The £ O L System Prototype

Danette Chimenti
Ruben Gamboa
Ravi Krishnamurthy
Shamim Nagqyvi
Shalom Tsur
Carlo Zaniolo

Reprinted from
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
Vol. 2, No. 1, March 1990

T-KDE/2/1//33790

76 [EEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2. NO. |. MARCH 1990

The £ D £ System Prototype

DANETTE CHIMENTI, RUBEN GAMBOA, RAVI KRISHNAMURTHY, SHAMIM NAQVI,
SHALOM TSUR, anp CARLO ZANIOLO

Abstract—The £ D £ system provides a declarative logic-based lan-
guage and integrates relational database and logic programming tech-
nologies so as to support advanced data and knowledge-based appli-
cations. This paper contains a comprehensive overview of the system
and contains a description of the £D £ language and the compilation
techniques employed to translate £ D £ queries into target query ex-
ecution plans on the stored data. The paper further contains a descrip-
tion of the architecture and run-time environment of the system and
the optimization techniques employed in order to improve the perfor-
mance and assure the safety of the compiled queries. The paper con-
cludes with an account of the experience gained so far with the system,
and discusses application areas where the £ D £ approach appears to
be particularly effective.

Index Terms—Data dredging, declarative programming, deductive
databases, logical data language, optimization, rapid prototyping, re-
cursion, rule-based systems, transitive closure.

I. INTRODUCTION

T HE objective of the Logic Data Language (£ D £)sys-
tem is to develop the technology for a new generation
of database systems that support the rapid development of
sophisticated applications—such as expert systems and
advanced scientific and engineering applications. This ob-
jective is not new, since there has been considerable in-
terest in database languages [3], which have been pro-
posed as the vehicle for facilitating the development of
complex data intensive applications, and bridging the gap
between the database and the programming language—this
gap is often described as an ‘‘impedance mismatch’’ [18].
Yet, the approach favored by previous researchers has
been that of interfacing relational DBMS’s to traditional
languages [45], [50]. More recently, major efforts have
been made to integrate databases and programming lan-
guages under the object-oriented paradigm [28]. These
approaches tend to abandon relational databases in favor
of object-oriented ones—often supporting a limited query
capability and the navigational query style of prerela-
tional systems. In contradistinction with these ap-
proaches, the £ 9 £ research has taken the viewpoint that
full programming capabilities can and should be achieved
through extensions of relational query languages, and
through technology advances that provide efficient sup-
port for these extensions as an integral part of the database

Manuscript received August 1, 1989: revised December 5, 1989.

D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Tsur. and C. Zaniolo
are with Microelectronics and Computer Technology Corporation (MCC),
Austin, TX, 78759.

S. Nagvi is with Bell Communications Research, Morristown. NJ 07960.

1EEE Log Number 8933790.

management system. It is also believed that the resulting
system represents the first efficient realization of the con-
cept of deductive databases [22] and an important way-
station toward future knowledge management systems,
which will have to combine efficient inference mecha-
nisms from logic with efficient and secure management of
large information banks from database systems. Toward
this goal, the £ £ project, which began in 1984, has
produced a new language, new techniques for compilation
and query optimization, and an efficient and portable pro-
totype. This paper recounts the experience and various
lessons learned in this effort.

A. Overview

From the beginning, £D L was designed as a rule-
based extension to relational domain calculus based lan-
guages. (In a domain calculus, variables stand for values,
rather than tuples as in tuple-oriented calculus.) This was
largely due to the influence of Prolog, and also to QBE
(in-line version). It was felt that the expressive power of
the former and the ease of use of the latter provided more
desirable beacons for our endeavor than a straight exten-
sion of SQL. Yet, domain calculus and tuple calculus are
known to be equivalent [56], and the overall techniques
used for implementing £ £ can be easily applied to
suitable SQL extensions.

The basic research challenge we faced was to provide
a system that combined the expressive power of Prolog
with the functionality and facilities of database manage-
ment systems (DBMS’s), such as, support for transac-
tions, recovery, schema-based integrity, and efficient
management of secondary storage. It soon became clear
that an approach based on coupling Prolog with relational
databases [11], [13], [35], [36], and [26] would not sup-
port the level of functionality, performance, and ease of
use that we were seeking. We realized that a fully inte-
grated system was required, where there was no distinc-
tion between query language and application language,
and that arduous research challenges stood in the way of
realizing such a goal.

The first issue that came into focus was that of users’
responsibility for execution control. In the 1970°s and
early 1980’s, the database field had witnessed a dramatic
evolution from navigational systems into relational ones.
In navigational systems, such as Codasyl-compliant
DBMS’s, the programmer must explicitly navigate
through the maze of database records, paying careful at-

1041-4347/90/0300-0076$01.00 © 1990 IEEE

CHIMENT! et al.: THE £D L SYSTEM PROTOTYPE

tention to the sequential order in which these records are
visited—the key to efficiency. In relational DBMS’s, in-
stead, the user is only responsible for the formulation of
a correct query (using logic-based languages of limited
expressive power, such as SQL or QUEL [56]). A special
system module, called the query optimizer, then compiles
each query into an efficient execution plan. By contrast,
in Prolog, the programmer must carefully order rules and
goals to ensure efficient execution and termination. This
basic mismatch, from which all systems coupling Prolog
with relational DBMS’s suffer, also challenged £ D £’s
quest for a harmonious integration, leaving two alterna-
tive paths open [59]. One consisted of adding naviga-
tional database facilities to a Prolog-like language; the
other of rejecting the navigational (procedural) semantics
of Prolog, in favor of a purely declarative one, whereby
the order of goals and rules in a program become imma-
terial.

In the fall of 1984, the critical decision was taken to
pursue the second solution, with the expectation that it
would provide better usability and suitability for massive
parallelism (one of our goals at that time), and it will lead
to more exciting research problems and technology break-
throughs. As described in the following paragraphs, this
early decision had profound repercussions on both the de-
sign of the language and its implementation.

A Prolog programmer must be keenly aware of its se-
quential execution model (SLD resolution where the left-
most goal and the first rule is selected [57], [37]), not only
because the termination and performance of the program
will depend on it, but also because the very semantics of
the many non-Horn constructs—primarily cuts, and up-
dates, but also negation and ‘‘set-of’’ predicates—are
based on such an execution model. These non-Horn con-
structs were introduced in Prolog to obtain the expressive
power needed for application development. Having de-
cided to divorce execution from the order of rules and
goals in the program, the first technical challenge facing
£ D L research was to provide a clean design and a for-
mal declarative semantics for the non-Horn constructs that
were needed in the language for reasons of expressive
power [35]. The result is a language that is very different
from Prolog in terms of the constructs and programming
style it entails.

Most design choices regarding the £ D £ implementa-
tion approach were dictated by the need for supporting
database applications efficiently. Thus, in £ D £, the rules
are compiled. The fact base is described at compile time
by a schema, and can then be updated freely at run time
with no need for program interpretation or recompilation.
This is a first difference from Prolog systems where facts
and rules are treated in the same way (thus requiring inter-
pretation when facts are changed). Furthermore, we con-
cluded that the implementation technology of Prolog and
expert system shells based on backward-chaining, which,
in turn, is based on efficient implementations of SLD res-
olution and unification [37], [58], was too dependent on
the assumption that data reside in main memory, and a

77

different approach was needed to obtain maximum per-
formance on secondary-storage resident data. Thus, an
execution model with a simpler target language was se-
lected that was based upon the operations of matching and
the computation of least fixpoints through iterations. A
benefit of this approach is that matching operators on sets
of facts can be implemented using simple extensions to
the relational algebra [60], [61] used by many relational
databases. A second advantage is that since recursion has
been replaced by iteration, we can now use a simpler and
more static environment for execution.

Having chosen a simpler target language, the £D L
designers were faced with the challenge of designing a
more sophisticated compiler to support the full function-
ality of the source language. The approach chosen is built
on two pillars:

e the use of global analysis to infer the bindings in-
duced by a specific query in rules and goals, and

e the compilation methods which rewrite recursive
programs that are not efficient or safe to implement by
fixpoint computations into equivalent programs that are.

Current implementations of relational languages use
either a relational algebra interface or a get-next-tuple in-
terface to a data manager. The £ L project experi-
mented and proved feasibility on both these frameworks.
Thus, the first £ D £ implementation, completed in 1987,
used FAD [19]; this is a relational algebra based language
supported by a massively parallel database machine de-
veoped at MCC [12], [7]. After a fully functional com-
piler for £D £ into FAD was implemented and demon-
strated in 1987, our focus shifted onto the problem of
providing a portable prototype for £ D £. Thus, FAD was
abandoned, since it is only available on a large and ex-
pensive parallel machine. Furthermore, we recognized
that, for sequential architectures, the get-next-tuple inter-
face offered opportunities for refinements and optimiza-
tion that were not at hand in the framework of relational
algebra. This led to the decision of designing and devel-
oping SALAD'—an efficient and portable £ 3 £ system
for UNIX. This implementation assumed a single-tuple,
get-next interface between the compiled £ D £ program
and the underlying fact manager (record manager). The
implementation included a fact manager for a database
residing in virtual memory that supported efficient access
to the complex and variable record structures provided in
LD L.

The completion of the SALAD prototype in 1988 made
it possible to start developing interesting applications in
£ D L. Various extensions and improvements were added
to the system as a result of this experience. As the system
has improved, we have expanded the domain of its appli-
cations beyond traditional database applications. Owing
to its open architecture and its compiling into C, SALAD
finds applications as a rule-based system for rapid proto-
typing of applications in the C environment. An incipient
understanding of a paradigm for programming in £ L

'SALAD—System for Advanced Logical Applications on Data.

78 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2, NO. 1, MARCH 1990

has also emerged from this experience, along with various
ideas for desirable improvements.

B. Structure of the Paper

Section II summarizes key techniques and concepts im-
plemented in the system—most of them novel and untried
techniques developed by the £ D £ researchers or by par-
allel efforts, such as [38]. Thus, Section II-A gives a brief
survey of the novel features of the language, while Sec-
tion II-B summarizes the rule compilation techniques for
constant pushing and efficient implementation of recur-
sion. Section II-C describes the various execution schemes
supported by the system, while Section II-D describes the
optimizer that, at compile time, selects a safe and efficient
execution for the given query. .

Section III describes the architecture and implementa-
tion of SALAD, including a discussion of the main mod-
ules (Section III-A), various techniques for peephole op-
timization (Section III-B), and the fact manager (Section
11-C).

Section IV recounts our experience with £D &L and
SALAD and with using them in novel application areas.

JI. ENABLING TECHNOLOGY
A. Language Design

The £ D £ language was designed to combine the de-
clarative style of relational languages with the expressive
power of Prolog. Concretely, that meant using Homn
clauses as Prolog did, and rejecting all the remaining
Prolog constructs, such as negation, set_of, updates, cuts,
etc. These constructs were added to Prolog to obtain the
expressive power necessary for writing general applica-
tions. While Horn clauses have a well-defined declarative
semantics, these additional constructs only have an op-
erational semantics which is based on Prolog’s execution
model. Thus, a first challenge in our work was to design
into the language proper constructs for negation, sets, up-
dates and nondeterminism and give them a formal seman-
tics that extends that of Horn clauses. This semantics can
be formally defined using the notion of minimal model;
an alternative but equivalent definition based on the no-
tion of least fixpoint is also possible [57], [37]. A detailed
discussion of the £ D £ design is outside the scope of this
paper which focuses on implementation issues. Thus, we
will only provide a brief discussion of the main constructs
to illustrate the richness of the language and the complex-
ity of compilation and optimization issues posed by its
implementation. The reader interested in a detailed dis-
cussion of £ I £ and its formal semantics is referred to
[42].

In deductive database theory, much attention has been
paid to languages such as Datalog [56] that support rules
and recursion on flat relations. However, Horn clauses
" also support complex terms through the use of function
symbols. £D £ fully supports this capability whereby,

for instance, the record of an employee could have the
following form:

employee(name(joe, doe), admin,
education(high_school, 1967)).

Along with the employee name we find the department
where he works (admin) and his education. While admin
is a simple term, the other two are complex terms, en-
tailing an internal structure of unrestricted complexity. For
instance, in the education field, one may want to keep
more detailed information (such as school name, level,
and major) for people with college degrees, yielding a
record of the following format:

employee(name(joe, cool), sales,
education(college(harvard, bs, math), 1971)).

Each subargument can be further refined into a more
detailed description, thus enabling the modeling of ob-
jects of arbitrarily complex structure—including recursive
structures such as lists and trees. £ 3 £ has enhanced this
complex term capability by providing for set terms and
nested relations. Thus, we can now have a complete ed-
ucation record for a person as follows:

employee(name(joe, smart), mts,
education({(high_school, 1967),
(college(harvard, bs, math),
1971)
(college(harvard, ms, engr),
- 1973)})).

Set terms in £D L are first class citizens, having the
well-known properties of sets, such as commutativity and
idempotence—but not associativity [9], [53]. In addition
to nested relations, £ D £ provides simple constructs for
nesting and unnesting these relations.

The problem of negated goals in recursive rules repre-
sents one of the main research challenges in defining a
declarative semantics for £ 3 £. This problem has been
resolved with the introduction of the rather natural con-
cept of stratification [4], {41], [43]. Informally speaking,
this result disallows the definition of a predicate in terms
of the negation of the same. Similar constraints must also
be observed when defining the nesting of sets (9], [54].

Updates were defined so as to allow the full use of these
constructs in rules and to support the notion of database
transactions [40], [49]. The difficult problem of formal-
izing their semantics was solved through the use of dy-
namic logic [44]. The semantics so defined reduces to
first-order logic in the absence of updates.

Finally, £ D £ provides a declarative construct called
choice to support DON'T CARE nondeterminism (a very
useful notion that is supported in Prolog by an expedient
operational construct called the cut). The declarative se-
mantics of choice is based on the database concept of
functional dependencies [56). Thus, the rule

p(X. Y) < q(X, Y), choite ((X), (Y))

CHIMENT! et al.: THE £D L SYSTEM PROTOTYPE

specifies that the relation p (X, Y) is a maximal subset of
g(X, Y), such that the functional dependency X — Y
holds. Thus, if there are several Y-values for a given
X-value, then one is selected nondeterministically [31].

B. The Compilation Problem

The £ D £ compiler performs several functions, begin-
ning with the parsing of the rules into a predicate connec-
tion graph (PCG) [47] and ending with the code genera-
tion phase. Some details of this complex process are
discussed in Section III, others are beyond the scope of
this paper. In this section, we describe the rule rewriting
phase which is the conceptual kernel of the compiler. The
objective of this phase is to refine the original program
into one that is specialized for the particular constraints
resulting from the query and rules at hand. To a large
extent, this process can be viewed as a generalization of
the well-known principle of pushing selection and projec-
tion operations into relational expressions. This compi-
lation phase begins when a query form is given; a query
form is a query template with mode declarations specify-
ing the arguments that will be given (ground) at actual
query time (thus, it defines a compiled query with param-
eters). Then, the constant migration step for nonrecursive
predicates is performed. For instance, consider the query
form

?2grandma($X, Y).

(where $X denotes that a parameter value is to be supplied
at actual query time) and the following set of rules:

grandma(X, Z) < parent(X, Y), mother (¥, Z).
parent(X, Y) « father(X, Y).
parent(X, Y) < mother(X, Y).

The constant migration step will actually insert $X (since
this value is known at run-time, it is treated as a constant
by the compiler) into the corresponding arguments and
variables in the rules, yielding

?grandma($X, Y).

grandma($X, Z) < parent($X, Y), mother (Y, Z).
parent($X, Y) < father($X, Y).

parent($X, Y) < mother($X, Y).

This set of rules can be further simplified by dropping the
first argument in grandma and parent:

?grandmal(Y).

grandmal(Z) « parentl(Y), mother (Y, Z).
parentl(Y) « father($X, Y).

parent1(Y) < mother($X, Y).

Thus, the original program has been specialized for the
given query form. Furthermore, since $X has been mi-
grated from the query form into the database predicates
(father and mother), the corresponding selection opera-
tion has been pushed from the root of the relational al-
gebra tree representing the query to the leaf nodes, where
the selection is applied against the database tuples [56].
This “*selection pushing’’ operation, which is the linchpin

79

of the query processing strategy of relational systems [34],
[56], is implemented here by simple rule transformation
techniques.

The treatment of recursive predicates is, in general,
more complex. The program specialization approach de-
scribed above works for some simple cases of recursive
predicates. For instance, the following query

?anc(marc, Z).
anc(X, Z) < anc(X, Y), parent(Y, Z).
anc(X, X) « person(X).

can be supported by specializing the anc rules into

anc(marc, Z) < anc(marc, Y), parent(Y, Z).
anc(marc, marc) < person(marc).

and then dropping the constant argument from anc to yield

ancl(Z) < ancl(Y), parent(Y, Z).
ancl(marc) < person(marc).

A single fixpoint iteration computes this transitive clo-
sure in such a way that the original query condition is now
applied directly to the datum parent relation and not the
derived anc relation—selection has been pushed inside re-
cursion. The particular algorithm used to compute the fix-
point is known as semi-naive fixpoint [4], [5], [56], [49].
This removes the redundancy connected with the naive
fixpoint computation which, while computing the jth level
ancestors, also recomputes all ancestors at level i < j.

More complex rewriting is required, however, before
the following query can be mapped into a single fixpoint:

7anc(X, brian).

Here, the recursive rule must be first rewritten in its right-
linear form, as follows:

ancd(X, Z) < parent(X, Y), ancd(Y, Z).

Then, the specialization approach can be applied, result-
ing in linear transitive closure kind of rules that are easily
mapped into a single semi-naive fixpoint.

Because of the frequency with which simple transitive-
closure type of rules are encountered, the £ D £ compiler
performs some sophisticated analysis to recognize the
cases where the recursion can be supported efficiently by
a single fixpoint computation (these are special cases [1],
and detecting them all is undecidable [8]). The £D L
compiler handles the general case by rewriting techniques
that use two fixpoint computations. Common examples of
situations requiring such techniques include recursive
rules for appending lists, traversing trees, and manipulat-
ing complex structures. As we plan to draw on the intui-
tive semantics of ancestry to make some general points,
however, we will use in our discussion the well-known
‘‘same generation’’ example. (Two individuals are of the
same generation if their parents are, and everyone is of
the same generation as him/herself.)

sg(X, X).
sg(X, Y) < parent(X, XP), sg(XP, YP), parent(Y, YP).

80 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL.

A query such as
?sg(marc, X)

cannot be supported by the rules obtained by replacing X
by marc. Moreover, a bottom-up computation is impos-
sible since the exit rule sg (X, X) could qualify an infinite
number of tuples. Similar problems occur in computa-
tional procedures, such as list-append, where taking ad-
vantage of bound arguments is essential for a safe and
efficient implementation.

A considerable amount of research has been devoted to
this key problem and the reader is referred to [6] for an
overview of these techniques. The £ 3 £ compiler uses
the magic set method [10], [47] and the generalized
counting method [48], which are expressible by rule re-
writing scripts and lead to efficient implementations using
fixpoint computations. These methods take a recursive
clique (i.e., a set of mutually recursive predicates) that,
for the given query, cannot be supported well by means
of a fixpoint computation and recast it into a pair of con-
nected recursive cliques, each amenable to efficient fix-
point implementation.

This transformation can be illustrated by the example
where people of the same generation as marc are sought.
One alternative way to find these people consists of

e deriving the ancestors of marc and counting the lev-
els as we go up (marc being a zero level ancestor of him-
self).

¢ once an ancestor of marc, say X, is found, then the
descendants of X are computed, while levels are counted
down. Descendants for which the level counter is zero are
of the same generation as marc.

We can express the previous computations as follows
(J + 1 and J — 1 denote the respective successor and
predecessor of the integer J):

sg.up(0, marc).

sg.up(J+1, XP) < parent(X, XP), sg.up(J, X).
sg.down(J, X) < sg.up(J, X).

sg.down(J—1, Y) < sg.down(J, YP), parent(Y, YP)
?sg.down(0, X).

Thus, the initial recursive clique has been reformulated
into a pair of recursive cliques connected via the index J.
Each recursive clique can now be implemented efficiently
and safely using a fixpoint computation (indeed each is
basically a transitive closure operation).

The equivalence preserving transformation, that we
have just introduced using the intuitive semantics of
ancestry, can be performed with full generality on a
purely syntactic basis by analyzing the arguments that are
known (bound) and those that are to be computed when
the recursive procedure is called. The first call, generated
by the goal sg(marc, X), binds the first argument X. But,
given X, we can easily compute XP, through parent(X,
XP) and call again sg(XP, YP) with a bound first argu-
ment. This binding passing analysis allows us to classify

"the first argument of sg as bound and the other as un-
bound. Now the transformed rule for sg.down is basically

2. NO. |. MARCH 1990

constructed by dropping the bound arguments and retain-
ing the others—with a new argument added to perform the
count-down. The recursive rule for sg.up is instead built
by retaining the bound arguments and then exchanging the
recursive predicate in the head with that in the tail of the
rule (in order to simulate a top-down computation by a
bottom-up one), and then adding the count-up indexes.
Also observe that the original exit rule is used to glue
together the up and down computations. Finally, the
bound part of the query goal becomes the new exit rule
for sg.up, while the unbound part becomes the new query
goal. The generalized and formal expression of these rule
rewriting techniques, known as the generalized counting
method, are given in [48].

The counting method is very efficient for acyclic data-
bases, but will loop forever, as Prolog does, for cyclic
databases, e.g., for the same-generation example above,
if the parent relation has cycles. The magic set method
can be used to solve the cycle problem and also for com-
plex recursive situations [10], [47].

While no function symbols were present in the previous
examples, all the compilation techniques just described
apply when these are present. This entails the manipula-
tion of trees, lists, and complex structures. Our reader
should also observe that if the language restricted the user
to a bottom-up operational semantics, as, €.g., produc-
tion-rule based languages do, then the user would have to
write a different program for each of the different queries
previously discussed—with a considerable loss in conve-
nience and reusability.

Another area of considerable innovation in the £D L
compiler is the support for set terms. Set terms are treated
as complex terms having the commutativity and idempo-
tence properties. These properties are supported via com-
pile time rule transformation techniques that use sorting
and various optimization techniques to eliminate blind
run-time searches for commutative and idempotent
matches [53].

C. Modes of Execution

Even though £ D £’s semantics is defined in a bottom-
up fashion (e.g., via stratification), the implementation
can use any execution that is faithful to this declarative
semantics. In particular, the execution can be bottom-up
or top-down or it may be a hybrid execution that incor-
porates memoing [39]. These choices enable the compi-
ler/optimizer to be selective in customizing the most ap-
propriate modes of execution for the given program.

As a first approximation, it is easy to view the £D L
execution as a bottom-up computation using relational al-
gebra. For instance, let p(- - +) be the query with the
following rule, where pl and p2 are either database or
derived predicates:

p(X, Y) < pl(X, Z), p2(Z, Y).

Then, this query can be answered by first computing the
relations representing p1 and p2 and then computing their
join followed by a projection. In actuality, the £ £ op-

CHIMENTI et al.: THE £D L SYSTEM PROTOTYPE

timizer and compiler can select and implement the rule
above using four different execution modes, as follows.

¢ Pipelined Execution computes only those tuples in p2
that join with tuples of pl in a pipelined fashion. This
avoids the computation of any tuple of p2 that does not
join with pl (i.e., no superfluous work), whereas, if a
tuple in p2 joins with many tuples in pl then it is com-
puted many times.

¢ Lazy Pipelined Execution is a pipelined execution in
which, as the tuples are generated for p2, they are stored
in a temporary relation, say rp2, for subsequent use.
Therefore, any tuple in p2 is computed exactly once even
if it is used many times (i.e., amortized work as well as
no superfluous work of pipelined execution). Further-
more, as both these pipelined executions compute p 2-tu-
ples one at a time, it is possible to avoid residual com-
putation in the case of intelligent backtracking—this will
be called backtrackable advantage.

o Lazy Materialized Execution proceeds as in the lazy
pipelined case except that, for a given Z-value, all tuples
in p2 that join with the tuple in p1 are computed and stored
in a relation before proceeding. The main advantage of
this execution is that the execution is reentrant (a property
that is important in the context of recursion), whereas the
above two pipelined executions are not, as they compute
tuples of p2 one at a time. On the other hand, this exe-
cution does not have the backtrackable advantage.

® Materialized Fxecution computes all tuples in p2 and
stores them in the relation, say rp2. Then, the computa-
tion proceeds using the tuples from rp2. Note this has the
amortized work and reentrant advantages but lacks the
backtrackable and superfluous work advantage.

In conclusion, the pipelined execution is useful if the
joining column is a key for pl, whereas the materialized
execution is the best if all the Z-values of p2 are joined
with some pl tuple. Note that in both of these cases, the
respective lazy evaluation incurs more overhead due to
the checking that is needed for each p1 tuple. The reen-
trant property is especially useful if the predicate is in the
scope of a recursive query that is being computed top-
down. Therefore, in such cases, lazy materialized exe-
cution is preferred over lazy pipelined execution. Other-
wise, lazy pipelined execution is preferred to exploit the
backtrackable property.

Note that the above discussion can be generalized to
any predicate occurrence with a (possible empty) set of
bound arguments. Even though we have limited our dis-
cussion here to a single nonrecursive rule, this can be gen-
eralized to include arbitrary rules with recursion. This is
presented in detail in [16].

D. The Optimization Problem

The query optimizer is delegated the responsibility of
choosing an optimal execution plan—a function similar to
that of an optimizer in a relational database system. The
optimizer uses the knowledge of storage structures, infor-
mation about database statistics, estimation of cost, etc.,
to predict the cost of various execution schemes chosen

81

from a predefined search space and select a minimum cost
execution.

As compared to relational queries, £ D £ queries pose
a new set of problems which stem from the following ob-
servations. First, the model of data is enhanced to include
complex objects (e.g., hierarchies, heterogeneous data al-
lowed for an attribute). Second, new operators are needed
not only to operate on complex data, but also to handle
new operations such as recursion, negation, etc. Thus, the
complexity of data as well as the set of operations em-
phasize the need for new database statistics and new es-
timations of cost. Finally, the use of evaluable functions
(i.e., external predicates), and function symbols in con-
junction with recursion, results in the ability to state quer-
ies that are unsafe (i.e., do not terminate). As unsafe ex-
ecutions are a limiting case of poor executions, the
optimizer guarantees the choice of a safe execution.

We formally define the optimization problem as fol-
lows: ‘‘Given a query Q, an execution space E and a cost
model defined over E, find an execution in E that is of
minimum cost.”” We discuss the advances in the context
of this formulation of the problem. Any solution to this
problem can be described along three main coordinates:
1) execution space, 2) search strategy, and 3) cost model.

1) Search Space and Strategies: The search space for
optimal executions is defined by the set of all allowable
executions. This in turn is defined by a set of 1) execution
graphs and 2) for each graph, a set of allowable annota-
tions associated with its nodes.

An execution graph is basically a structure of nested
AND/OR graphs. This representation is similar to the pred-
icate connection graph [27], or rule graph [56], except
that we give specific semantics to the internal nodes as
described below. The AND/OR graph corresponding to a
nonrecursive program is the obvious graph with AND/OR
nodes having one-to-one correspondence to the head of a
rule and predicate occurrence. A recursive predicate oc-
currence p has subtrees whose roots correspond not only
to the rules for this predicate but also to the rules in the
recursive clique containing p. Intuitively, the fixpoint of
all the rules below this or node (i.e., predicate occur-
rence for p) need to be computed, to compute p.

The annotation provides all other information that is
needed to model the execution. Intuitively, a parameter
or property is modeled as an annotation if, for a given
structure of the execution graph, the optimal choice of
that information can be chosen using a simple greedy al-
gorithm. For example, given the ordering (i.e., the struc-
ture) of the joins for a conjunctive query, the choice of
access methods, creation of indexes, and pushing of se-
lection are examples of choices that can be greedily de-
cided. On the other hand, the pushing of selection into a
recursive clique is not a property that can be greedily cho-
sen.

For instance, annotations define which of the four ex-
ecution methods described in Section II-C are to be used.
Each predicate occurrence (i.e., OrR node) is annotated
with an execution method. In addition, annotations de-

82 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2, NO. I, MARCH 1990

scribe which indexes should be used and whether dupli-
cate elimination should be performed at the particular
node.

Much effort has been devoted to devising efficient
search strategies and enabling the optimizer to use alter-
native strategies, including exhaustive search, stochastic
search, and polynomial algorithms.

The traditional DBMS approach to using exhaustive
search is to use the dynamic programming algorithm pro-
posed in [51]. It is well known that even this approach is
rendered useless if there is a join of 15 or more relations.
In [34], we propose an exhaustive search for optimizing
£ D £ programs over the execution space. This approach
is feasible as long as the number of arguments and the
number of predicate occurrences in the body are reason-
ably small (e.g., ten or less).

Stochastic approaches provide effective means to find a
near-optimal solution. Intuitively, near-optimal execu-
tions can be found by picking, randomly, a ‘‘large’’ sub-
set of executions from the execution space and choosing
the minimum cost execution. Simulated annealing [25],
and variations thereof [54], are very effective in limiting
the subset which must be searched before a reasonable
approximation is found.

Polynomial search algorithms can be obtained by mak-
ing some simplifying assumptions on the nature of cost
functions. In [30], we presented a quadratic time algo-
rithm that computes the optimal ordering of conjunctive
queries when the query is acyclic and the cost function
satisfies a linearity property called the adjacent sequence
interchange (ASI) property. Furthermore, this algorithm
was extended to include cyclic queries and other cost
models.

2) Cost Estimates and Safety: The cost model assigns
a cost to each execution, thereby ordering them. Intui-
tively, the cost of an execution is the sum of the cost of
their individual operations. Therefore, the cost function
must be capable of computing the cost of each operation
based on the descriptors of the operands. Three major
problems are faced in devising such cost functions: 1)
computation of the descriptors, 2) estimating the cost of
external predicates, and 3) safety of recursive queries.

In the presence of several levels of derived predicates,
especially with recursion and complex objects, estimating
the descriptor for a relation corresponding to a predicate
is a very difficult problem. This is further complicated by
the fact that logic-based languages allow the union of
nonhomogeneous sets of objects. The net effect is that the
estimation of the descriptor for any predicate is, in effect,
computing the query in an algebraic fashion. That is, the
program is executed in the abstract domain instead of the
concrete domain. For instance, the age attribute may take
on a value such as 16 in the concrete domain whereas, in
the abstract domain, it takes on values such as integer
between 16 to 65. Obviously, computation in this domain
is very difficult and approximations to such computation

" had to be devised that are not only efficient but are also
effective.

In £D L, external procedures (e.g., ‘**C’’ programs)
are treated in an interchangeable manner with any predi-
cate. Intuitively, the external procedure is viewed as an
infinite relation satisfying some constraints. Therefore, a
concise descriptor of such an infinite relation must be de-
clared in the schema, and the cost functions for the op-
erations on these infinite relations must be devised. The
abstraction of the approach taken in £ 3 £ has been pre-
sented in [17]. This approach integrates it with the tradi-
tional optimization framework in a seamless fashion.

The cost model must associate an infinite cost for an
execution that computes an infinite answer or that never
completes. Such unsafe queries are to be detected so that
the optimizer can avoid choosing them. For example,
consider the following definition of all integers from zero
to a given integer K.

int(K, 0) « K = 0.
int(K, J) « in(K, I, I < K, J=I+1.

As intended, the above program is unsafe when all argu-
ments are free. So let us discuss the safety of this predi-
cate when the first argument is bound and the second is
free. Note that for each iteration of the recursive rule, the
value of J is increasing and there is an upper bound on
the value, which is the given value of K. Thus, it can be
concluded that the number of iterations is finite and each
iteration produces only finite tuples. Consequently, the
rule is safe.

In general, the problem of checking for safety is un-
decidable. The safety checking algorithm proposed in [33]
is to find a well-founded formula that can be used as a
sufficient condition to guarantee safety. This algorithm is
an enumerative algorithm that exhausts an exponential
number of cases, to ensure the existence of a well-founded
formula for each recursive cycle. The enumerative algo-
rithm guesses well-founded formulas and checks each one
of them until one is found to be satisfied.

III. SYSTEM ARCHITECTURE

Fig. 1 shows the conceptual architecture for the current
LD L prototype.? There are six basic components or
modules in the current prototype: the user interface, the
fact manager, the schema manager, the query manager,
the rule manager, and the query form manager. Section
MI-A provides a brief overview of the functionality of the
different modules and Section III-B discusses a few details
pertaining to the system architecture and relevant to the
compilation process.

A. Main Modules

The user interface receives and processes user com-
mands, i.e., it invokes various procedures in the appro-
priate manager modules. The commands available from

>The current implementation contains approximately 70 000 lines of
code, of which half is in Prolog and half is in C.

CHIMENTI et al.: THE £D L SYSTEM PROTOTYPE

83

User Interface

Query

Query
Form

Rules

Schema

Facts

—| Query
Manager

4 Query Form
Manager

Rule
Manager

Schema |— Fact L
Manager

Manager

Compiled
Query
Forms

Global
PCG

Internal
Rule
Base

Internal
Schema

RC-Boxes

internal
Fact
Base

Module
Boxes

External
Boxes

Fig. 1. Conceptual architecture.

the user interface are described in [14]. The fact manager
is responsible for maintaining the various data structures
associated with the extensional database as well as for
providing run-time support for £ £ queries. The fact
manager data structures are collectively referred to as the
internal fact base. The schema manager receives the
schema definition file from the user interface and records
the information in an internal form. Type, index, and key
constraints are subsequently used by the fact manager to
verify the database. Base relation specifications are used
by the rule manager to verify consistency. The query
manager receives queries from the user interface, deter-
mines which compiled query form is appropriate for the
query, and invokes the corresponding C program, passing
any constants from the query as arguments.

The rule manager is responsible for processing the in-
tentional database, i.e., the rule base. During the initial
processing, the rules are parsed and various syntactic con-
sistency checks are performed. Each parsed rule is stored
in the internal rule base and then sent to the global PCG
generator, which is responsible for transforming the rule
set into a predicate connection graph (PCG). The global
PCG is a tabular data structure with entries specifying the
rule/goal index for all predicates occurring in the rule
base. It provides an efficient means of accessing the rules
during subsequent query form processing. After all rules
have been parsed, the recursive clique analyzer (RCA) is
invoked to identify the strongly connected components
(predicates) of the PCG, i.e., the recursive cliques, and
to create the necessary internal structures to represent the
cliques (RC boxes). In additon, the RCA detects those
cliques for which no termination condition, i.e., exit
rule, has been provided. Additional data structures for
representing £ D £ modules and externals [15] are also
produced by the rule manager.

The query form manager embodies the bulk of the
£ D £ compilation technology. It receives a query form
from the user interface and is responsible for producing

Query Form Manager l

Query Form ¢

Relevant PCG
Extractor

Relevant PCG

Optimizer

Controlied PCG

Pre-Enhancer

Enhancer

Enhanced PCG

Set Rewriter

Final PCG l

Code
Generator

C Program

C Compiler &
Linker

Compiled
Query Forms

Fig. 2. Query form manager architecture.

the compiled version of the query form. Fig. 2 shows the
organization of the query form manager.

The relevant PCG generator generates a relevant PCG
(RPCG) which is an AND/OR graph containing only those
rules relevant to the query form. The data structure gen-
erated is actually a tree instead of a graph since common
subexpression elimination is not currently part of the
compiler design. During the RPCG extraction process,
constant migration, i.e., the process of substituting de-
ferred constants from the query form or constants from

84 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2, NO. 1, MARCH 1990

the relevant rules for variables is also performed wherever
possible. Note that constants are not migrated into recur-
sive rules.

The optimizer transforms the RPCG and its associated
recursive cliques as necessary to choose an optimal exe-
cution. It performs safety analysis and reorders goals (OR
nodes) in the PCG appropriately. The nodes of the PCG
are annotated by the optimizer to reflect, among other
things, adornment, preselection, post-selection, and exe-
cution modes to be employed. The transformed RPCG is
termed the controlled PCG (CPCG).

The enhancer is responsible for rewriting recursive rules
such that the recursive cliques are recast into a form that
guarantees efficient execution via fixpoint operators. Var-
ious recursive query processing strategies are supported
including a stack-based implementation of the generalized
counting method, the magic set method, and the semi-
naive fixpoint method. The output of the enhancer is the
enhanced PCG (EPCQG).

The set rewriter uses rule transformation techniques to
produce a revised but equivalent PCG where set terms
have been mapped into first-order terms in order to avoid
set unification at run-time. The set properties of commu-
tativity and idempotence are supported via this rule re-
writing. In the process, the context of the rule is used to
constrain the set of alternatives that must be explored [53].

Finally, the code generator traverses the PCG, gener-
ating C code, ultimately resulting in a complete C pro-
gram which is then compiled and linked to form the final
compiled query form. The code generator is actually quite
sophisticated in that it performs various peephole opti-
mizations, e.g, intelligent backtracking and existential
query optimization, and supports various execution
modes, all on the fly as code is generated.

B. Compilation Techniques

In addition to the rule transformations described in Sec-
tion II-B, the £ D £ compiler applies a number of tech-
niques to improve the efficiency of the run-time code.

1) Pruning the Execution Graph: Much of the unifi-
cation required to support complex terms is performed at
compile-time. Consider, for instance, the following rules:

r(X,Y) < b1(X), p(f(X, Y)), b2(X, Z).

p(V)‘-—--',V=g(U),---
P(V)‘—"',V=f(U,U),-'-.

Compile-time rewriting of these rules will result in the
function f (X, Y) being migrated into the rules for p such
as to replace all occurrences of V. Since f (X, Y does not
unify with g (U), the first rule for p will be deemed false
and will be thrown out of the relevant rule set. Further-
more, the second rule for p will result in the unification
of X with Y and the substitution throughout the rule of X
for U. At compile-time it will be determined whether an
assignment (value of X assigned to Y) or a check (value

of X is the same as value of Y) is required, based on
whether the given variables are bound or not. Note that
the code generator would choose the entry to the rule for
p as the appropriate place for the check in order to detect
early failure, whereas the assignment would be placed at
the success of the rule in order to avoid an unnecessary
assignment should the rule fail. Thus, the run-time effort
is reduced by eliminating rules and performing compile-
time unification such that only simple matching and as-
signments are necessary at run-time. This same philoso-
phy is employed for set unification: set objects are mapped
into first-order terms at compile-time so that only ordinary
matching is required at run-time.

2) Static Variables: One of the goals of rewriting per-
formed by the system is to rename variables, so that the
scope of each variable is global with respect to the pro-
gram. The purpose of this rewriting is run-time efficiency.
By making each variable global, space for the variables
can be allocated statically, as opposed to a dynamical
method, e.g., as offsets from a frame pointer. Moreover,
assigning a variable can be done more efficiently in a
global framework, as parameter passing becomes unnec-
essary. On the other hand, nonrecursive rules that are in-
voked from more than one predicate are duplicated, thus
resulting in larger object code.

3) Adornment: For each query form, the compiler con-
structs an adorned program using the notion of side-ways
information passing (SIP) as defined in [56], marking each
argument of each predicate as either bound (instantiated
to a particular constant value at run-time), free (the cur-
rent predicate occurrence will instantiate it at run-time),
or existential (it does not appear elsewhere in the rule,
except possibly in the head as an existential argument).
Note that the rules, in some cases, are duplicated (and
renamed) for different adornments of the predicate occur-
rence (this is referred to as stability transformation [47]).
Thus, each predicate in the adorned program is associated
with an unique binding pattern and every occurrence of
that predicate conforms to that binding pattern. The pro-
gram segment generated for a predicate can exploit the
bound/existential arguments to generate efficient code.
This approach of generating code for a particular predi-
cate with respect to a given binding pattern is an impor-
tant deviation from the approach taken in Prolog and it
results in an improved performance.

4) Intelligent Backtracking: The nested-loop join op-
eration which is implied by pipelined execution presents
significant opportunities for avoiding computation that
cannot generate new results. In the literature, this is
known as the intelligent backtracking problem. Two types
of intelligent backtracking have been addressed in the
compiler: get-next and get-first. Consider, again, the
£ DL rules given in Section III-B1. Let us assume that
the rules are compiled for the query ?r (X, Y). After com-
puting a tuple for r, backtracking to get the next tuple for
b2 is unnecessary since it will not yield any new tuples
for r. The compiler will choose the predicate p as the get-
next backtrack point for the rule since the variable Y is

CHIMENTI et al.: THE £ £ SYSTEM PROTOTYPE

bound there.? To illustrate get-first intelligent backtrack-
ing, consider the predicate b2. If the attempt to get the
first tuple in b2 fails, it is not necessary to backtrack to p
since it does not change the bound argument for 52.
Therefore, if no tuples are found for b2, the backtrack
point will be b1 since that is where the variable X is bound.
Hence, by doing compile-time analysis, intelligent back-
tracking is implemented with little (if any) overhead in-
curred at run-time, and results in the elimination of un-
necessary run-time processing.

The rule for r also serves to illustrate an additional op-
timization utilized by the compiler with respect to exis-
tential arguments [44]. In the predicate b2, the variable
Z is a DON'T CARE or existential variable. Therefore, the
assignment of a value to Z is unnecessary. While this
might seem an inconsequential optimization, experience
has shown that the avoidance of a single assignment in
the innermost loop can have a great influence on execu-
tion time. The compile-time analysis has avoided unnec-
essary overhead at run-time.

5) Implementation of Recursion and Choice: Above,
we have discussed backtracking assuming a pipelined ex-
ecution ala Prolog. For efficiency and, in some cases, cor-
rectness, additional execution modes (discussed in Sec-
tion II-C) must be employed for the compilation of some
of £D L advanced constructs. For example, material-
ization is necessary when semi-naive fixpoint computa-
tions are used to process recursive goals. Full material-
ization, however, does not allow for selection pushing and
is, therefore, very ineflicient in the presence of bound ar-
guments. Therefore, a lazy materialized execution mode
is applied such that the bindings can be utilized. In addi-
tion, the counting set method of recursion rewriting has
been implemented using a stack-based execution such that
a pipelined or lazy pipelined execution mode is applica-
ble. Hence, an appropriate execution mode for the recur-
sive goal can be chosen in context at compile-time to en-
sure an efficient and correct run-time execution. Similar
cases occur with the set grouping and update constructs;
however, the relevant discussions have been omitted for
brevity.

The implementation of £IDL’s nondeterministic
choice construct requires materialization to store the func-
tional dependencies. In the following rules, a table with
X and Y values will be materialized due to the choice con-
struct.

r(X,Y) < ---,p(X,Y),X<Y, -
p(X, Y) < b(X, Y), choice ((X), (Y)).

The chosen Y value for a particular X will only be com-
mitted, however, at the success of the query. In the rule
for r, it is possible that the goal X < Y will fail resulting
in backtracking into the rule for p and obtaining a new

31t is interesting to note that if the query were 7r(X, —) such that the
variable Y was existential with respect to the rule for r, then the get-next
backtrack point for that rule would be the predicate bl.

85

choice, 1.e., value for Y. This may be contrasted with the
Prolog cut with which a bad choice will result in failure
for the query. After values have been committed, the ma-
terialized table can be used to avoid unnecessary recom-
putation. Thus, after the binding for X is obtained from
the predicate b, a check is performed to determine if a
value for Y has already been committed and, if so, the
remainder of the rule need not be executed. Again, com-
pile-time techniques have been used to reduce the com-
putation effort at run-time.

C. The Fact Manager

The fact manager provides the run-time environment
for an £ L program. It supports £ £ objects, such
as atoms, sets, and lists, as well as database objects, such
as tuples, base relations, and derived relations (used to
store temporary results). In the current implementation,
all objects are kept in virtual memory.

The £ £ data types are directly supported by the fact
manager, which implements them as C abstract data types.
That is, the fact manager provides C type definitions as
well as a set of routines that operate on objects of these
types. This is the level of abstraction maintained by the
translator. The fact manager itself, on the other hand, is
free to take advantage of the data representation for the
sake of efficiency. For example, complex objects are
stored as one-dimensional arrays, where the first (zeroth
in C) component is the functor name. The function
fm_get_functor_arg (object, i) is used by the translator to
select the ith component of a complex object. The fact
manager implements this in-line, i.e., in the preproces-
sor, as the array lookup object[i]. Similarly, the fact
manager stores sets as sorted arrays, so that set operations
such as union and intersection can be implemented effi-
ciently.

Efficient support for base and derived relations is pro-
vided at the tuple level, with calls such as fm_get_first
and fm_get_next. A key consideration in the design of the
fact manager was the number of operations performed at
the innermost loop of an execution (i.e., nested join); for
example, getting the next tuple from a base relation and
post-selecting for bound arguments. Thus, relations are
stored so that the call to fm_get_next is reduced to follow-
ing a linked list, and is hence suitable for in-line imple-
mentation. This is possible because the database is kept
in-memory; thus, it is never necessary to access the next
tuple from disk explicitly.

In order to speed up equality comparisons, notably in
the presence of arbitrarily deep complex objects, each ob-
ject in the database is assigned a unique representation
that can be compared using the hardware (integer) com-
pare instruction. In the case of numeric constants, the
unique representation is the value of the object. For strings
and complex objects, the memory address of the actual
object is used as the unique representation. Whenever a
new complex object is created, the fact manager guaran-
tees this address is unique by first checking whether the
object already exists—an efficient operation since all ob-

86 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2, NO. 1. MARCH 1990

jects are in memory. This unique representation is used
to significantly speed up post-selection, which, as men-
tioned earlier, can be performed in the innermost loop of
an execution. Moreover, it can also be used by the fact
manager to perform internal database operations more ef-
ficiently. For example, when an index is used, the hash
function operates directly on the unique representation
rather than the £ D £ object itself—this can be a substan-
tial savings, since £ 3 £ objects can be arbitrarily com-
plex. Moreover, once a bucket is selected, searching to
find the matching tuples involves an equality comparison,
so the unique representation is exploited here as well. In-
tuitively, the unique representation allows the fact man-
ager to reduce the cost of subsequent index lookups by
partially hashing an object when it is created.

Derived relations are used by the translator to support
some £ 3D L language features, such as recursion and
grouping. Recursion can be implemented using a semi-
naive fixpoint operation after rewriting for magic sets,
etc., has taken place. Thus, the efficient execution of re-
cursion depends on the efficient implementation of the
semi-naive operation. Therefore, the fact manager sup-
ports this operation directly by partitioning recursive re-
lations into ‘‘delta’’ and ‘‘cumulative’’ components, and
returning tuples only from the delta component when a
semi-naive scan is desired. Since tuples are inserted se-
quentially, the delta component is implemented easily by
maintaining a ‘‘high-water’” mark. Similarly, the fact
manager provides eflicient support for grouping by con-
verting a relation into a set, given a pattern describing the
specific ‘‘group-by’’ operation desired.

IV. EXPERIENCE
A. Experience in Using the Language

Since £ D £ was designed to be both a query language
and a rule-based application language, we need to evalu-
ate its functionality and usability starting from these two
domains.

An independent comparison of £D £ as a database
query language suggested that all but the simplest queries
are easier to express in £ D £ than SQL [21]. This hardly
represents an endorsement of £ D £, since the inordinate
difficulty of expressing sophisticated queries in SQL is
well-known. Yet, our experience suggests that even the
most complex of queries can be readily expressed as short
£ D L programs. This is consistent with our experience
that in £ £, any distinction between complex queries
and simple applications is arbitrary and blurred. We found
it easy to develop rapidly complex database applications,
including the ‘‘computer science genealogy’’ [42] and
programs for parts explosion, inventory control, and job
shop scheduling.

The other side of the coin involves comparing £ £
with other rule-based systems. As our reader may have
notjced, a coarse description of the £ O £ compiler is that
it maps the functionality of a backward chaining system
(top-down) into the mechanisms of forward chaining (bot-

tom-up). Indeed, the latter is conducive to more efficient
implementations in the database context, while the former
is conducive to more expressive and powerful lan-
guages—a conclusion supported by our experience with
several programs [42] and by the observation in the pen-
ultimate paragraphs of Section II-B.

Thus, programming in £ £ is more similar to pro-
gramming in Prolog than in OPS5. Yet, the differences
between £ D £ and Prolog are significant, and often baf-
fling to experienced Prolog programmers. Prolog has
many powerful constructs (e.g., built-in and meta predi-
cates) which are not in £ 3 £ (but, declarative relatives
for some of these constructs are under consideration [32]).
Moreover, in Prolog, variables can be instantiated in a
dynamic fashion—e.g., different goals instantiate vari-
ables in a complex term. £ D £ is more restrictive since,
although goals can be reordered at compile-time, the ex-
ecution of a goal is assumed to bind all its variables. Also,
the fact that Prolog produces one answer at the time pro-
vides the programmer with more opportunities for fine
control than in LD L.

On the other hand, £ D £ leads to better structured pro-
grams and provides a cleaner syntax and semantics, and
an optimizer that excuses the user from thinking too hard
about an execution sequence. The benefits become appar-
ent in challenging areas such as nondeterminism and re-
cursion [62]. (A procedure such that of Section II-D2
which provides a natural inductive definition of integers,
cannot be used in Prolog.) When writing a recursive pred-
icate to traverse a graph with possible cycles, the Prolog
programmer must make provisions for termination (e.g.,
using an all-answer bag), while £ D £ handles cycles au-
tomatically. Finally, the ability of storing efficiently par-
tial results that can be retrieved by later computations is
a major plus for £ D.L, and so is the ease of dealing with
externals and modules. '

Therefore, a plausible argument can be made for the
ease-of-use of £ L over Prolog. Furthermore, we are
currently working toward levels of usability and ease-of-
use that could entice nonprofessional programmers to de-
velop complex applications, in analogy to what many 4GL
users now do with simple applications. Toward this goal,
we are currently working on a symbolic debugger that also
supports answer justification. A traditional debugger that
retraces the execution of the program would be of little
help to the unsophisticated user, since the compiler and
optimizer completely transform the original program. We
are currently completing an answer justification facility
capable of carrying out a dialogue with a user asking
questions such as, ‘‘Why did you (or did you not) return
this answer?’’ and through this dialogue directing the user
to the incorrect rule or missing fact that was the source of
the problem. We are also working on an £ D £ interface
that supports visual programming, along with form-ori-
ented data entry and display.

We now briefly describe some aspects that affect the
performance of the current implementation of £ L.
Having the database memory resident, the performance of

CHIMENTI e al.: THE £D £ SYSTEM PROTOTYPE

any program is affected by the join in the innermost loop.
Therefore, a simple join was executed, and compared to
Prolog. The cardinality of the inner relation was varied
from 20 to 100 and the cardinality of the outer relation
was varied from 2000 to 10 000 tuples. As we were in-
terested in measuring the work done in the innermost loop,
we chose to vary the outer relation over a larger range.
The other way would be favorable to £ £ and quite
unfavorable to Prolog. The timing ratio was in the range
1:1.7t01:1.95, in £D L’s favor. This was further im-
proved using existential query optimization to a ratio as
high as 1:2.5. The conclusion was that the efficient com-
parison using uniqueness and in-line implementation
helped £ D £ to outperform the Prolog system that has
been fine-tuned using low-level Assembly language rou-
tines.

Another feature of £ 3 £ that affects the performance
is the elimination of duplicate results in the processing of
recursion—that is, an ‘‘all answers’’ as opposed to ‘‘all
proofs’’ approach. The duplicates need to be eliminated
in certain cases to guarantee termination, such as when
traversing a cyclic graph. Moreover, the elimination of
duplicates can speed up the execution in many cases. For
example, in the computation of the same generation query,
it was discovered that removing duplicates resulted in a
major performance improvement, since for most siblings
in the database, there are two ways to prove their relation
(through the father or mother), and this becomes even
more significant as more distant relations (e.g., through
great-grandparents) are explored. A timing comparison
using a database of 500 tuples showed that the system
computed the same generation query in roughly 4 s,
whereas Quintus Prolog needed over 2 min, resulting in
a ratio of over 1:30.

On the other hand, there are also recursive queries
where no duplicates are ever generated, for example,
when appending two lists. In these queries, the overhead
of duplicate elimination is wasted; hence, the £ D £ im-
plementation does not compare favorably to, say, Prolog.
In particular, for list append, we found a ratio of between
6:1 and 10:1 in favor of Prolog. Another factor contrib-
uting to this result is the uniqueness check performed at
the creation of each new object, i.c., temporary list. When
this check was removed, the ratio was reduced to 2: 1.

B. £ L Applications

In the end, the utility of the £ D £ technology can only
be assessed through application development. We first ex-
perimented with traditional applications, such as parts ex-
plosion, inventory control, and job shop scheduling,
which are currently implemented by a procedural appli-
cation program with embedded query calls. Our experi-
ence with these applications has been uniformly positive:
we found them easy to write, maintain, and extend using
L£LDL. As a result, we moved to more advanced appli-
cations, in areas beyond those of traditional DBMS’s.
Next, we discuss two new areas of particular interest, data
dredging and harnessing software.

87

1) Data Dredging: This is a class of applications in
which the source of data is typically (but not exclusively)
a very large set of empirical observations or measure-
ments, organized into one or more base relations. Addi-
tional data may be added over time but existing data are
seldom updated. In fact, they are only updated when found
to be erroneous. Typical sources are measurement data of
empirical processes or data recorded during simulation
experiments. The problem is to interpret these data, i.e.,
to use it for the verification of certain hypotheses or, to
use it for the formulation of new concepts. In both cases,
the hypotheses or concepts may be conceptually far re-
moved from the level of the recorded data and their crys-
talization or definition entails an interactive human/sys-
tem process as follows:

1) Formulate hypothesis or concept;

2) Translate 1) into an £ D £ rule-set and query;

3) Execute query against the given data and observe
the results;

4) If the results do not verify or deny 1) then, refor-
mulate and goto 2); otherwise exit.

Obviously, the decision to exit the process is entirely
subjective and is decided by the programmer. At this stage
he/she may have either decided that the concept is now
properly defined or, that the data do not support this con-
cept and that it should be abandoned or tried out with dif-
ferent data. The use of £ £ over procedural languages
offered the advantage of supporting the formulation at a
more abstract level where the ‘‘iterative time’’ through
reformulations is significantly shortened. With respect to
existing database query languages, £ DL supported a
more natural expression of higher and higher levels of ab-
straction via rules, and the ease of incorporating efficient
C-based routines for the filtering and preprocessing of
low-level data—a demonstration of the dual language
programming paradigm. These benefits were observed in
experiments with data dredging in two different domains:
computer system performance evaluation and scientific
data analysis in the area of molecular biology. The first
application [42] involved the formulation of the ‘‘con-
voy’’ concept in a distributed computing system. Intui-
tively, a convoy is a subset of the system entities (pro-
cesses, tasks) that move together for some time from one
node to the other in the network of processors and queues.
The recorded data are low-level and consist of arrival/
departure records of individual entities at certain nodes.
The convoy concept was defined in £ £ using a small
set of rules, and actual instances were detected in the sim-
ulation data that were used. The second instance of data
dredging—performed in collaboration with researchers
from the Harvard Medical School and the Argonne Na-
tional Laboratories—involves the identification of DNA
sequences from (very) low-level, digitized autoradio-
graphs, that record the results of the experiments that are
performed in the sequencing of the E.Coli bacteria [23].
Again, the task is to extract the definitions for the four
DNA bases 4, C, G, T from this low-level, noisy, and
often imperfect data. A large number of heuristics need

88 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2. NO. t. MARCH 1990

to be applied in this case and the use of £ L has the
additional advantage that it is simple to add special defi-
nitions, that need to be used within narrow contexts, to
the general definitions. It is thus relatively simple to add
additional knowledge to the system as the experience with
its use increases.

2) Harnessing Software: We mentioned that external
C procedures can be used in the definition of £ £ pro-
grams. In the £ 3 £ context, these are regarded as eval-
uable predicates. While normally we expect the use of
external code to be the exception rather than the rule (re-
served for special purposes e.g., graphical routines), we
can think of situations that lay at the other extreme: the
bulk of the software is written in standard, procedural code
and only a small fraction of it is rule-based and encoded
in £ L. In this situation, the rule-set forms the ‘‘har-
ness’’ around which the bulk of the code is implemented.
The rule portion forms a knowledge base that contains

1) the definition of each of the C-module types used in
the system

2) a rule set that defines the various ways in which
modules can be combined: inheritance and export/import
relationships between modules, constraints on their com-
binations, etc.

The advantage of this organization becomes apparent in
information systems where most new service requests can
be supported by building on a Lego-set of basic, reusable
modules. The knowledge base and rule-based harness ex-
ternally encode the logic of module interaction; subsets
of instances of the existing module types can now be re-
combined, subject to the rule restrictions, to support dif-
ferent task specifications. An added advantage is that each
of the individual module types can be verified using any
of the existing verification methods and their global be-
havior is controlled by the rule set. We are currently ex-
perimenting with such an application in the domain of
banking software.

V. CONCLUSION

Perhaps the most significant result of the £ £ expe-
rience was proving the technical feasibility of building a
logic-based application language as an extension of rela-
tional database technology. The realization of this objec-
tive has required solving technical challenges on many
fronts—language design and formal definition, compila-
tion, optimization, and system implementation. In the five
years since the beginning of the project, problems have
been solved through the combined efforts of a group of
six to eight people. Perhaps the most encouraging aspect
of the whole experience is that while a wide spectrum of
interests and backgrounds—from very theoretical ones to
very applied ones—was represented in the group, the ef-
fort remained focused and generated a remarkable degree
of synergism. The result is a system that supports the the-
oretical declarative semantics of the language completely
and-efficiently.

The most obvious limitation of the current £ D L£ im-
plementation is the lack of a secondary store data manager

supporting the £ D £ data model and concurrent access
to the database. While there is little question on the tech-
nical feasibility and desirability of such a system, build-
ing it is not our top priority, inasmuch as we are more
concerned with providing an evolution path from current
database systems than an alternative to them. Therefore,
we are currently working on a tight coupling of LD L
with an SQL system, where the two systems cooperate in
the optimization of programs. This will provide an inter-
esting testbed for evaluating possible SQL extensions.

A second area of current research aims at enhancing the
functionality of current 4GL’s by building upon £D £
rather than SQL. The main research issue in this context
is on how to enhance the ease-of-use of the system for
less sophisticated programmers. The approach chosen
consists in making powerful but demanding concepts such
as rules and recursion more tractable through visual pro-
gramming and answer explanation. This system will pro-
vide a powerful tool for the rapid development of database
applications and the rapid prototyping of applications in
the C environment [20].

ACKNOWLEDGMENT

The authors would like to recognize the contribution of
the following persons: B. Agarwal, F. Bancilhon, C.
Beeri, C. Kellogg, P. Kanellakis, T. O’Hare, K. Ong, A.
Matin, R. Ramakrishnan, D. Saccd, O. Shmueli, L. Sle-
petis, P. Song, E. Villarreal, and C. West. Thanks are
also due to M. Smith and the referees for many useful
comments.

REFERENCES

[11 A. V. Aho and J. Uliman, ‘‘Universality of data retrieval lan-
guages,’” in Proc. POPL Conf., San Antonio TX, 1979.

[2] K. Apt, H. Blair, and A. Walker, *‘Towards a theory of declarative
knowledge,’” in Foundations of Deductive Databases and Logic Pro-
gramming, J. Minker, Ed. Los Altos, CA: Morgan-Kaufman, 1987.

[3] F. Bancilhon and P. Buneman, Eds., Workshop on Database Pro-
gramming Languages, Roscoff, Finistere, France, Sept. 1987.

[4]) F. Bancilhon, ‘‘Naive evaluation of recursively defined relations,”
in On Knowledge Base Management Systems, M. Brodie and J. My-
lopoulos, Eds. New York: Springer-Verlag, 1985.

[5] 1. Balbin and K. Ramamohanarao, ‘‘A differential approach to query
optimization in recursive deductive databases,’’ J. Logic Program-
ming, vol. 4, no. 2, pp. 259-262, Sept. 1987.

[6] F. Bancilhon and R. Ramakrishnan, ‘‘An amateur’s introduction to
recursive query processing strategies,’” in Proc. ACM SIGMOD Ini.
Conf. Management Data, Washington, DC, May 1986.

[7]1 H. Boral et al., **Phototyping Bubba,”” MCC Tech. Rep.. Oct. 1989.

[8] C. Beeri et al., **Bound on the propagation of selection in logic pro-
grams,”’ in Proc. 6th ACM SIGMOD-SIGACT Symp. Principles Da-
tabase Syst., 1987.

[9] C. Beeri, S. Naqvi, O. Shmueli, and S. Tsur, **Set constructors in a
logic database language,”’ Logic Programming, to be published.

[10] F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman, ‘*Magic sets and
other strange ways to implement logic programs,’’ in Proc. 5th ACM
SIGMOD-SIGACT Symp. Principles Database Syst., 1986.

[11]} J. Bocca, **On the evaluation strategy of Educe.”” in Proc. 1986 ACM-
SIGMOD Conf. Management Data, 1986, pp. 368-378.

[12] H. Boral, ‘‘Parallelism in Bubba.'" in Proc. Int. Symp. Databases
Parallel Distributed Syst., Austin, TX, Dec. 1988.

[13] S. Ceri, G. Gottlob, and G. Wiederhold, *‘Interfacing relational da-
tabases and Prolog efficiently,”” in Expert Database Systems, L.
Kerschberg, Ed. Benjamin/Cummings, 1987.

[14] D. Chimenti and R. Gamboa, ‘*‘The SALAD cookbook: A user's
guide,”” MCC Tech. Rep. ACA-ST-064-89.

CHIMENTI er al.: THE £DL SYSTEM PROTOTYPE

[15] D. Chimenti, R. Gamboa, and R. Krishnamurthy, *‘Using modules
and externals in LDL,”” MCC Tech. Rep. ACA-ST-036-89.

[16] ——, **Abstract machine for LDL,’’ MCC Tech. Rep. ACA-ST-268-
89.

[17}] —, **Towards an open architecture for LDL,"” in Proc. 15th VLDB,
1989, pp. 195-203.

[18] G. Copeland and D. Maier, ‘*Making SMALLTALK a database sys-
tem,”” in Proc. ACM SIGMOD Int. Conf. Management Data, 1985,
pp. 316-325.

{19] S. Danforth, S. Khoshafian, and P. Valduriez, ‘*‘FAD—A database
programming language, rev 2."" MCC Tech. Rep. ACA-DB-151-85.

[20] 1. M. Carey and J. D. Currey ‘*The prototyping conundrum,’” Da-
tamation, June 1. 1989.

[21] R. K. Foster, ‘*Feature comparison of LDL and SQL,’” Control Data
Corp. Interoffice Memo., Mar. 23, 1987.

[22] H. Gallaire, J. Minker, and J. M. Nicolas, *‘Logic and databases: A
deductive approach,”” Comput. Surveys, vol. 16, no. 2, 1984.

23] R. Herdman et al., **"MAPPING OUR GENES Genome Projects: How
big, How fast? " Congress of the United States, Office of Technology
Assessment. Baltimore, MD: John Hopkins University Press, 1988.

{24} D. Harel, **First-order dynamic logic,”” in Lecture Notes in Computer
Science. G. Goos and J. Hartmanis, Eds. New York: Springer-Ver-
lag, 1979.

[25] Y. E. loannidis and E. Wong, ‘*Query optimization by simulated an-
nealing,”” in Proc. ACM SIGMOD Int. Conf. Management Data,
1987.

{26] M. Jarke, J. Clifford, and Y. Vassiliou, **An optimizing prolog front/
end to a relational query system,’’ in Proc. 1984 ACM-SIGMOD
Conf. Management Data, 1986, pp. 296-306.

[27] C. Kellogg, A. O’'Hare, and L. Travis, ‘‘Optimizing the rule data
interface in a KMS,"" in Proc. 12th VLDB Conf., Tokyo, Japan, 1986.

[28] W. Kim and F. H. Lochosky, Eds., Object-Oriented Concepts, Da-
tabases, and Applications. New York: ACM Press and Addison-
Wesley, 1989.

[29] R. Krishnamurthy, S. Naqvi, and C. Zaniolo, **Database transactions
in £D L, in Proc. Logic Programming North Amer. Conf. Cam-
bridge, MA: MIT Press, 1989, pp. 795-830.

[30] R. Krishnamurthy, H. Boral, and C. Zaniolo, ‘‘Optimization of non-
recursive queries,”’ in Proc. 12th VLDB, Kyoto, Japan, 1986.

[31] R. Krishnamurthy and S. Naqvi, ‘*Non-deterministic choice in da-
talog.”” in Proc. 3rd Int. Conf. Data Knowledge Bases, June 27-30,
Jerusalem, Israel.

[32] —, “*Towards a real Horn clause language,”” in Proc. 1988 VLDB
Conf., Los Angeles, CA, Aug. 1988.

[33] R. Krishnamurthy, R. R. Ramakrishnan, and O. Shmueli, **A frame-
work for testing safety and effective computability,”” in Proc. ACM
SIGMOD Int. Conf. Management Dara, 1988, pp. 154-163.

{34] R. Krishnamurthy and C. Zaniolo, **Optimization in a logic based
language for knowledge and data intensive applications,” in Ad-
vances in Database Technology, EDBT'88, Schmidt, Ceri, and Mis-
sikoff, Eds. New York: Springer-Verlag, 1988, pp. 16-33.

[35] S. Kunifji and H. Yokota, '‘Prolog and relational databases for 5th
generation computer systems,”” in Advances in Logic and Databases,
Vol. 2, Gallaire. Minker, and Nicolas, Eds. New York: Plenum,
1984.

[36] D. Li, **A Prolog database system,”* Lechtworth, Hertfordshire, U.K.:

Research Institute Press. 1984.

1371 I. W. Lloyd, Foundations of Logic Programming, 2nd ed. New
York: Springer-Verlag, 1987.

138] K. Morris er al., “"YAWN! (Yet another window on Nail!),”” Data
Eng.. vol. 10, no. 4. pp. 28-44, Dec. 1987.

[39] D. Michie, ** ‘Memo” functions and machine learning,’” Nature, Apr.
1968.

[40] S. Nagvi and R. Krishnamurthy, *‘Semantics of updates in logic pro-
gramming,” in Proc. 7th ACM SIGMOD-SIGACT Symp. Principles
Database Syst., 1988, pp. 251-261.

{41] S. Nagvi, **A logic for negation in database systems,’’ in Founda-
tions of Deductive Databases and Logic Programming, 1. Minker,
Ed. Los Altos, CA: Morgan-Kaufman, 1987.

[42] S. Naqvi and S. Tsur, A Logical Language for Data and Knowledge
Bases. San Francisco, CA: Freeman, 1989.

{43] T. Przymusinski, “*On the semantics of stratified deductive databases
and logic programs,’’ in Foundations of Deductive Databases and
Logic Programming, 1. Minker, Ed. Los Altos, CA: Morgan-Kauf-
man, 1987.

[44] R. Ramakrishnan, C. Beeri, and R. Krishnamurthy, *‘Optimizing ex-
istential datalog queries,'" in Proc. 7th ACM SIGMOD-SIGACT Symp.
Principles Database Syst., 1988, pp. 89-102.

89

(45] L. Rowe and K. A. Shones, ‘‘Data abstraction, views and updates in
RIGEL,” in Proc. ACM SIGMOD Int. Conf. Management Data,
1979, pp. 7t-81.

[46] D. Sacca and C. Zaniolo, **On the implementation of a simple class
of logic queries for databases,”” in Proc. 5th ACM SIGMOD-SIGACT
Symp. Principles Database Syst., 1986.

{47] —, “‘Implementation of recursive queries for a data language based
on pure Homn logic,"” in Proc. Fourth Int. Conf. Logic Programming,
Melbourne, Australia, 1987.

[48] ~—, **The generalized counting method for recursive logic queries,”
J. Theoretical Comput. Sci., vol. 61, 1988.
[49] —, ‘*Differential fixpoint methods and stratification of logic pro-

grams,”” in Proc. 3rd Int. Conf. Data Knowledge Bases, June 27-30,
1988, Jerusalem, Israel.

[50] J. Schmidt, ‘*Some high level language constructs for data of type
relations,’’ ACM Trans. Database Syst., vol. 2, no. 3, pp. 140-173,
1977.

(51] P. G. Selinger et al., **Access path selection in a relational database
management system,’’ in Proc. ACM SIGMOD Int. Conf. Manage-
ment Data, 1979.

{52] O. Shmueli and S. Naqvi, *‘Set grouping and layering in Horn clause
programs,’’ in Proc. 4th Int. Conf. Logic Programming, 1987, pp.
152-177.

53] O. Shmueli, S. Tsur, and C. Zaniolo, *‘Rewriting of rules containing
set terms in a logic data language (LDL),”" in Proc. 7th ACM SIG-
MOD-SIGACT Symp. Principles Database Syst., 1988, pp. 15-28.

{54] A. Swami and G. Gupta, ‘‘Optimization of large join queries,” in
Proc. ACM-SIGMOD Ini. Conf. Management Data, 1988, pp. 8-17.

{551 S. Tsur and C. Zaniolo, **LDL: A logic-based data language,”” in
Proc. 12th VLDB, Tokyo, Japan, 1986.

[56] 1. D. Ullman, Database and Knowledge-Based Systems. Rockville,
MD: Computer Science Press, 1988.

[57] M. H. van Emden and R. Kowalski, ‘‘The semantics of predicate
logic as a programming language,”” J. ACM, vol. 23, no. 4, pp. 733-
742, 1976.

[58] D. H. D. Warren, ‘‘An abstract Prolog instruction set,”’ Tech. Note
309, Al Center, Comput. Sci. Technol. Div., SRI, 1983.

[59] C. Zaniolo, *‘Prolog: A database query language for all seasons,’” in
Expert Database Systems, Proc. First Int. Workshop, L. Kerschberg,
Ed. Benjamin/Cummings, 1986.

[60] —, “*The representation and deductive retrieval of complex ob-
jects,”” in Proc. 11th VLDB, 1985, pp. 459-469.
[61] —, **Safety and compilation of non-recursive Horn clauses.”’ in

Proc. First Int. Conf. Expert Database Syst., L. Kerschberg, Ed.
Benjamin/Cummings, 1986.

[62]1 —. *‘Design and implementation of a logic based language for data
intensive applications,”” in Proc. Int. Conf. Logic Programming, Se-
attle, WA, 1988.

Danette Chimenti received the B.S. degree in
computer science from Texas A&M University,
College Station, in 1980, and the M.S. degree in
computer science from the University of Arizona
in 1981.

Before joining MCC in 1986, she was a mem-
ber of the Technical Staff at Sandia National Lab-
oratories. Her interests include logic program-
ming deductive databases, and fast cars.

Ruben Gamboa received the Bachelor’s of Com-
puter Science from Angelo State University in
1984 and the Master’s of Computer Science from
Texas A&M University, College Station, in 1986.

His current interests include deductive and
graphical databases.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2, NO. I, MARCH 1990

Ravi Krishnamurthy received the B.E. degree in
electrical engineering from Birla Institute of
Technology, Pilani, Rajasthan, India, the M.S.
degree from the University of South Carolina in
1978, and the Ph.D. degree in computer science
from the University of Texas at Austin in 1982.

Before returning to Austin to join MCC in
1985, he was with the IBM T. J. Watson Research
Center, Yorktown, NY, for four years working on
the Office-by-Example project.

Shamim Nagqvi received the Ph.D. degree in
computer science from Northwestern University
in 1980.

He is a member of the Technical Staff at Bell
Communications Research. He was at MCC from
1986 to 1989, and at AT&T Bell Labs from 1980
to 1986. His areas of interest are database theory,
programming languages, and he has published ex-
tensively in these areas.

Shalom Tsur received the Ph.D. degree in com-
puter science from the Hebrew University of Je-
rusalem and the M.Sc. and B.Sc. degrees in elec-
trical engineering from the Technion-Israel
Institute of Technology, Haifa, Israel.

He is a senior member of the Technical Staff in
MCC’s Deductive Computing Laboratory. Prior
to joining MCC, he was a member of the Research
Staff at the IBM Israel Scientific Center, where he
was Project Manager for the APE Expert Sys-
tem—a planning environment for advising stu-
dents in their academic careers (1982-1984). In addition, he has been a
member of the Technical Staff at AT&T Bell Laboratories (1980-1982),
an Assistant Professor of Computer Science at the Pennsylvania State Uni-
versity (1977-1979), and a Senior Research Associate at the Computing
Laboratory, the University of Newcastle, UK (1975-1977). His research
interests include the areas of data and knowledge-base systems and theory,
as well as logic programming. He is the author or coauthor of 25 technical
papers and a book in these fields.

Carlo Zaniolo holds an Engineering Degree from
Padua University, Italy, and the Ph.D. degree in
computer science from the University of Califor-
nia, Los Angeles.

He has been with MCC since 1984, where he
heads the Deductive Computing Laboratory in the
Advanced Computer Architecture Program. MCC
is a Research Consortium located in Austin, TX.

