
D
at

a
St

re
am

 M
an

ag
em

en
t

30 	 Published by the IEEE Computer Society	 1089-7801/08/$25.00 © 2008 IEEE� IEEE INTERNET COMPUTING

Time-Stamp Management
and Query Execution in Data
Stream Management Systems

Yijian Bai, Hetal Thakkar,
and Carlo Zaniolo
University of California, Los
Angeles

Haixun Wang
IBM T.J. Watson Research Center

Relational query languages can effectively express continuous queries on

data streams after modest extensions. However, implementing such queries

efficiently in data stream management systems (DSMSs) requires major

changes in execution models and optimization techniques. In particular,

finer-granularity execution models that are conducive to effective time-

stamp management and response-time optimization must replace databases’

relational algebra schemes. This article introduces such a model and uses it to

solve the idle-waiting problems of data stream operators, such as union, joins,

and aggregates over windows with slides.

D ata stream management systems
(DSMSs) must efficiently support
continuous queries on massive

and bursty data streams with real-time
or almost-real-time responses. They
therefore need flexible execution mod-
els that deal effectively with the tem-
poral aspects of data stream operators,
which consume and produce tuples or-
dered by their time stamps.

For instance, the union opera-
tor sorts and merges inputs accord-
ing to tuple time stamps — that is, it
compares the time stamps in its input
buffers and moves the tuples with the
least time stamp to the output. When
any of its inputs is empty, the union
operator can’t proceed, because sub-
sequent tuples arriving in the empty

buffers could have smaller time stamps
because of skew between streams. A
naive implementation would then let
the union operator enter an idle-wait-
ing mode until tuples become available
in all its input buffers. (We use “idle-
waiting” instead of “blocking” to avoid
confusion with nonmonotonic blocking
operators that pose different challenges
for data streams.1,2) Theodore Johnson
and his colleagues address the idle-
waiting-prone (IWP) operator problem
using a punctuation-based approach3

(see the “Related Work on Idle-Wait-
ing-Prone Operators” sidebar). In their
approach, the operator scheduler gener-
ates heartbeats at regular time intervals
and injects them into the data streams
as punctuation tuples, which are deliv-

NOVEMBER/DECEMBER 2008� 31

Time-Stamp Management

ered to IWP operators down the path regardless
of whether these operators are currently idle.3

The rate at which the scheduler must inject
punctuation tuples is a difficult optimization
decision that largely depends on the various
streams’ load conditions. Too few punctuation
tuples might leave significant idle waiting un-
resolved in the system. However, too many
punctuation tuples might result in extra over-
head even when idle waiting doesn’t occur. We
therefore take an alternate approach. Our inte-
grated techniques for time-stamp management
and query execution reduce both memory usage
and latency in queries with union and join op-
erators, as well as single-stream IWP operators
such as aggregates on windows with slides.4 Our
approach also significantly reduces high-output
burstiness, a frequent result of idle waiting. Our
experiments show that the improvements we
obtained significantly surpass those obtainable
with the periodic time-stamp approach.3

Basic Execution Model
Although the abstract semantics of the various
operators (selection, projection, union, window
join, and aggregates) on data streams is based
on relational database semantics, their concrete
semantics is quite different. We designed the
execution techniques of the stream operators for
main memory and data-stream-specific require-
ments related to ordering and time stamps. Such
time-stamp-related requirements in particular
directly affect the union, join, and aggregates
on logical windows with slides operators, which
are exposed to the idle-waiting problem.

Figure 1 shows an efficient implementation
for executing IWP operators. Here, the union
performs a simple sort-merge operation on mul-
tiple input streams based on time stamps. The
symmetric window join maintains internal win-
dow buffers to convert unbounded data streams
to bounded sequences, for which we use Jaewoo
Kang and his colleagues’ widely accepted se-
mantics.5 Finally, the aggregates on logical win-
dow with slides illustrate that unary operators
can also experience idle waiting. Consider an
aggregate sum being computed on a 10-minute
(600-second) slide. If the current slide started at
time t, and our clock shows a time greater than t
+ 600, we still can’t output a result until a tuple
with time stamp t + 600 arrives to guarantee
that the slide doesn’t miss any qualified tuples.

Whereas Johnson and colleagues use a
regular-interval punctuation-based approach
to solve the idle-waiting problem,3 a better ap-

Union. When tuples are present at all inputs, select the one with the
minimal time stamp and

(production) add this tuple to the output, and
(consumption) remove it from the input.

Aggregates on logical windows with slides. When a tuple is present
at the input,

(production) if this input tuple’s time stamp is greater than the
slide’s expiration time, compute the aggregate on its internal win-
dow buffer and add the result to the output; and
(consumption) remove the input tuple and add it to the internal
window buffer on which the aggregate is computed (from which
you also remove the expired tuples).

Window join of streams A and B. When tuples are present at both
inputs, and A’s time stamp is less than or equal to B’s, perform the
following operations (if B’s time stamp is less than or equal to A’s, per-
form symmetric operations):

(production) compute the join of the tuple in A with the tuples in
B’s window buffer — W(B) — and add the resulting tuples to the
output buffer (these tuples take their time stamps from the tuple
in A); and
(consumption) remove the current tuple in A from the input and
add it to W(A) (from which you also remove the expired tuples).

•
•

•

•

•

•

Figure 1. Basic execution of query operators. In this implementation,
the idle-waiting-prone (IWP) operators (union, window join, and
aggregates on logical windows with slides) are still subject to the
idle-waiting problem.

U Sink

1Source1

2

σ

σSource2

Σ2 SinkΣ1σSource

(a)

(b)

Figure 2. Query graphs. (a) A simple path query consists of source
and sink nodes and query operators (σ, Σ1, and Σ2) connected
by buffers. (b) In a simple union graph, a selection operator filters
each input data stream before feeding tuples to the union operator.

Data Stream Management

32 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

proach is to generate critical time-stamp infor-
mation on-demand using our simple execution
model. We based our execution model on query
graphs used widely in the DSMS literature, with
the nodes denoting query operators and arcs
denoting the buffers connecting them, such as
those in Figure 2.

In the example in Figure 2a, the graph is a
simple path. A directed arc from Qi to Qj rep-
resents a buffer, in which Qi adds tuples to the
buffer’s tail (production) and Qj takes tuples
from the buffer’s head (consumption). In addi-
tion to the actual query operators (σ, Σ1, and
Σ2), the graph also contains source and sink
nodes. The arcs leaving the source nodes rep-
resent input buffers. In our Stream Mill DSMS
(as well as many others), external wrappers fill
these buffers. When the input buffers are empty,
the source nodes have three options. They can

wait until some tuple arrives in the buffer,
return control to the DSMS scheduler (which
will then attend to other tasks), or
generate time-stamp information and propa-
gate it through the operator graph.

The arcs leading to the sink nodes denote
the output buffers from which output wrap-
pers take the tuples to be sent to users or to
other processes.

A query graph can have several strongly con-
nected components, in which each component is
a directed acyclic graph. Each DAG represents
a scheduling unit that’s assigned a share of the
system resources by the DSMS scheduler/opti-
mizer (a problem outside this article’s scope).

We execute each component using a two-
step cycle to iterate through the operators in the
component. In the execution step, we execute
the current operator. Next, in the continuation
step, we select the next operator for execution
by the next-operator-selection (NOS) rules,
which are defined according to the Boolean val-
ues of two state variables:

yield is true if the current operator’s output
buffer contains some tuples, and
more is true if the current operator’s input
buffer still contains tuples.

With minor modifications, this general two-step
execution model is useful for specifying a wide
range of execution strategies.

•
•

•

•

•

Depth-First Strategy
DFS is equivalent to a first-in-first-out strat-
egy, but with backtracking upon detection of
empty buffers (a necessary step in generating
time stamps on-demand). DFS expedites tuple
progress toward output by sending tuples to
the next operator on the path as soon as they’re
produced. To specify depth-first strategy, the
next-operator-selection (NOS) rules are defined
as follows:

Forward: if yield then next := succ
Encore: else if more then next := self
Backtrack: else next := pred

Repeat this NOS step on next

Thus, after executing the first query opera-
tor σ in Figure 2a, the algorithm checks if σ’s
output buffer is empty. If not (that is, if yield is
true), the algorithm executes the Σ1 operator. It
repeats the same steps to reach the Σ2 operator,
which is the last operator in the path before the
sink node. Thus, an output wrapper will con-
sume Σ2’s output tuples — a separate process in
Stream Mill. The algorithm continues the con-
sumption of all Σ2’s input tuples — that is, it ig-
nores the forward condition when the current
operator is the last before the sink node and di-
rectly executes the encore condition.

Once all of Σ2’s tuples are processed, the
more variable becomes false and the algorithm
backtracks to its predecessor — the Σ1 operator.
If it backtracks further to reach operator σ and
its more condition becomes false, the algorithm
should again backtrack to σ’s predecessor. In this
case, however, the predecessor is the source node,
denoting that an external wrapper must fill σ’s
input buffer with new tuples. Until these new
tuples arrive, nothing is left to do on this path.
In this situation, we could return control to the
query scheduler to let the DSMS attend to other
tasks. Alternatively, we could propagate the time
stamp from the source, as we discuss later.

Breadth-First Strategy
We can specify BFS by switching the order of
the DFS strategy’s forward and encore rules, se-
lecting the next operator as follows:

Encore: if more then next := self
Forward: else if yield then next := succ
Backtrack: else next := pred

Repeat this NOS step on next

NOVEMBER/DECEMBER 2008� 33

Time-Stamp Management

Round Robin
As in BFS, for RR we finish every tuple on one
operator’s input before visiting the next opera-
tor. However, when input becomes empty and
the operator produces no result tuples, we sim-
ply exit the component and return control to
the scheduler:

Encore: if more then next := self
Forward: else if yield then next := succ
Exit: else exit

Repeat this NOS step on next

Unions and Joins
Some query graphs, such as the graph in Figure
3, contain operators with multiple inputs.

For operators such as unions and joins, the
more condition evaluates to true when all of
their inputs contain tuples. When some of their
input buffers contain no tuples, more evaluates
to false, and both DFS and BFS backtrack to a
predecessor operator. Naturally, the algorithm
backtracks to a predecessor feeding into a buf-
fer that’s currently empty (if multiple inputs
are empty, pick randomly). Therefore, if more
is false because, say, the jth input for the cur-
rent operator is empty, and predj is the operator
feeding into that buffer, we modify the back-
track rule as follows:

Backtrack: next := predj

Except for these changes, the execution of
operator graphs containing joins and unions is
the same as that for graphs consisting of single-
input operators.

The execution strategies discussed so far can
suffer from idle waiting. We next discuss tech-
niques for solving this problem.

Managing IWP Operators
We first discuss simultaneous tuples, which are
tuples with the same time stamp. Such tuples are
common in applications using coarse time-stamp
values. Simultaneous tuples give rise to several
issues. Consider, for example, a union operator
with inputs A and B. If both A and B contain si-
multaneous tuples, an operator can process them
and add them to the output. But the rules in Fig-
ure 1 only move one tuple at a time. Thus, the op-
erator will empty either A or B first, leaving the
other holding one or more simultaneous tuples.
One possible fix is to change the rules in Figure

1, so we now move all tuples having the minimal
time stamp through the union operator at once.
However, tuples arriving in buffers A or B (with
the same time stamp due to arrival skew) after the
operator has processed the simultaneous tuples in
those buffers will still incur idle waiting.

Our solution to the simultaneous tuples
problem is to introduce a time-stamp memory
(TSM) register for each of the IWP operator’s in-
puts. We automatically update the TSM’s value
with the current input tuple’s time-stamp value.
This value remains in the register until the next
tuple updates it.

We then replace the execution rules for the
IWP operators with the rules in Figure 4 (we
omit the aggregate operators in this figure be-
cause of space constraints). We also relax the
more condition so it holds true for the query op-
erator Q if there is at least one input tuple with
time-stamp value τ, where τ is the minimal val-

U Sink

σSource1

U
Source2

Source3

Σ
Slide

Σσ

Figure 3. Query with nested union nodes. In this example, one
multi-input operator leads to another multi-input operator (both
unions here).

Union. If more is true, select an input tuple with time stamp τ and deliver it
to the output (production); then remove it from the input (consumption).

Window join of stream A with stream B. If more is true, then

if input A contains a data tuple with time-stamp value τ, perform
the following operations (perform symmetric operations if B con-
tains a data tuple with time-stamp value τ):
	 (production) join the tuple in A with the tuples in W(B) and send

the result to the output, and
	 (consumption) remove the current input tuple in A from the

input and add it to W(A) (from which you also remove the
expired tuples).

(production) if neither A nor B contain an input data tuple with time
stamp τ, add a punctuation tuple with time stamp τ to the output.

•

—

—

•

Figure 4. Execution using time-stamp memory registers. Adding
TSM registers and relaxing the more condition solves the
simultaneous tuples problem and reduces idle waiting.

Data Stream Management

34 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

ue in the input TSM registers of Q.
The TSM registers and relaxed more condi-

tion alleviate the simultaneous tuples problem
and reduce idle waiting in IWP operators.

Propagating Time-Stamp Information
We seek an approach that generates enabling
time stamps (ETSs) on-demand and sends them
to idle-waiting operators so they can resume
their activity. We use the term “ETS” to avoid
the connotation of periodicity associated with
heartbeats. Using our query-graph-based ex-
ecution model, we can extend DFS (and BFS)
to support on-demand generation of ETS infor-
mation. Indeed, once the backtracking process
takes us back to the source node, we can gener-
ate a new ETS value and send it as a punctua-
tion tuple down the path on which backtracking
just occurred to update TSM registers along the
way and reactivate idle-waiting operators.

The extended rules for IWP operators shown
in Figure 4 also apply to punctuation tuples.
Using these rules, we no longer require tuples
to be present in all of the union operator’s input
buffers. As long as a data tuple’s time-stamp
value is less than or equal to the other input
buffers’ TSM values, the operator will remove
the tuple from the input buffer and move it to
the output buffer (independent of whether it’s a
data tuple or a punctuation tuple).

If we compare Figure 4 to Figure 1, we see
that the only change for the union operator is
that it uses the relaxed more condition. We also
start the window join computation by checking

this condition. If the tuple is in fact a data tuple,
we need no other modification. However if the
tuple is a punctuation tuple, we move it from
the input to the output. Furthermore, when we
can’t generate a data tuple, we simply produce
a punctuation tuple for the benefit of the IWP
operators down the path. Therefore, the latest
time-stamp information is always carried by ei-
ther the data tuples or the punctuation tuples to
resolve idle waiting in the system.

We also modify non-IWP operators to let
punctuation tuples go through unchanged (mod-
ulo reformatting required by the operators).

Generating Time Stamps
For data tuples with internal time stamps, we in-
ject the system clock’s current time into the data
tuples as we add these tuples to our query graph’s
input buffer (the “source” in our diagrams). In
the absence of data tuples, on-demand ETS gen-
eration for a data stream simply inserts a punc-
tuation tuple with the time-stamp value from the
system clock. For external time stamps, the ap-
plication generating the data stream injects time
stamps into the data tuples, whereas our DSMS
generates the punctuation tuples’ ETSs using
the heartbeat mechanisms previously discussed
elsewhere.1,3 Our Stream Mill DSMS also al-
lows tuples that are time stamped neither at the
source nor when they enter the system. Opera-
tors that require time stamps, such as aggregates
on logical windows, will generate latent time
stamps at the time when the tuples arrive at the
operator. Because tuples with latent time stamps

(b)

2000 400 10 15 800 1,000

Burst size (Number of tuples)

A
ve

ra
ge

 o
ut

pu
t

la
te

nc
y

(s
ec

)

(a)
A

ve
ra

ge
 o

ut
pu

t
la

te
nc

y
(s

ec
)

0.10

0.08

0.06

0.04

0.02

10

1

0.1

0.01

0.001

A-DFS with on-demand ETS
B-BFS with on-demand ETS

DFS Without ETS
BFS Without ETS
DFS With on-demand ETS
BFS With on-demand ETS

A

B

Figure 5. Latency for the breadth-first and depth-first strategies. The diagrams show (a) BFS and DFS latencies with
and without enabling time-stamp (ETS) propagation, and (b) BFS and DFS performance for various burstiness factors.

NOVEMBER/DECEMBER 2008� 35

Time-Stamp Management

never experience idle waiting, we use them as a
baseline case in our performance study.

Experiments and Results
Our experiments used the Stream Mill DSMS
server hosted on a Linux machine with a P4
2.8-GHz processor and 1 Gbyte of main memo-
ry. We randomly generated the input data tuples
under a Poisson arrival process with the desired
average arrival rates.

BFS Versus DFS
We compared the effectiveness of BFS and DFS
with on-demand ETS propagation on bursty
data streams using the simple query graph in
Figure 2b. In this graph, a selection operator
with low selectivity (95 percent of tuples pass
through) filters each input data stream before
the streams are unioned together. The data rates
average 1,000 tuples per second on the first
stream and 0.5 tuples per second on the second
stream. This rate diversity can cause significant
idle waiting for tuples on the faster stream.

Figure 5 quantifies this effect. Figure 5a
shows that BFS and DFS have similar latencies
without ETS propagation and that the latencies
reduce dramatically with on-demand ETS (the

y-axis is log scale). Figure 5b compares BFS and
DFS performance for various burstiness fac-
tors. We keep the average rate of 1,000 tuples
per second while introducing bursts of nearly
simultaneous tuples. Both strategies show in-
creasing average latency with increasing input
burstiness, but BFS is affected more severely.

This steeper increase of latency with burst
size is intrinsic in the BFS execution and has
little do with ETS propagation policies — similar
delay differences exist with latent time stamps.
In fact, with latent time stamps, if we assume
that the cost of processing one tuple is c for
both the σ and union operators in Figure 2b,
the average output latency for DFS is (n + 1)c,
whereas for BFS it’s (1.5 + 0.5n)c, where n is the
size of bursts in the Source1 input.

Latency Reduction
Minimizing response time is a key query-opti-
mization objective for most DSMSs. Figures 6a
and 6b shows the (log-scale) results of our ex-
periments using the query in Figure 2b. The av-
erage output latency drops regularly (line B) as
we increase the frequency of the ETS punctua-
tion tuples periodically injected into the sparser
of the two data streams.

Related Work on Idle-Waiting-Prone Operators

Much previous work has sought to optimize latency and
memory on massive data streams, but Theodore John-

son and his colleagues first discussed the idle-waiting problem
caused by mismatched arrival rates of input streams in binary
operators.1 Their solution uses punctuation tuples, which have
proven useful in dealing problems such as blocking operators,2
data stream joins,3 and out-of order tuples.4

A related approach is Aurora’s time-out mechanism,5
in which tuples are discarded if they wait for future tuple ar-
rivals for longer than a specific time threshold. The time-out
approach resolves the idle-waiting problem but sacrifices the
correctness of query results. It might therefore be acceptable
for the Aurora aggregate operators,5 but much less so for op-
erators such as union and joins. Yijian Bai and his colleagues
first discussed the use of on-demand time stamps for idle-wait-
ing-prone (IWP) operators,6 but didn’t cover unary operators,
burstiness, and the results of other experiments we’ve dis-
cussed here. Others have discussed related techniques to sup-
port composite event semantics7 and RFID applications.8,9

References
T. Johnson et al., “A Heartbeat Mechanism and its Application in Giga-

scope,” Proc. 31st Conf. Very Large Databases (VLDB 05), VLDB Endowment,

1.

2005, pp. 1079–1088.

P.A. Tucker et al., “Exploiting Punctuation Semantics in Continuous Data

Streams,” IEEE Trans. Knowledge and Data Eng. (TKDE), vol. 15, no. 3, 2003,

pp. 555–568.

L. Ding and E.A. Rundensteiner, “Evaluating Window Joins Over Punctuated

Streams,” Proc. 13th ACM Int’l Conf. Information and Knowledge Management,

(CIKM 04), ACM Press, 2004, pp. 98–107.

U. Srivastava and J. Widom. “Flexible Time Management in Data Stream

Systems,” Proc. 23rd ACM SIGMOD-SIGACT-SIGART Symp. Principles of Data-

base Systems, (PODS 04), ACM Press, 2004, pp. 263–274.

H. Balakrishnan et al., “Retrospective on Aurora,” VLDB J., 2004. vol. 13, no.

4, pp. 370–383.

Y. Bai et al., “Optimizing Time Stamp Management in Data Stream Man-

agement Systems,” Proc. 23rd IEEE Int’l Conf. Data Eng., (ICDE 07), IEEE CS

Press, 2007, pp. 1334–1338.

S. Chakravarthy and D. Mishra, “Snoop: An Expressive Event Specification

Language for Active Databases,” Data Knowledge Eng., vol. 14, no. 1, 1994,

pp. 1–26.

Y. Bai et al., “A Flexible Query Graph-Based Model for the Efficient Execu-

tion of Continuous Queries,” Proc. 23rd IEEE Int’l Conf. Data Eng., (ICDE 07),

IEEE CS Press, 2007, pp. 634–643.

Y. Bai et al., “RFID Data Processing with a Data Stream Query Language,” Proc.

23rd IEEE Int’l Conf. Data Eng., (ICDE 07), IEEE CS Press, 2007, pp. 1184–1193.

2.

3.

4.

5.

6.

7.

8.

9.

Data Stream Management

36 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

Regardless of the frequency, periodic ETS
can’t match the performance of ETS on-demand
(line C), which reduces the latency by several or-
ders of magnitude with respect to A (where no
ETS is used). More remarkably, line C comes close
to optimal performance of streams with latent
time stamps, under which no idle waiting occurs
by definition (line D). Line C is so close to line D
that the two are indistinguishable in Figure 6a.
We therefore use Figure 6b to show their actual
difference, which is about 0.1 milliseconds, or
four orders of magnitude smaller than A.

We verify that idle waiting (rather than
implementation problems or system overhead)

caused the latency by measuring the percentage
of time the union operator spends in an idle-
waiting state — that is, the time in which one
input data stream is empty while the other isn’t.
Line A in Figure 6c shows that when we don’t
use time stamp information, the system spends
almost 99 percent of its time idle waiting, and
tuples must wait a long time before processing.
(Tuple processing takes a comparatively short
time because we’re well below the DSMS maxi-
mum processing capacity.) Line C shows that
ETS on-demand reduces this waiting time to less
than 0.1 percent of the total time. Line B shows
that significantly reducing the waiting percent-

0.1 1 10 100

Periodic enabling time stamps tuple rate (tuple/sec) (used in B only)

A
ve

ra
ge

 o
ut

pu
t

la
te

nc
y

(s
ec

)

(a)

A
ve

ra
ge

 o
ut

pu
t

la
te

nc
y

(s
ec

)

0.00012

0.00010

0.00008

0.00006

0.00004

0.00002

0

10

1

0.1

0.01

0.001

0.00001

On-demand ETS
Latent time stamps

A

B

C, D

A-No ETS
B-Periodic ETS
C-On-demand ETS
D-Latent time stamps

0.1 1 10 100

Periodic ETS tuple rate (tuple/sec) (used in seriesB only)

T
im

e
in

 id
le

 w
ai

tin
g

(%
)

T
im

e
in

 id
le

 w
ai

tin
g

(%
)

(c)

(b)

(d)

100

80

60

40

20

0

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0

On-demand ETS
Latent time stamps

A

B

C, D

A-No ETS
B-Periodic ETS
C-On-demand ETS
D-Latent time stamps

A-No ETS
B-Periodic ETS
C-On-demand ETS
D-Latent time stamps

Figure 6. Latency reduction results. The average output latency for (a) no ETS propagation, regular punctuation tuples,
ETS on-demand propagation, and latent time stamp; (b) ETS on-demand propagation and latent time stamp (on a
finer time scale). The percent of time in waiting state for (c) the same four cases as in (a), and (d) ETS on-demand
propagation and latent time stamp (on a finer scale).

NOVEMBER/DECEMBER 2008� 37

Time-Stamp Management

age requires high heartbeat rates, as much as
100 tuples per second. Even with the increased
rate, however, we can’t match the improvement
obtained with on-demand ETS propagation.
Again, the results obtained with on-demand
ETS are so close to those of latent time stamps
that their differences are only visible in Figure
6d with a much finer scale.

Memory Usage
ETS can significantly reduce memory usage.
Figure 7 shows the peak buffer size, measured
by the total number of tuples in the buffers, for
the query in Figure 2b when the two streams
have respective average rates of 50 and 0.05
tuples per second. Without ETS, line A in Figure
7 has a peak queue size of thousands of tuples,
although the average input rate is only 50/0.05
tuples per second. Line C shows that on-demand
ETS propagation reduces the memory usage by
more than two orders of magnitude. For peri-
odic ETS (line B) peak memory usage reduces
initially with higher punctuation rates (as ex-
pected because idle waiting is reduced). Howev-
er, high punctuation rates eventually increase
peak memory requirements. This is because
punctuation tuples produced at high rates tend
to occupy memory when the scheduler is pro-
cessing bursts of data tuples.

These results are consistent with Johnson
and colleagues’ results,3 which showed that the
maximum rate for periodic ETS punctuation
was about one per second. At that low rate, the
curve is still descending uniformly and the re-
versal seen in Figure 7 isn’t present. Thus, peri-
odic ETS punctuation can provide a reasonable
solution in applications that don’t require very
low latency, and it might be the only viable so-
lution in DSMSs whose architecture isn’t con-
ducive to on-demand ETS (such as Gigascope’s
two-level execution architecture3). However, it
falls well below the versatility and performance
obtainable with on-demand ETS.

Windows with Slides and Output Burstiness
Another undesirable side effect of idle waiting
is that the output stream might become much
burstier. For example, in Figure 3 an aggregate
on a window with slide might hold up tuples in
its sliding window. Without time-stamp prop-
agation, tuples on the union operator’s other
input would accumulate and lead to bursty
outputs, even though there might be data tu-

ples in the slide aggregate that can unblock the
idle-waiting union operator. In this case, the
time-stamp information is accurate and avail-
able (carried by data tuples), but is delayed by
the slide construct’s existence. ETS propagation
thus helps to deliver the time-stamp informa-
tion to the union operator.

Figure 8 shows the burstiness of the output
for the query in Figure 3. When we don’t use
ETS, burstiness increases significantly with the
slide’s size. (The slide determines the ratio be-
tween the number of tuples processed and the
number of tuples produced in output.6) In our
experiment, we counted the number of tuples
produced during each 0.02-second period and
defined burstiness as the difference between
the extremes (maximum and minimum) di-
vided by the average of those counts. Line B
in Figure 8 clearly shows that on-demand ETS
propagation eliminates the burstiness caused by
the slide. The benefits of on-demand ETS there-
fore go beyond the ability to minimize latency
and memory and include the ability to equalize
traffic and smooth out traffic peaks caused by
certain query operators’ bursty arrivals or be-
havior. Reducing burstiness and its undesirable
side effects is highly desirable in DSMSs.

F uture work calls for extending our approach
to models in which the semantics of data

streams ordered by their time stamps is gener-
alized to more advanced temporal models, such

0.1 1 10 100

Periodic ETS tuple rate (tuple/sec) (used in seriesB only)

M
ax

im
um

 t
ot

al
 q

ue
ue

 s
iz

e
(t

up
le

 c
ou

nt
) 1,000

100

10

A

B

C, D

A-No ETS
B-Periodic ETS
C-On-demand ETS
D-Latent time stamps

A-No ETS
B-Periodic ETS
C-On-demand ETS
D-Latent time stamps

Figure 7. Peak total queue size. As line C shows, on-demand ETS
propagation reduces the memory usage by more than two orders
of magnitude in this experiment.

Data Stream Management

38 www.computer.org/internet/ IEEE INTERNET COMPUTING

as those discussed elsewhere.7 We must also ex-
tend our techniques to handle distributed stream
processing, in which streams in the system can
live on different processors and interact with
each other through distributed protocols.

References
B. Babcock et al., “Models and Issues in Data Stream

Systems,” Proc. 21st ACM Symp. Principles of Database

Systems (PODS 02), ACM Press, 2002, pp. 1–16.

Y.-N. Law, H. Wang, and C. Zaniolo, “Query Languag-

1.

2.

es and Data Models for Database Sequences and Data

Streams,” Proc. 30th Int’l Conf. Very Large Databases

(VLDB 04), VLDB Endowment, 2004, pp. 492–503.

T. Johnson et al., “A Heartbeat Mechanism and its Appli-

cation in Gigascope,” Proc. 31st Conf. Very Large Databas-

es (VLDB 05), VLDB Endowment, 2005, pp. 1079–1088.

Y. Bai et al., “A Data Stream Language and System De-

signed for Power and Extensibility,” Proc. 15th ACM

Int’l Conf. Information and Knowledge Management,

(CIKM 06), ACM Press, pp. 337–346.

J. Kang, J.F. Naughton, and S. Viglas, “Evaluating

Window Joins over Unbounded Streams,” Proc. IEEE

Int’l Conf. Data Eng. (ICDE 03), IEEE CS Press, 2003,

pp. 341–352.

J. Li et al., “Semantics and Evaluation Techniques for

Window Aggregates in Data Streams,” Proc. 2005 ACM

SIGMOD Int’l Conf. Management of Data, (SIGMOD 05),

ACM Press, 2005, pp. 311–322.

S. Roger et al., “Consistent Streaming Through Time:

A Vision for Event Stream Processing,” Proc. 3rd Bien-

nial Conf. Innovative Data Systems Research (CIDR 07),

pp. 363–374; www-db.cs.wisc.edu/cidr/cidr2007/papers/

cidr07p42.pdf.

Yijian Bai is a software engineer at Google, primarily work-

ing on algorithms to improve ad-targeting systems. His

research interests include data stream management sys-

tems, data stream mining, and Web data mining. Bai has

a PhD in computer science from the University of Cali-

fornia, Los Angeles. Contact him at ybai25@gmail.com.

Hetal Thakkar is a PhD candidate in computer science at

the University of California, Los Angeles. His research

interests include data stream mining systems and data

stream languages. Thakkar has an MS in computer sci-

ence from the University of California, Los Angeles.

Contact him at hthakkar@cs.ucla.edu.

Haixun Wang is the a research scientist and technical as-

sistant to the head of computer science at the IBM T.J.

Watson Research Center. His research interests include

database language and systems, data mining, and in-

formation retrieval. Wang has a PhD in computer sci-

ence from the University of California, Los Angeles. He

is a member of the IEEE and the ACM. Contact him at

haixun@us.ibm.com.

Carlo Zaniolo is a professor of computer science at the Uni-

versity of California, Los Angeles. His research interests

include data stream management systems, data mining

and archival information systems. Zaniolo has a PhD in

computer science from the University of California, Los

Angeles. Contact him at zaniolo@cs.ucla.edu.

3.

4.

5.

6.

7.

0.9 2 3 4 5 6 7 8 91 10 50403020
Slide size for aggregate return (sec)

Bu
rs

t
si

ze
 s

pr
ea

d
(m

ax
–m

in
/a

vg
)

1,000

100

10

A

B, C

B-Periodic ETS
C-Latent time stamps

A-No ETS

Figure 8. Burstiness versus slide size. As line B shows, on-demand
ETS propagation eliminates the burstiness caused by the slide.

• 14 magazines—one source

• Free peer-reviewed articles

• Blogs, podcasts, & more!

http://computingnow.
 computer.org computer.org computer.org computer.org

