cases is given in [23,25]. For variables that belong to some database
predicate, it is often reasonable to assume that their length is 1. This additional
assumption enables one to infer the safety of the counting method applied to the
following example, where Q is a database relation with no function symbols in the
second solumn:

P(b-b-x)?
P(b-b-x) - Q(x,y), P(x-y}
P(b).

Finally, there are situations such as those of examples of Figs. 1 and 6, where all
the solved predicates are database predicates, and the arc balance is null. Therefore,
there is no a priori assurance that duplicates cannot occur in the computation of
the counting sets. Even for these situations, if the underlying database is known to
be acyclic, the Generalized Counting Method remains safe and efficient [17]. When
the acyclicity of the underlying database cannot be guaranteed, two solutions
are possible. The first is to use methods such as the magic set [5] and minimagic
method [18] that have a built-in check for and elimination of duplicates. The second
approach consists of starting with the computation of generalized counting sets
while checking for duplications. If duplicates show up, then one will fall back on
the magic set method. This hybrid approach, known as magic counting is described
in [17, 19].

Generalized counting method for recursive logic gueries 219
6. Conclusion

We have presented a new method, named generalized counting, that is very
efficient (see the evaluation in [7, 13}) and appears particularly useful in dealing
with recursive rules containing function symbols. The method implements recursive
queries by two fixpoint computations. The first propagates the initial bindings into
the recursive loop, while the second solves the remaining goals and constructs the
desired answer. The method is applicable to arbitrary recursive predicates, including
those featuring mutual recursion and nonlinear recursion.

The paper also discussed the application of the method to solve nested recursive
predicates (a further extension of the Generalized Counting Method for handling
such kind of queries is given in [8]). A sufficient condition for the finiteness of the
fixpoint computations was finally given; although quite simple, this condition seems
adequate for many common cases involving recursive predicates with function
symbols. It thus appears that the Generalized Counting Method provides a very
valuable tool towards compiling pure logic programs with good performance and
an a priori guarantee of termination.

Acknowledgment

The authors are grateful to Francios Bancilhon, Ravi Krishnamurthy and Raghu
Ramakrishan for many inspiring discussions.

References

[1] A.V. Aho and J. Ullman, Universality of data retrieval languages, in: Proc. POPL Conference, San
Antonio TX (1979) 110-120.

[2] L. Aiello and Cecchi, Adding a closure operator to the extended relational algebra. .., Tech. Rep.,
University of Rome, 1985.

[3] F. Bancilhon, Naive evaluation of recursively defined relations, in: On Knowledge Base Managemant
System— Integrating Database and Al Systems (Springer, Berlin, 1985).

[4] R. Bayer, U. Guntzer and W. Kiessling, On the evaluation of recursion in deductive DB systems
by efficient differential fixpoint iteration, Tech. Rep., Technische Univ. Munich, 1985.

[5] F. Bancilhon, D. Maier , Y. Sagiv and J. Ullman, Magic sets and other strange ways to implement
logic programs, in: Proc 5th ACM SIGMOD-SIGACT Syvmp. on Principles of Database Systems
{1986} 1-15.

[6] F.Bancilhon, D. Maier, Y. Sagiv and J. Uliman, Magic sets: algorithms and examples, Unpublished
manuscript, 1985.

[7] F. Bancilhon and R. Ramakrishan, An amateur’s introduction to recursive query processing
strategies, in: Proc. ACM SIGMOD Internat. Conf. on Management of Data, Washington, DC
(1986) 16-52.

[8] C. Beeri and R. Ramakrishnan, On the power of magic, in: Prec. ACM SIGMOD-SIGACT Symp.
on Principles of Database Systems (1987) 269-283.

[9] A.K. Chandra and D. Harel, Horn clauses and the fixpoint hierarchy, in: Proc. ACM SIGMOD-
SIGACT Symp. on Principles of Database Systems {1982) 158-163.

220 D. Sacca, C. Zaniolo

[10] G. Gardarin and DeMaindreville, Evaluation of database recursive logic programs as recursive
function series, in: Proc. ACM SIGMOD Internat. Conf. on Management of Daia, Washington, DC
{1986) 177-186.

[11] LJ. Henschen and S.A. Naqvi, On compiling queries in recursive first-order databases, /. ACM
31(1) (1984) 47-85.

[12] E.L. Lozinskii, A problem-oriented inferential database system, ACM TODS 11(3) (1986) 323-336.

[13] A. Marchetti-Spaccamela, A. Pelaggi and D. Sacca, Worst-case complexity analysis of methods for
logic query implementation, in: Proc. ACM SIGMOD-SIGACT Symp. on Principles of Database
Systemns (1987) 294-301.

[14] D. McKay and S. Shapiro, Using active connection graphs for reasoning with recursive rules, in:
Proc. 7th LICAI {1981) 368-374.

[15] S. Parker et al., Logic programming and databases, in: L. Kerschberg, ed., Expert Database Systems
(Benjamin/Cummings, Menlo Park, CA, 1986).

[16] R. Reiter, On closed world databases, in: H. Gallaire and J. Minker, eds., Logic and Databases
(Plenum, New York, 1978) 55-76.

[17] D. Sacca and C. Zaniolo, On the implementation of a simple class of logic queries for databases,
in: Proc. 5th ACM SIGMOD-SIGACT Symp. an Principles of Database Systems (1986) 16-23.

[18] D. Sacca and C. Zaniolo, Implementation of recursive queries for a data language based on pure
Horn logic, MCC Tech. Rep. 092-86, 1986.

[19] D. Saccei and C. Zaniolo, Magic counting methods, in: Proc. ACM SIGMOD Conf. (1987).

[20] A. Tarski, A lattice theoretical fixpoint theorem and its application, Pacific). Math. 5 (1955} 285-309.

[21] 1.D. Ullman, Principles of Database Systems (Computer Science Press, Rockville, MD, 1982).

[22] 1.D. Ullman, Implementation of logical query languages for databases, TODS 1H3) (1985) 289-321.

[23] 1.D. Ullman and A. Van Gelder, Testing applicability of top-down capture rules, Rep. STAN-CS-85-
1046, Stanford University, 1985.

[24] M.H. Van Emden and R. Kowalski, The semantics of predicate logic as a programming language,
J ACM 23(4) (1976) 733-742.

[25] A.Van Gelder, A message passing framework for logical query evaluation, in: Proc. ACM SIGMOD
Internat. Conf. on Management of Data, Washington, DC (1986) 155-165.

[26] L. Vieille, Recursive axioms in deductive databases: the query-subquery approach, in: Proc. First
Internat. Conf. on Expert Database Systems, Charleston, SC (1986).

[27] C. Zaniclo, Prolog: a database query language for all seasons, in : L. Kerschberg, ed., Expert
Database Systems {Benjamin/Cummings, Menlo Park, CA, 1986).

[28] C. Zaniolo, The representation and deductive rretrieval of complex objects, in: Proc. !th VLDB
(1985} 459-469.

[29] C. Zaniolo, Safety and compilation of non-recursive Horn clauses, in: Proc. First Internat. Conj.
on Expert Database Systems, Charleston, SC (1986).

