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Relational query languages can effectively express continuous  queries on 

data streams after modest extensions. However, implementing such queries 

efficiently in data stream management systems (DSMSs) requires major 

changes in execution models and optimization techniques. In particular, 

finer-granularity execution models that are conducive to effective time-

stamp management and response-time optimization must replace databases’ 

relational algebra schemes. This article introduces such a model and uses it to 

solve the idle-waiting problems of data stream operators, such as union, joins, 

and aggregates over windows with slides.

D ata stream management systems 
(DSMSs) must efficiently support 
continuous queries on massive 

and bursty data streams with real-time 
or almost-real-time responses. They 
therefore need flexible execution mod-
els that deal effectively with the tem-
poral aspects of data stream operators, 
which consume and produce tuples or-
dered by their time stamps. 

For instance, the union opera-
tor sorts and merges inputs accord-
ing to tuple time stamps — that is, it 
compares the time stamps in its input 
buffers and moves the tuples with the 
least time stamp to the output. When 
any of its inputs is empty, the union 
operator can’t proceed, because sub-
sequent tuples arriving in the empty 

buffers could have smaller time stamps 
because of skew between streams. A 
naive implementation would then let 
the union operator enter an idle-wait-
ing mode until tuples become available 
in all its input buffers. (We use “idle-
waiting” instead of “blocking” to avoid 
confusion with nonmonotonic blocking 
operators that pose different challenges 
for data streams.1,2) Theodore Johnson 
and his colleagues address the idle-
waiting-prone (IWP) operator problem 
using a punctuation-based approach3 

(see the “Related Work on Idle-Wait-
ing-Prone Operators” sidebar). In their 
approach, the operator scheduler gener-
ates heartbeats at regular time intervals 
and injects them into the data streams 
as punctuation tuples, which are deliv-
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ered to IWP operators down the path regardless 
of whether these operators are currently idle.3 

The rate at which the scheduler must inject 
punctuation tuples is a difficult optimization 
decision that largely depends on the various 
streams’ load conditions. Too few punctuation 
tuples might leave significant idle waiting un-
resolved in the system.  However, too many 
punctuation tuples might result in extra over-
head even when idle waiting doesn’t occur. We 
therefore take an alternate approach. Our inte-
grated techniques for time-stamp management 
and query execution reduce both memory usage 
and latency in queries with union and join op-
erators, as well as single-stream IWP operators 
such as aggregates on windows with slides.4 Our 
approach also significantly reduces high-output 
burstiness, a frequent result of idle waiting. Our 
experiments show that the improvements we 
obtained significantly surpass those obtainable 
with the periodic time-stamp approach.3 

Basic Execution Model
Although the abstract semantics of the various 
operators (selection, projection, union, window 
join, and aggregates) on data streams is based 
on relational database semantics, their concrete 
semantics is quite different. We designed the 
execution techniques of the stream operators for 
main memory and data-stream-specific require-
ments related to ordering and time stamps. Such 
time-stamp-related requirements in particular 
directly affect the union, join, and aggregates 
on logical windows with slides operators, which 
are exposed to the idle-waiting problem.

Figure 1 shows an efficient implementation 
for executing IWP operators. Here, the union 
performs a simple sort-merge operation on mul-
tiple input streams based on time stamps. The 
symmetric window join maintains internal win-
dow buffers to convert unbounded data streams 
to bounded sequences, for which we use Jaewoo 
Kang and his colleagues’ widely accepted se-
mantics.5 Finally, the aggregates on logical win-
dow with slides illustrate that unary operators 
can also experience idle waiting. Consider an 
aggregate sum being computed on a 10-minute 
(600-second) slide. If the current slide started at 
time t, and our clock shows a time greater than t 
+ 600, we still can’t output a result until a tuple 
with time stamp t + 600 arrives to guarantee 
that the slide doesn’t miss any qualified tuples.

Whereas Johnson and colleagues use a 
regular-interval punctuation-based approach 
to solve the idle-waiting problem,3 a better ap-

Union. When tuples are present at all inputs, select the one with the 
minimal time stamp and

(production) add this tuple to the output, and
(consumption) remove it from the input.

Aggregates on logical windows with slides. When a tuple is present 
at the input,

(production) if this input tuple’s time stamp is greater than the 
slide’s expiration time, compute the aggregate on its internal win-
dow buffer and add the result to the output; and
(consumption) remove the input tuple and add it to the internal 
window buffer on which the aggregate is computed (from which 
you also remove the expired tuples).

Window join of streams A and B. When tuples are present at both 
inputs, and A’s time stamp is less than or equal to B’s, perform the 
following operations (if B’s time stamp is less than or equal to A’s, per-
form symmetric operations):

(production) compute the join of the tuple in A with the tuples in 
B’s window buffer — W(B) — and add the resulting tuples to the 
output buffer (these tuples take their time stamps from the tuple 
in A); and
(consumption) remove the current tuple in A from the input and 
add it to W(A) (from which you also remove the expired tuples).

•
•

•

•

•

•

Figure 1. Basic execution of query operators. In this implementation, 
the idle-waiting-prone (IWP) operators (union, window join, and 
aggregates on logical windows with slides) are still subject to the 
idle-waiting problem.
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Figure 2. Query graphs. (a) A simple path query consists of source 
and sink nodes and query operators (σ, Σ1, and Σ2) connected 
by buffers. (b) In a simple union graph, a selection operator filters 
each input data stream before feeding tuples to the union operator.
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proach is to generate critical time-stamp infor-
mation on-demand using our simple execution 
model. We based our execution model on query 
graphs used widely in the DSMS literature, with 
the nodes denoting query operators and arcs 
denoting the buffers connecting them, such as 
those in Figure 2. 

In the example in Figure 2a, the graph is a 
simple path. A directed arc from Qi to Qj rep-
resents a buffer, in which Qi adds tuples to the 
buffer’s tail (production) and Qj takes tuples 
from the buffer’s head (consumption). In addi-
tion to the actual query operators (σ, Σ1, and 
Σ2), the graph also contains source and sink 
nodes. The arcs leaving the source nodes rep-
resent input buffers. In our Stream Mill DSMS 
(as well as many others), external wrappers fill 
these buffers. When the input buffers are empty, 
the source nodes have three options. They can 

wait until some tuple arrives in the buffer, 
return control to the DSMS scheduler (which 
will then attend to other tasks), or 
generate time-stamp information and propa-
gate it through the operator graph.

The arcs leading to the sink nodes denote 
the output buffers from which output wrap-
pers take the tuples to be sent to users or to 
other processes.

A query graph can have several strongly con-
nected components, in which each component is 
a directed acyclic graph. Each DAG represents 
a scheduling unit that’s assigned a share of the 
system resources by the DSMS scheduler/opti-
mizer (a problem outside this article’s scope). 

We execute each component using a two-
step cycle to iterate through the operators in the 
component. In the execution step, we execute 
the current operator. Next, in the continuation 
step, we select the next operator for execution 
by the next-operator-selection (NOS) rules, 
which are defined according to the Boolean val-
ues of two state variables: 

yield is true if the current operator’s output 
buffer contains some tuples, and 
more is true if the current operator’s input 
buffer still contains tuples.

With minor modifications, this general two-step 
execution model is useful for specifying a wide 
range of execution strategies. 

•
•

•

•

•

Depth-First Strategy
DFS is equivalent to a first-in-first-out strat-
egy, but with backtracking upon detection of 
empty buffers (a necessary step in generating 
time stamps on-demand). DFS expedites tuple 
progress toward output by sending tuples to 
the next operator on the path as soon as they’re 
produced. To specify depth-first strategy, the 
next-operator-selection (NOS) rules are defined 
as follows:

Forward: if yield then next := succ 
Encore: else if more then next := self 
Backtrack: else next := pred

Repeat this NOS step on next

Thus, after executing the first query opera-
tor σ in Figure 2a, the algorithm checks if σ’s 
output buffer is empty. If not (that is, if yield is 
true), the algorithm executes the Σ1 operator. It 
repeats the same steps to reach the Σ2 operator, 
which is the last operator in the path before the 
sink node. Thus, an output wrapper will con-
sume Σ2’s output tuples — a separate process in 
Stream Mill. The algorithm continues the con-
sumption of all Σ2’s input tuples — that is, it ig-
nores the forward condition when the current 
operator is the last before the sink node and di-
rectly executes the encore condition.

Once all of Σ2’s tuples are processed, the 
more variable becomes false and the algorithm 
backtracks to its predecessor — the Σ1 operator. 
If it backtracks further to reach operator σ and 
its more condition becomes false, the algorithm 
should again backtrack to σ’s predecessor. In this 
case, however, the predecessor is the source node, 
denoting that an external wrapper must fill σ’s 
input buffer with new tuples. Until these new 
tuples arrive, nothing is left to do on this path. 
In this situation, we could return control to the 
query scheduler to let the DSMS attend to other 
tasks. Alternatively, we could propagate the time 
stamp from the source, as we discuss later.

Breadth-First Strategy
We can specify BFS by switching the order of 
the DFS strategy’s forward and encore rules, se-
lecting the next operator as follows:

Encore: if more then next := self 
Forward: else if yield then next := succ 
Backtrack: else next := pred

Repeat this NOS step on next
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Round Robin
As in BFS, for RR we finish every tuple on one 
operator’s input before visiting the next opera-
tor. However, when input becomes empty and 
the operator produces no result tuples, we sim-
ply exit the component and return control to 
the scheduler:

Encore: if more then next := self
Forward: else if yield then next := succ
Exit: else exit 

Repeat this NOS step on next

Unions and Joins
Some query graphs, such as the graph in Figure 
3, contain operators with multiple inputs. 

For operators such as unions and joins, the 
more condition evaluates to true when all of 
their inputs contain tuples. When some of their 
input buffers contain no tuples, more evaluates 
to false, and both DFS and BFS backtrack to a 
predecessor operator. Naturally, the algorithm 
backtracks to a predecessor feeding into a buf-
fer that’s currently empty (if multiple inputs 
are empty, pick randomly). Therefore, if more 
is false because, say, the jth input for the cur-
rent operator is empty, and predj is the operator 
feeding into that buffer, we modify the back-
track rule as follows:

Backtrack: next := predj

Except for these changes, the execution of 
operator graphs containing joins and unions is 
the same as that for graphs consisting of single-
input operators.

The execution strategies discussed so far can 
suffer from idle waiting. We next discuss tech-
niques for solving this problem.

Managing IWP Operators
We first discuss simultaneous tuples, which are 
tuples with the same time stamp. Such tuples are 
common in applications using coarse time-stamp 
values. Simultaneous tuples give rise to several 
issues. Consider, for example, a union operator 
with inputs A and B. If both A and B contain si-
multaneous tuples, an operator can process them 
and add them to the output. But the rules in Fig-
ure 1 only move one tuple at a time. Thus, the op-
erator will empty either A or B first, leaving the 
other holding one or more simultaneous tuples. 
One possible fix is to change the rules in Figure 

1, so we now move all tuples having the minimal 
time stamp through the union operator at once. 
However, tuples arriving in buffers A or B (with 
the same time stamp due to arrival skew) after the 
operator has processed the simultaneous tuples in 
those buffers will still incur idle waiting.

Our solution to the simultaneous tuples 
problem is to introduce a time-stamp memory 
(TSM) register for each of the IWP operator’s in-
puts. We automatically update the TSM’s value 
with the current input tuple’s time-stamp value. 
This value remains in the register until the next 
tuple updates it.

We then replace the execution rules for the 
IWP operators with the rules in Figure 4 (we 
omit the aggregate operators in this figure be-
cause of space constraints). We also relax the 
more condition so it holds true for the query op-
erator Q if there is at least one input tuple with 
time-stamp value τ, where τ is the minimal val-

U Sink

σSource1

U
Source2

Source3

Σ
Slide

Σσ

Figure 3. Query with nested union nodes. In this example, one 
multi-input operator leads to another multi-input operator (both 
unions here).

Union. If more is true, select an input tuple with time stamp τ and deliver it 
to the output (production); then remove it from the input (consumption).

Window join of stream A with stream B. If more is true, then

if input A contains a data tuple with time-stamp value τ, perform 
the following operations (perform symmetric operations if B con-
tains a data tuple with time-stamp value τ):
	 (production) join the tuple in A with the tuples in W(B) and send 

the result to the output, and
	 (consumption) remove the current input tuple in A from the 

input and add it to W(A) (from which you also remove the 
expired tuples).

(production) if neither A nor B contain an input data tuple with time 
stamp τ, add a punctuation tuple with time stamp τ to the output.

•

—

—

•

Figure 4. Execution using time-stamp memory registers. Adding 
TSM registers and relaxing the more condition solves the 
simultaneous tuples problem and reduces idle waiting.
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ue in the input TSM registers of Q.
The TSM registers and relaxed more condi-

tion alleviate the simultaneous tuples problem 
and reduce idle waiting in IWP operators.

Propagating Time-Stamp Information
We seek an approach that generates enabling 
time stamps (ETSs) on-demand and sends them 
to idle-waiting operators so they can resume 
their activity. We use the term “ETS” to avoid 
the connotation of periodicity associated with 
heartbeats. Using our query-graph-based ex-
ecution model, we can extend DFS (and BFS) 
to support on-demand generation of ETS infor-
mation. Indeed, once the backtracking process 
takes us back to the source node, we can gener-
ate a new ETS value and send it as a punctua-
tion tuple down the path on which backtracking 
just occurred to update TSM registers along the 
way and reactivate idle-waiting operators.

The extended rules for IWP operators shown 
in Figure 4 also apply to punctuation tuples. 
Using these rules, we no longer require tuples 
to be present in all of the union operator’s input 
buffers. As long as a data tuple’s time-stamp 
value is less than or equal to the other input 
buffers’ TSM values, the operator will remove 
the tuple from the input buffer and move it to 
the output buffer (independent of whether it’s a 
data tuple or a punctuation tuple).

If we compare Figure 4 to Figure 1, we see 
that the only change for the union operator is 
that it uses the relaxed more condition. We also 
start the window join computation by checking 

this condition. If the tuple is in fact a data tuple, 
we need no other modification. However if the 
tuple is a punctuation tuple, we move it from 
the input to the output. Furthermore, when we 
can’t generate a data tuple, we simply produce 
a punctuation tuple for the benefit of the IWP 
operators down the path. Therefore, the latest 
time-stamp information is always carried by ei-
ther the data tuples or the punctuation tuples to 
resolve idle waiting in the system.

We also modify non-IWP operators to let 
punctuation tuples go through unchanged (mod-
ulo reformatting required by the operators).

Generating Time Stamps
For data tuples with internal time stamps, we in-
ject the system clock’s current time into the data 
tuples as we add these tuples to our query graph’s 
input buffer (the “source” in our diagrams). In 
the absence of data tuples, on-demand ETS gen-
eration for a data stream simply inserts a punc-
tuation tuple with the time-stamp value from the 
system clock. For external time stamps, the ap-
plication generating the data stream injects time 
stamps into the data tuples, whereas our DSMS 
generates the punctuation tuples’ ETSs using 
the heartbeat mechanisms previously discussed 
elsewhere.1,3 Our Stream Mill DSMS also al-
lows tuples that are time stamped neither at the 
source nor when they enter the system. Opera-
tors that require time stamps, such as aggregates 
on logical windows, will generate latent time 
stamps at the time when the tuples arrive at the 
operator. Because tuples with latent time stamps 
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Figure 5. Latency for the breadth-first and depth-first strategies. The diagrams show (a) BFS and DFS latencies with 
and without enabling time-stamp (ETS) propagation, and (b) BFS and DFS performance for various burstiness factors. 



NOVEMBER/DECEMBER 2008� 35

Time-Stamp Management

never experience idle waiting, we use them as a 
baseline case in our performance study.

Experiments and Results
Our experiments used the Stream Mill DSMS 
server hosted on a Linux machine with a P4 
2.8-GHz processor and 1 Gbyte of main memo-
ry. We randomly generated the input data tuples 
under a Poisson arrival process with the desired 
average arrival rates.

BFS Versus DFS
We compared the effectiveness of BFS and DFS 
with on-demand ETS propagation on bursty 
data streams using the simple query graph in 
Figure 2b. In this graph, a selection operator 
with low selectivity (95 percent of tuples pass 
through) filters each input data stream before 
the streams are unioned together. The data rates 
average 1,000 tuples per second on the first 
stream and 0.5 tuples per second on the second 
stream. This rate diversity can cause significant 
idle waiting for tuples on the faster stream.

Figure 5 quantifies this effect. Figure 5a 
shows that BFS and DFS have similar latencies 
without ETS propagation and that the latencies 
reduce dramatically with on-demand ETS (the 

y-axis is log scale). Figure 5b compares BFS and 
DFS performance for various burstiness fac-
tors. We keep the average rate of 1,000 tuples 
per second while introducing bursts of nearly 
simultaneous tuples. Both strategies show in-
creasing average latency with increasing input 
burstiness, but BFS is affected more severely. 

This steeper increase of latency with burst 
size is intrinsic in the BFS execution and has 
little do with ETS propagation policies — similar 
delay differences exist with latent time stamps. 
In fact, with latent time stamps, if we assume 
that the cost of processing one tuple is c for 
both the σ and union operators in Figure 2b, 
the average output latency for DFS is (n + 1)c, 
whereas for BFS it’s (1.5 + 0.5n)c, where n is the 
size of bursts in the Source1 input. 

Latency Reduction
Minimizing response time is a key query-opti-
mization objective for most DSMSs. Figures 6a 
and 6b shows the (log-scale) results of our ex-
periments using the query in Figure 2b. The av-
erage output latency drops regularly (line B) as 
we increase the frequency of the ETS punctua-
tion tuples periodically injected into the sparser 
of the two data streams.

Related Work on Idle-Waiting-Prone Operators

Much previous work has sought to optimize latency and 
memory on massive data streams, but Theodore John-

son and his colleagues first discussed the idle-waiting problem 
caused by mismatched arrival rates of input streams in binary 
operators.1 Their solution uses punctuation tuples, which have 
proven useful in dealing problems such as blocking operators,2 
data stream joins,3 and out-of order tuples.4 

A related approach is Aurora’s time-out mechanism,5 
in which tuples are discarded if they wait for future tuple ar-
rivals for longer than a specific time threshold. The time-out 
approach resolves the idle-waiting problem but sacrifices the 
correctness of query results. It might therefore be acceptable 
for the Aurora aggregate operators,5 but much less so for op-
erators such as union and joins. Yijian Bai and his colleagues 
first discussed the use of on-demand time stamps for idle-wait-
ing-prone (IWP) operators,6 but didn’t cover unary operators, 
burstiness, and the results of other experiments we’ve dis-
cussed here. Others have discussed related techniques to sup-
port composite event semantics7 and RFID applications.8,9
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Regardless of the frequency, periodic ETS 
can’t match the performance of ETS on-demand 
(line C), which reduces the latency by several or-
ders of magnitude with respect to A (where no 
ETS is used). More remarkably, line C comes close 
to optimal performance of streams with latent 
time stamps, under which no idle waiting occurs 
by definition (line D). Line C is so close to line D 
that the two are indistinguishable in Figure 6a. 
We therefore use Figure 6b to show their actual 
difference, which is about 0.1 milliseconds, or 
four orders of magnitude smaller than A.

We verify that idle waiting (rather than 
implementation problems or system overhead) 

caused the latency by measuring the percentage 
of time the union operator spends in an idle-
waiting state — that is, the time in which one 
input data stream is empty while the other isn’t. 
Line A in Figure 6c shows that when we don’t 
use time stamp information, the system spends 
almost 99 percent of its time idle waiting, and 
tuples must wait a long time before processing. 
(Tuple processing takes a comparatively short 
time because we’re well below the DSMS maxi-
mum processing capacity.) Line C shows that 
ETS on-demand reduces this waiting time to less 
than 0.1 percent of the total time. Line B shows 
that significantly reducing the waiting percent-
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Figure 6. Latency reduction results. The average output latency for (a) no ETS propagation, regular punctuation tuples, 
ETS on-demand propagation, and latent time stamp; (b) ETS on-demand propagation and latent time stamp (on a 
finer time scale). The percent of time in waiting state for (c) the same four cases as in (a), and (d) ETS on-demand 
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age requires high heartbeat rates, as much as 
100 tuples per second. Even with the increased 
rate, however, we can’t match the improvement 
obtained with on-demand ETS propagation. 
Again, the results obtained with on-demand 
ETS are so close to those of latent time stamps 
that their differences are only visible in Figure 
6d with a much finer scale. 

Memory Usage
ETS can significantly reduce memory usage. 
Figure 7 shows the peak buffer size, measured 
by the total number of tuples in the buffers, for 
the query in Figure 2b when the two streams 
have respective average rates of 50 and 0.05 
tuples per second. Without ETS, line A in Figure 
7 has a peak queue size of thousands of tuples, 
although the average input rate is only 50/0.05 
tuples per second. Line C shows that on-demand 
ETS propagation reduces the memory usage by 
more than two orders of magnitude. For peri-
odic ETS (line B) peak memory usage reduces 
initially with higher punctuation rates (as ex-
pected because idle waiting is reduced). Howev-
er, high punctuation rates eventually increase 
peak memory requirements. This is because 
punctuation tuples produced at high rates tend 
to occupy memory when the scheduler is pro-
cessing bursts of data tuples.

These results are consistent with Johnson 
and colleagues’ results,3 which showed that the 
maximum rate for periodic ETS punctuation 
was about one per second. At that low rate, the 
curve is still descending uniformly and the re-
versal seen in Figure 7 isn’t present. Thus, peri-
odic ETS punctuation can provide a reasonable 
solution in applications that don’t require very 
low latency, and it might be the only viable so-
lution in DSMSs whose architecture isn’t con-
ducive to on-demand ETS (such as Gigascope’s 
two-level execution architecture3). However, it 
falls well below the versatility and performance 
obtainable with on-demand ETS.

Windows with Slides and Output Burstiness 
Another undesirable side effect of idle waiting 
is that the output stream might become much 
burstier. For example, in Figure 3 an aggregate 
on a window with slide might hold up tuples in 
its sliding window. Without time-stamp prop-
agation, tuples on the union operator’s other 
input would accumulate and lead to bursty 
outputs, even though there might be data tu-

ples in the slide aggregate that can unblock the 
idle-waiting union operator. In this case, the 
time-stamp information is accurate and avail-
able (carried by data tuples), but is delayed by 
the slide construct’s existence. ETS propagation 
thus helps to deliver the time-stamp informa-
tion to the union operator. 

Figure 8 shows the burstiness of the output 
for the query in Figure 3. When we don’t use 
ETS, burstiness increases significantly with the 
slide’s size. (The slide determines the ratio be-
tween the number of tuples processed and the 
number of tuples produced in output.6) In our 
experiment, we counted the number of tuples 
produced during each 0.02-second period and 
defined burstiness as the difference between 
the extremes (maximum and minimum) di-
vided by the average of those counts. Line B 
in Figure 8 clearly shows that on-demand ETS 
propagation eliminates the burstiness caused by 
the slide. The benefits of on-demand ETS there-
fore go beyond the ability to minimize latency 
and memory and include the ability to equalize 
traffic and smooth out traffic peaks caused by 
certain query operators’ bursty arrivals or be-
havior. Reducing burstiness and its undesirable 
side effects is highly desirable in DSMSs.

F uture work calls for extending our approach 
to models in which the semantics of data 

streams ordered by their time stamps is gener-
alized to more advanced temporal models, such 
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Figure 7. Peak total queue size. As line C shows, on-demand ETS 
propagation reduces the memory usage by more than two orders 
of magnitude in this experiment.
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as those discussed elsewhere.7 We must also ex-
tend our techniques to handle distributed stream 
processing, in which streams in the system can 
live on different processors and interact with 
each other through distributed protocols. 
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Figure 8. Burstiness versus slide size. As line B shows, on-demand 
ETS propagation eliminates the burstiness caused by the slide.
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