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1. INTRODUCTION 

The purpose of this paper is to present a new approach to the conceptual design 
of relational databases which ensures the complete relatability of data while 
eliminating redundancy. 

Modern integrated database systems enable a community of users to share 
data through a common database model called the schema. The need for data 
independence and user convenience suggests that the schema, rather than de- 
scribe the physical organization of the data in the storage media, should display 
the logical association or relationships of interest to the users of the database. 
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The capability of the schema to define exactly and unambiguously all the 
relationships of interest to the users has been named complete relatability 
following GUIDE and SHARE [ 181. The relationships found in databases may be 
classified as (1) one-to-one, (2) many-to-one, and (3) many-to-many. 

Various data models, such as the hierarchical, the network, and the relational 
model, have been proposed for a database schema. The degree of data relatability 
achievable with the proposed models, their potential for data independence, and 
their suitability for efficient implementation have received wide attention and 
are not discussed here. This paper concentrates on the general problem of 
designing database schemata which provide complete relatability to the users. 
We analyze the problem using the framework and the mathematical formalism of 
the relational model. A companion paper will present further applications of this 
technique [28]. 

1 .l Design of a Database Schema 

There are, basically, two approaches to the design of a relational database 
schema: an anaZyticaZ and a synthetic approach [16]. 

The analytical approach has been proposed by Codd [lo]. Here the designer 
produces a first tentative model of the database in the form of a set of relations 
of assorted degree. Then he describes the meaning or intension of his relations 
and constructs, if one is not available, a sample of his database content. As 
described in [9] and [lo], those relations which are characterized by a hierarchical 
organization or by certain dependency structures have undesirable characteristics 
and should therefore be removed. The designer must detect such relational forms 
and decompose them into lower order relations by a procedure called normali- 
zation. This approach has been applied and developed by several authors [ 13,16, 
221. 

A synthetic approach which yields a formal design algorithm is presented in 
[26] and [6]. In this approach, the designer is expected to define initially the 
database attributes and the functional dependencies among these attributes. 
Algorithms are then given to design the proper relational schema by determining 
the minimum cover of these functional dependencies. The synthetic approach 
and the various problems connected with it are discussed in more detail in 
Section 2.4. 

2. LOGICAL DEPENDENCIES IN RELATIONS 

2.1 Definitions and Notation 

Considering the database as a set of time-varying relations, we denote by 

R(Al,Az,...,ArJ (2.1) 

a relation of degree n 1 1 where A1, AZ, . . . , A, are called the attributes of R. 
Each attribute Ai uniquely names a domain of R denoted DOM(Ai) which is the 
set of all possible values for that attribute. The relation R is defined as the subset 
of the Cartesian product of its domains, 

R (AI, AZ, . . . , A,) c DOM(A1) x DOM(Az) x . . . x DOM(A,). 
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While the domains are not necessarily distinct, they form uniquely named 
attributes in R, and the order of the attributes in a relation becomes immaterial. 
!J = {Al, Az, . . . . A,} denotes the attribute set of that relation and 1 Q 1 = n 
denotes its cardinality. Relation (2.1) is also written R (L?). Any subset A c Q, is 
called a subset or a combination of attributes of R. If A E a, then r[A] denotes 
the A-component of r E R (L!). Similarly, if A c Q, then r[A] denotes the subtuple 
of r of size ( A 1 containing the components of r corresponding to the elements of 
A. We also refer to r[A] and r[A] as the A-value and the A-value of r. Unless 
otherwise stated, we assume that all relations are in first normal form [9]; that is, 
all attribute values are assumed to be simple rather than composite such as 
relations. The set of A values for some tuples of R is called the projection of R, 
denoted by 

IIasR = {rl I r E R and rl = r[A]}. 

Since lI,- R (a) is itself a relation with attribute set A, we use the abbreviated 
notation, IIR(A) = &-R(Q). 

The symbols U, n, and - denote the usual set union, intersection, and difference 
operators, while 0 denotes the empty set. Two sets having empty intersection are 
called disjoint. The natural join of two relations, R(Q) and S(A), denoted R(Q) - 
S(A), is a relation with attribute set, 52 U A, defined as 

R(W) -S(A) = {r I r[P] E R(Q) and r[A] E S(A)}. 

When Q n A = 0, the natural join reduces to the Cartesian product. Natural joins 
are commutative and associative. 

2.2 Functional Dependencies 

We shall briefly review the concept of functional dependency which has proved 
very useful in analyzing the logical structure of relations. 

Functional Dependency (FD). The attribute combination, A, is said to be 
functionally dependent (FD) in R on the attribute combination r, when for any 
pair of tuples rl, rz E R, 

b-0’) = rATI) - b-JAI = rdA1); 

that is, the equality of the r values implies the equality of the A values. 

Whenever A is FD on I? we also say the r uniquely determines, or functionally 
determines A, which we denote as “r + A.” When A is not FD on r, we may 
write “l? 4 A.” We are only interested in those FDs which are always valid for a 
given database; that is, they are expressions of the intension of the relation, and 
are not due to coincidence. The definition of FD is always verified when r I, A. 
Any FD, r + A, is then called a trivial FD. 

The first important application of FDs arises in defining the concept of 
candidate keys of a relation. A candidate key is a minimal combination of the 
attributes of a relation which uniquely determines all the remaining attributes. 

Candidate Key. A combination, A c fJ, is a candidate key for R (9) iff 

(1) A + St, and 
(2) for every combination A’ properly contained in A, A’+ a. 
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Since there are no duplicate rows in a relation, no two rows may have the same 
values of a candidate key. There always exists at least one candidate key in any 
relation. If the relation, R(Q), contains only trivial FDs, then B is the only 
candidate key. Otherwise, one or more proper subsets of !J are the candidate keys. 
When depicting a relation, one usually selects a particular candidate key (when 
there are more than one) which is designated by underlining the corresponding 
attributes; it is then called the primary key. 

A second aspect of FDs is represented by their formal properties [13]. These 
are important in the design of relational schemes and we use them to such effect 
later. 

Formal Properties of FDs. Let F, A, A, and 9 be nonempty subsets of B. Then 
the FDs of a relation R (a) have the following properties: 

Fl. Reflexivity: If I’ > A, then l? + A. 
F2. Augmentation: If P + A and A > 9, then (P U A) + (A U q). 
F3. Transitivity: If P -+ A and A + \k, then P + +. 
F4. Pseudotransitivity: If I? + A and (A U A) + q, then (P U A) + ?Ir. 
F5. Additivity: If l? + A and P + \k, then F + (A U \k). 
F6. Distributiuity (with respect to union): If I? + (A U A), then I’ + A and 

r-h. 

These properties have been treated extensively in the previous literature. The 
following two properties, not explicitly stated in previous works, are equally 
important: 

F7. Projectability (implication from a relation to its projections): If P + A in 
R(Q) and F c \k c B, then l? + (A n \k) in IIR(*). 

F8. Reverse Projectability (implication from a projection to the relation): If 
F + A in a projection of R, then I’ + A in R. 

The validity of F7 and F8 follows immediately from the definition of FD. 
P + A is called a full FD when, for every proper subset I” C l?, we have 
I?’ 4 A; otherwise, it is called a partial FD. 

2.3 Anomalies and Normal Forms 

Relations where some attribute is partially or transitively dependent on a candi- 
date key present various anomalies [lo]. These anomalies occur when tuples are 
added, deleted, or updated. 

2.3.1 Anomalies Resulting from Partial FDs. Let us consider a relation, 
STOCK, which describes the current content of a hypothetical stockroom. A 
snapshot of its content at a certain instant of time might be 

STOCK (SUPPLIER, ITEM, COLOR) 
WOODMAN CHAIR BROWN 
WOODMAN TABLE BLACK 
WOODMAN SOFA BROWN 
HOUSEMAN DESK GREEN 
HOUSEMAN SOFA BROWN 

(2.2) 
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The domains, SUPPLIER, ITEM, and COLOR denote, respectively, the code 
names of parts and a standard set of colors. The instantaneous content of our 
relation is completely defined by the set of rows of a table. The interpretation, 
however, is only partially specified by its headings. A qualifying statement, such 
as the following, is required: “Our relation describes current suppliers and the 
colors of each part item currently in stock. While one item may have many 
suppliers it has only one color.” The first part of that statement specifies that we 
are interested in the logical relationships between, on the one hand, the items 
and their suppliers, and, on the other hand, between the items and their color. 
The second part of the statement specifies that the first relationship is many-to- 
many, while the second is many-to-one. In relational database jargon the current 
content of relations is called extension, while their meaning is called intension 
[ll]. While the extension of a database is subject to continuous changes, its 
intension undergoes only a slow evolution (if any). The database intension is 
therefore assumed to be time independent unless otherwise specified. 

Relation (2.2) suffers from the following anomalies. Under the important 
assumption’ that a key attribute cannot include an undefined value [lo], no 
information on the color of a new part can be introduced unless at least one 
supplier of that part is active. Furthermore, deleting the last supplier of a part 
will obliterate the information regarding that part’s color. Finally, a change in the 
color of a part will require a complete search through the file and a possible 
update on multiple records, if one wants to avoid database inconsistencies. Now 
it may be seen that relation (2.2) has only one candidate key, the combination 
{SUPPLIER, ITEM}. Furthermore, the attribute COLOR is partially dependent 
on that combination since ITEM alone uniquely determines the value of COLOR. 
Codd suggests that, under these conditions, the anomalies may be removed by 
decomposing the relation in such a way that in the new relations no attribute will 
be partially dependent upon a candidate key. Relations which satisfy this condi- 
tion are said to be in second normal form (2NF) [lo]. Thus relation (2.2) may be 
decomposed into the pair: 

IISTOCK (SUPPLIER, ITEM) 
WOODMAN CHAIR 
WOODMAN TABLE 
WOODMAN SOFA 
HOUSEMAN DESK 
HOUSEMAN SOFA 

(2.3) 

IISTOCK (ITEM, COLOR) 
CHAIR BROWN 
TABLE BLACK (2.4 
SOFA BROWN 
DESK GREEN 

By using the pair of relations (2.3) and (2.4), the anomalies of schema (2.2) are 
avoided. The suppliers and colors of a part can now be changed independently of 
each other. 

’ This assumption and ita consequences are discussed further in Section 2.4. 
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2.3.2 Anomalies Resulting from Transitive FDs. The other type of dependency 
structure identified by Codd as a source of anomalies is the transitive dependency 
on candidate keys, which can still be present in second normal form relations. 
Assume, for instance, that a financial company needs to keep records of its 
employees (EM) managing the accounts (AC#) of various customers, along with 
the telephone extensions of the employees (TX). That information can be 
modeled by the following relation: 

ACMG (e, EM, TX) 
4218 A. MILLER 428 
7531 A. MILLER 428 (2.5) 
1537 B. BROWN 753 
8532 T. LEIGH 915 

Assuming that an account has only one manager and an employee has only one 
telephone extension, the dependency structure of (2.5) may be depicted by the 
following: 

AC# -EM 

Note that “ACf + TX” is a transitive FD. Under the important assumption 
that the key, AC#, cannot have an undefined value, a telephone extension can be 
recorded only for those employees who currently manage at least one account. 
Once the telephone extension of an employee is changed, a number of records 
equal to the number of accounts managed by that employee must be changed. 

It was suggested that the anomalies which characterize relation (2.5) are due to 
the presence of a transitive FD; here again a decomposition of relation (2.5) was 
proposed to remove anomalies. Thus decomposing (2.5) according to EM + TX, 
we obtain the relations (2.6) and (2.7): 

IIACMG (&, EM) 
4218 A. MILLER 
7531 A. MILLER (2.6) 
1531 B. BROWN 
8532 T. LEIGH 

IIACMG (EM, TX) 
A. MILLER 428 
B. BROWN 753 (2.7) 

T. LEIGH 915 

It may be seen that the anomalies have indeed been eliminated by the 
decomposition. 

Relations in 2NF which are free from transitive dependencies are said by Codd 
to be in third normal form (3NF). The original definition of 3NF [lo] distinguishes 
between those attributes which participate in at least one candidate key and the 
remaining attributes. That definition has been amended in [ 111 in order to handle 
certain anomalies not removed through its application. The new definition, 
lacking the somewhat arbitrary distinction between prime and nonprime attri- 
butes, is as follows. 
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Boyce-Codd Normal Form (BCNF). A relation R is in BCNF if it is in first 
normal form, and for every subset I of attributes of R, if some attribute not in 
I? is FD on I’, then all the attributes of R are FD on I. 

An optimal set of 3NF relations is also proposed in [lo] and [ 121 as the principal 
model of the database, an optimal set of relations being defined as that containing 
the fewest relations. The various normal forms 2NF, 3NF, and BCNF, proposed 
by Codd and his co-workers may be achieved through decompositions based on 
the following proposition. 

PROPOSITION 2.1. If {A, I’, A} is a three-element partition of the attribute set 
of R(P) and r-, A, then 

R(Q) = l-IR(h U r).l-IR(r U A). 

Thus the presence of a nontrivial FD in R is a sufficient, though not necessary, 
condition for its decomposition. 

2.4 Design of Relational Database Schemata 

The basic concept underlying the search for suitable normal forms may be 
described as an attempt to develop a design methodology for relational database 
schemata. One might recognize two main approaches to this effect: (1) the “case 
study” approach, and (2) the minimum cover techniques. The latter can in turn 
be divided into (a) the analytic and (b) the synthetic approach. We shall examine 
these in turn and suggest an alternate criterion for relational database design: 
complete data relatability. 

2.4.1 The Case Study Approach. This approach which was considered in 
Section 2.3 is beset by two difficulties: (1) the possibility of multiple decomposi- 
tions of certain relations, and (2) the general problem of defining as well as 
eliminating anomalies. We shall consider these in turn. 

Turning back to relation (2.5), for instance, it may be seen that, in addition to 
(2.6) and (2.7), it allows a second decomposition based on the FD “AC# + EM.” 
This decomposition yields the relations (2.8) and (2.9): 

I-IACMG (AC#, EM) 
4218 A. MILLER 
7531 A. MILLER (2.8) 
1537 B. BROWN 
8532 T. LEIGH 

IIACMG (AC#, TX) 
4218 428 
7531 428 (2.9) 
1537 753 
8532 915 

Although this second schema is also formally in BCNF, it only aggravates the 
anomalies of (2.5). If the key of (2.9) cannot have an undefined value, the 
telephone extension of an employee can only be listed when he currently manages 
at least one account. Changing the telephone extension of an employee managing 
several accounts still requires the updating of multiple records of (2.9). Moreover, 
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when an account is assigned to or taken from an employee, both relations (2.8) 
and (2.9) must be updated. Thus an analysis of the anomalies leads to the 
conclusion that decomposition (2.6) and (2.7) should be chosen. 

When a relation possesses many decompositions, selecting the proper one 
through a complete analysis of the anomalies presented by the alternative 
schemata may be quite laborious. Such a procedure is also hampered by the lack 
of precise definition of an anomaly, for the semantic constraints characterizing 
many real-life situations are quite complex, and no clear-cut description of 
anomalies can be given without knowing the operations envisioned by the user. 
Thus consider, for example, relation (2.7). We might still find it anomalous due 
to the fact that a new telephone extension (TX) cannot be listed until it is 
assigned to an employee, or that it may be lost when an employee leaves the 
firm. One might argue that such happenings are quite unimportant and do not 
constitute a “real” anomaly. But this implies that the presence of an anomaly can 
only be recognized on an individual case basis and depends both on the semantics 
of the relation and on a user’s usage of a relation rather than on the dependency 
structure of the relation. 

2.4.2 The Minimum Cover Technique. A more systematic approach to the 
problem is supplied by the concept of minimal couer of the set of FDs of a 
relation. A couer is a set of FDs from which all others can be derived through the 
formal properties of FDs (Table I). The problem of obtaining an efficient minimal 
cover algorithm has received wide attention. A useful analogy between FDs and 
Boolean functions is utilized in [13] while the algorithm proposed in [5] uses an 
analogy betweed FDs and the production grammars of formal languages. These 
two papers also supply two interesting instances, the first of an analytic and the 
second of a synthetic approach to the design of a database schema. The approach 
taken in [13, 14, 16, 221 is clearly analytic. A relation is assumed to exist. Then, 
by analyzing the structure of FDs between the attributes of the relation, the 
designer can decompose it into a set of lower order relations satisfying certain 
requirements (such as being in 3NF for instance). 

On the other hand, the approach taken in [26] and [6] is clearly synthetic. The 
database attributes and the set of FDs characterizing them are regarded as 
semantic primitives that the designer is expected to synthesize directly from his 
understanding of the case at hand. An algorithm is then used to obtain a minimal 
cover for the FDs of the database and an optimal set of 3NFs is finally constructed 
from it. The validity of the synthetic approach is limited by a problem acknowl- 
edged in [6], and which may be illustrated by the following example. A company 
is divided into departments (DP), subdivided into sections (SEC), each section 
and department having its own manager (MGR). Following the synthetic ap- 
proach, we start by describing the various functional dependencies between these 
attributes. Thus we find the following FDs: 

fi: SEC + DP, 
fi: DP + MGR, 
f3: SEC + MGR. 

The application of the cover algorithm, which naturally operates on the basis of 
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purely syntactic rules, would eliminate fi as the transitive composition of fi and 
fi . However, this elimination would be semantically incorrect since fs defines the 
manager of a section and not the manager of a department. The analytic approach 
instead would reveal this problem immediately since the designer would find it 
impossible to enter the two distinct names of a department manager and of a 
section manager under the same column heading “MGR.” This would force the 
designer either to use two different attributes for managers of sections, or else to 
change the statement of intension associated with the relation. Either solution 
will solve the problem. One could certainly argue that the same kind of semantic 
judgment could be used by the designer in assessing the validity of the elimination 
of f3 from the cover. But the two situations are quite different. In the case of the 
analytic approach, once the designer accepts the fact that his relations represent 
plausible instances of the database content, he can proceed algorithmically with 
assurance of correctness. Under the synthetic approach every conclusion is 
tentative and subordinate to a semantic validity check. 

2.4.3 Complete Data Relatability. In view of the problem discussed in Section 
2.4.1 it appears that elimination of anomalies is not an adequate criterion for 
designing a database. We propose a much more stringent and general criterion 
for relational database design, that is, the complete relatability of data. We 
describe this concept by referring to our previous examples. 

Consider, for example, relation (2.5). From the fact that AC# is underlined as 
a primary key we can only infer the FDs 

AC# --) EM and AC# + TX. 

An examination of the relations (2.8) and (2.9) leads to the same conclusion. On 
the other hand the underlined keys of relations (2.6) and (2.7) yield 

AC#+- EM and EM + TX, 

from which AC# + TX is inferred by transitivity. Thus relations (2.6) and (2.7) 
reveal an important dependency which was concealed in the other two schemata. 
We shah say that schemata (2.6) and (2.7) “ensure complete data relatability” 
whereas schemata (2.5), (2.8), and (2.9) do not.2 

Similar considerations apply to relation (2.2). The schema represented by this 
relation reveals only the partial FD: 

{SUPPLIER, ITEM} + COLOR 

whereas the much more significant 

ITEM + COLOR 

cannot be inferred from (2.2). On the other hand decomposition of (2.2) into the 
pair 

l-ISTOCK( SUPPLIER, ITEM) and IISTOCK(ITEM, COLOR) 

’ We define complete relatability in a precise mathematical fashion in Section 5.4. 
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depicts both the FD 

ITEM + COLOR 

and the many-to-many relationship between parts and supplies revealed by the 
fact that SUPPLIER and ITEM are both needed to specify the key in the 
relation. 

The criterion of complete data relatibility provides a unified basis for the 
general development of relational schemata. Thus, for example, normalization of 
hierarchies into 1NF cannot be justified on the basis of update anomalies, while 
it is a general consequence of the requirement for complete relatability. For 
indeed, any hierarchical organization is a specialized representation where certain 
associations between attributes are emphasized at the cost of hiding others. It is 
precisely this difficulty which led Codd to propose the use of 1NF which gives a 
uniform view of the data whereby the various associations can be derived with 
equal ease. We have also traced the data relatability justification for the 2NF and 
3NF above. Furthermore, the various minimal cover algorithms find a natural 
justification in terms of data relatability. They can be viewed as processes for 
eliminating redundancy and pleonasms from the definition of the database 
schema while preserving the complete relatability data. The dependencies ap- 
pearing in a cover, in fact, define implicitly all the others because of the formal 
properties of FDs. 

Finally it may be reassuring to note that the decomposition of a relation 
according to the criterion of complete relatability will eliminate certain anomalies 
which are not removed by BCNF. 

The concept of complete relatability therefore supplies a unified justification 
for the major concepts developed to design relational database schemata. It plays 
a major role in the following sections. 

3. MULTIVALUED DEPENDENCIES 

3.1 Many-to-Many Relationships 

Functional dependencies can only model one-to-one and many-to-one relation- 
ships. Thus the natural many-to-many associations which often arise between 
database attributes are not properly modeled by functional dependencies. This 
problem has long been recognized (see, e.g., [13]), but early attempts to deal with 
it failed to produce any viable solution. The correct solution was finally achieved 
through the introduction of multivalued dependencies3 which include the usual 
functional dependencies as a special case. 

We shall preface the formal presentation by means of an example which will 
demonstrate the problem. 

Let us consider the previous relation (2.2) with a modified statement of 
intension: We shall assume that whenever a part may have more than one color, 
every supplier of that part supplies all its colors. A possible snapshot of such a 

3 Multivalued dependencies were discovered independently by Fagin [15] and Zaniolo [27]. 
Previously Delobel and LBonard [14] had defined the related concept of “first-order hierarchical 
decomposition.” 
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relation is as follows: 

MSTOCK( SUPPLIER, 
WOODMAN 
WOODMAN TABLE BLACK 
WOODMAN SOFA BROWN 
HOUSEMAN DESK GREEN 
HOUSEMAN SOFA BROWN 
HOUSEMAN CARPET RED (3.1) 

HOUSEMAN CARPET YELLOW 
HOUSEMAN CARPET BLUE 
BLAND CARPET RED 
BLAND CARPET YELLOW 
BLAND CARPET BLUE 

ITEM, COLOR) 
CHAIR BROWN 

Since no FD exists between the attributes of that relation, the only candidate key 
is the combination of all three attributes. 

Schema (3.1) is misleading since it appears to imply that each supplier only 
produces a few colors of a given part. Instead, we actually have a many-to-many 
relationship between supplier and items, and a similar relationship between items 
and colors. Furthermore, all the anomalies of relation (2.2) are present here. Since 
no attribute composing the primary key may have an undefined value, the colors 
of an item only appear when there is at least one supplier for that part. Adding, 
deleting, or changing one of the colors of any part requires searching through the 
file and updating a record for every supplier of that part (since every supplier will 
have to supply the new set of colors). Remarkably, relation (3.1) is decomposable 
into the pair 

l-IMSTOCK( SUPPLIER, 
WOODMAN 
WOODMAN 
WOODMAN 
HOUSEMAN 
HOUSEMAN 
HOUSEMAN 
BLAND 

ITEM) 
CHAIR 
TABLE 
SOFA 
DESK 
SOFA 
CARPET 
CARPET 

IIMSTOCK( ITEM, COLOR) 
CHAIR BROWN 
TABLE BLACK 
SOFA BROWN 
DESK GREEN 
CARPET RED 
CARPET YELLOW 
CARPET BLUE 

(3.2) 

(3.3) 

The relations (3.2) and (3.3) describe the natural relationships of the database far 
better than (3.1): These relations show immediately that there exists a many-to- 
many relationship between SUPPLIER and ITEM and between ITEM and 
COLOR. Therefore, it seems obvious that a designer should use the pair (3.2) and 
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(3.3) rather than the original (3.1). However, he will find no guidance from FD- 
oriented concepts concerning relational database schemata since relation (3.1) is 
formally in BCNF. In the case of relation (2.5), for instance, the designer could 
detect, from the statement of intension of the relation, the pattern of partial FD 
which was previously described as a source of anomalies. Similarly, when con- 
fronted with relations such as (3.1), the designer needs the definition of a pattern 
of logical dependencies which allow an immediate recognition of the irregular 
nature of such relations. Since the logical dependencies characterizing (3.1) are 
not definable in terms of FDs, we need a new hind of dependency between 
attributes in order to describe the structure of (3.1). From the statement of 
intension of relation (3.1) we derive directly the fact that the set of colors of an 
item is the same for every supplier of that item. Therefore, the set of colors of an 
item is effectively a function of ITEM only and not of supplier. We therefore 
speak of a multivalued dependency (MD) of the attribute COLOR upon the 
attribute ITEM. The peculiarity of relation (3.1) is that COLOR is multidepen- 
dent (MD) on ITEM alone. A relation where COLOR is MD on the full 
combination {SUPPLIER, ITEM} is not decomposable and is also free from the 
above-mentioned anomalies. 

3.2 Definition of Multivalued Dependencies 

We shall now define the concept of MD between two (possibly nondisjoint) 
subsets of attributes of a relation R(Q). 

If 0 and A are two attribute combinations in a relation R(O), and r E R, then 
the set of A-values associated with the value r[O] is denoted by M,Jr[O 1). 
Formally, we may write 

MA( r[ O]) = { r’[A] ] r’ E R and r’[ 01 = r[ 01). 

Therefore, MA denotes the R-induced mapping from IIR(8) into the family of 
subsets of IIR( A). When (O, A} is a dichotomy of O, MA(r[8]) is called the image 
set of r[O] under R. For instance, in relation (3.1), if 8 = {SUPPLIER, ITEM} 
and A = {COLOR}, then 

Ma(HOUSEMAN, CARPET) = {RED, YELLOW, BLUE}. 

Let I’ and A be two combinations of attributes of R(O), and let A be their 
complement: A = Q - (P U A). Let MA denote the R-induced mapping from 
IIR(r U A) into families of subsets of IIR(A). Then A will be said to be 
multidependent on P in R iff, for each pair of tuples rl, r2 E IIR (A U I?), the 
following is true: 

(rl[I’] = r2[rl) * Wa(rl) = MA(r2)). 

When ] MA 1 = 1 for any value of the combination (A U I?), this definition 
reduces to the definition of FD. Thus FDs are a special case of MDs. When A = 
0 (i.e., P U A = a), or when A c I?, the previous definition is satisfied in any 
relation. These MDs are named trivial. We use the notation 

r-h and r+A 

to indicate that A is or is not MD on I’. It follows from the previous definition 
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that I’ t, A in R(Q) if and only if it&(r) = Mb(r[P]) for each r E IIR(l? U A). 
This alternative definition of MD is used in [Z]. 

Relation (3.1), for instance, is characterized by a nontrivial MD. Indeed, 
ITEM * COLOR since the set of colors of an item is the same for any supplier 
of that item. 

Directly from the definition of MD we can derive that P --f-* A if and only if 
I? t, (A - P ). This property holds for the case in which P 2 A, as we assume 
that “I’ + 0” (where 0 is the empty set) is a valid, although trivial, MD. Because 
of this property we could build a theory of multidependencies assuming that the 
left- and right-hand-side attribute combinations are disjoint. This restriction, 
however, is not necessary. Thus we opt for the more general definition which 
provides a more uniform treatment of MDs and FDs. A further generalization of 
the MD concept can, moreover, be achieved by letting the left side be the empty 
set. Therefore, 0 t) A is valid in R(Q) if the A-values in the relation are 
independent of the A-values, where A = O - A. This occurs whenever M,(rl) = 
M,,(Q) for any rl, r2 E IIR(A). For a further discussion of this useful generaliza- 
tion, the reader should refer to [15]. 

We say that R(G) is decomposable into the pair of projections I’IR(G) and 
lJR(Q2) when 

(1) !J1 and O2 are proper subsets of a, and 
(2) R(Q) = l-IR(G,) . IIR(G2). 

We now present a fundamental theorem. 

PROPOSITION 3.1. Let r and A be subsets of Cl and let A = Q -(I? U A). Then 
r t, A in R(G) iff 

R(Q) = ~R(A u r) . ruqr u A). 

The proof of this proposition is omitted since it has already appeared in [27] 
and [15]. If P is empty, then the join reduces to a Cartesian product and R(Q) is 
equal to the Cartesian product of IIR(A) and IIR(A). As a direct corollary of 
Proposition 3.1, it follows that the presence of a nontrivial MD in a relation is 
both a sufficient and a necessary condition for its decomposability into a pair of 
subprojections. A relation which contains only trivial MDs is called atomic. Such 
a relation is in fourth normal form (4NF) as defined by Fagin [Xl. However, note 
that a relation in 4NF is not necessarily atomic. 

The symmetry of A and A in Proposition 3.1 yields the following corollary. 

PROPOSITION 3.2. In a relation R(Q), r ++ A iff r t, A, where 

A = O - (A U I?). 

This is called the complementation property of MDs. 

3.3 Formal Properties of MDs 

The multivalued dependencies of a relation R(Q) have the following properties. 

MO. Reflexivity: If I > A, then P - A. 

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981. 



14 * C. Zaniolo and M. A. Melkanoff 

Ml. CompZementation:4 I? -M A iff l? - A, where A = D - (I’ U A). 

From MO and Ml we derive that all dependencies of the form I’ -++ A, where 
either 0 c A c r or r U A = 52, are valid in any R(Q), (trivial MDs). Moreover, 
we derive that P t) A iff I’ t, (A - F). As was proved in [27] and [2], MDs 
also have the following properties. 

M2. Augmentation: If F t, A and A 2 9, then (F U A) --w (A U +). 
M3. Transitiuity: If I? t, A and A --t, 9, then P t) (9 - A). 

Since l? ---f-) * is not always valid the analogy to FDs is not complete here. 
Indeed the more precise term, such as “restricted transitivity,” could be used [27]. 
The validity of P ++ \k can, however, be guaranteed under supplementary 
assumptions. For instance, if A n \k = 0, then I’ --t, \k. Also, P --t;, *‘when 
l? + A. In this case I’ + (A n +) by distributivity and P t, * by the additivity 
property of MDs (additivity is proved in M7). Similar statements can be made 
for the pseudotransitivity property. 

M4. Pseudotransitivity: If P t, A and (A U A) t, 9, then (P U A) - (‘3! 
- A). 

M5. General Composition: If F t) A and A t, \k where A c (I? U A), then 
r t, (‘k-h). 

PROOF. (P U A)- \k by augmentation on A t) \E. But since P t, A, 
then P t, (q - A) by pseudotransitivity. Q.E.D. 

MDs do not have the distributivity property with respect to union; however, 
they have the following property. 

M6. Partitionability: If I t) A and I’ - A, then 

(1) r - (A - A), 
(2) r - (A - Ah), 
(3) l? - (A n A). 

Another important property establishes a pattern of implication from the MDs 
in a relation to the MDs in its projections. 

M7. Projectability: If P --t-) AinR(O)andI’cJrcB,thenI’t, (AnWin 
IIRW). 

This property can be derived quite easily from the definitions. A detailed proof 
can be found in [27]. 

In contradiction to FDs the implication from a projection to the original 
relation does not hold. Thus MDs do not have the reverse projectability property, 
a fact which is more easily clarified by an example. Consider the following 
relation: 

PS ( PD, SUP, P#, PRICE) 
8JKFF MOT 4267 1.15 
8JKFF FC 4267 0.97 (3.4) 

4KRAM TI 1135 3.75 

4 Although this statement of complementation is weaker than the one used in [a], the two rules are 
actually equivalent. Furthermore, Biskup [7] has proved that replacing complementation by the rule 
“0 + 8” still obtains a complete set. 
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The attributes are the part numbers (P#), the suppliers of those parts (SUP), the 
part description (PD), and the wholesale price of the parts (PRICE). Furthermore, 
we find that P# + PD but {P#, SUP} f, PRICE, since different suppliers may 
charge a different price for the same part, as seen from the snaphsot given above. 
Therefore, in relation (3.4) PRICE is not MD on P# alone, that is, P# ft* 
PRICE. Thus, for example, 

MPRICE(BJKFF, MOT, 4267) # M,qccs(BJKFF, FC, 4267). 

However, in the projection 

IIPS ( PD, P#, PRICE) -- 
BJKFF 4267 1.15 
BJKFF 4267 0.97 
4KRAM 1135 3.75 

(3.5) 

we have P# + PD. Also, P# --f-) PRICE in (3.5) while P# + PRICE in (3.4). 
This example shows that an MD in a projection does not imply a corresponding 
MD in the original relation. It also demonstrates that the distributive property is 
not valid for MDs. Thus in relation (3.4), for example, P# + PD; therefore 
P# t, {SUP, PRICE}. Yet P# ft, PRICE. Intuitively speaking this means 
that the MD expresses an irreducible association between P#, SUP, and PRICE 
and not two independent relationships between P# and SUP and between P# 
and PRICE. 

3.4 A Complete Axiomatization for FDs and MDs 

Reflexivity, augmentation, and transitivity form a complete set of inference rules 
for FDs. The closure of a set F of FDs, denoted F’, is the set of alI FDs derivable 
from F using these rules. The strong completeness theorem which follows from 
Armstrong’s results [l] can be stated as follows: For every set F of FDs, there 
exists a relation such that the set of FDs that are valid in it is exactly F+. 

A similar strong completeness theorem for MDs was proved in [2]. Comple- 
mentation, reflexivity, augmentation, and transitivity supply a complete set of 
inference rules for MDs. If G is a set of MDs valid in R(O), its closure set, denoted 
G+, is the set of all MDs derivable from G using these rules. 

Mixed Rules. Assume that a set F of FDs of a relation R(Q) is given together 
with a set G of MDs. Additional dependencies which could not be derived from 
F or from G separately, might be derived from F and G jointly. 

Some MDs might be deduced by the very fact that every FD is also an MD. 

MXl. If I’ +- A, then I? - A. 

r t, A will be called the MD counterpart of F + A. Moreover, some new 
FDs might be inferable by the following. 

MX2. IfP ts AandA+!I’,whereA>\kandhnA=(ZI,thenI’+9. 

The proof of this second rule can be found in [2] along with the proof that 
{Fl, F2, F3, Ml, M2, M3, MXl, MX2) 5 is a complete set of inference rules for the 

’ This set does not contain MO(MD reflexivity) since MO may be derived from Fl and MXl. 
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Table I. Formal Properties of FDs and MDs 

Property FD MD 

Reflexivity 
Augmentation 
Additivity 
Distributivity 
Transitivity 
Pseudotransitivity 
General composition 
Complementation 
Projectability 
Reverse projectability 

Yes Yes 
Yes Yes 
Yes Yes 
Yes No” 
Yes Yes 
Yes Yes 
Yes Yes 
No Yes 
Yes Yes 
Yes No 

‘A weaker property called partitionability 
holds for MDs. 

family of functional and multivalued dependencies. The closure of F U G, denoted 
(F, G)‘, consists of (1) the set of all FDs and (2) the set of all MDs which are 
derivable from F and G by repeated applications of those eight rules. The strong 
completeness theorem by Beeri et al. can be stated as follows: For any sets F of 
FDs and G of MDs (on the attribute set Sl) there exists a relation R(Q) such that 
the set of dependencies valid in R is exactly (F, G)+. 

Let G and G’ be sets of dependencies of a relation, while PI, Pp, . . . , P,. are 
some inference rules or properties for these dependencies. The set G’ is said to be 
a cover for G, according to these properties, if every dependency in G is inferable 
from G’ by the application of these rules. When no proper subset of G’ is a cover, 
then G’ is said to be a minimal cover. 

Table I summarizes the formal properties of FDs and MDs. 

4. ELEMENTARY DEPENDENCIES 

Following the analytical approach, we assume that the database is modeled as a 
set of relations, each accompanied by an unambiguous statement of its intension 
and by a typical sample of its content. From these, the designer must detect the 
dependencies of each relation and, using this information, design the right schema 
for this database. In this section we introduce the concept of elementary FDs and 
of multiple elementary MDs which (1) simplify the designer task of detecting the 
dependencies of a relation, and (2) supply the foundation for the schema design 
algorithm discussed in the following sections. 

Clearly the quality of the schema produced by an algorithm driven by the 
dependency structure of a relation depends upon the correctness and complete- 
ness with which the designer initially characterized these dependencies. While no 
absolute guarantee against human error can ever be offered, it is clear that the 
designer is apt to perform most reliably when he need only be concerned with 
few and simple dependencies appealing directly to his intuition. As we shall see, 
elementary FDs and multiple elementary MDs have the following properties: (1) 
they constitute a small subset of all the FDs and MDs valid in a relation; (2) they 
have a simple nondecomposable structure which makes them appeal to intuition; 
(3) they have a number of formal properties which are very useful for schema 
design; (4) they provide the same information as all the FDs and MDs of the 
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relation (in fact we show that all the FDs and MDs of a relation are inferable 
from its elementary FDs and its multiple elementary MDs by the inference rules 
discussed in the previous section). 

In the discussion which follows we shall find it useful to refer to the following 
example. 

The field service for a computer manufacturer is interested in the following 
attributes 

Customer number: CUST# 
Customer name: CUSTN 
Computer model: MODEL 
Quantity of a given model: MODQ 
Technician number: TEC# 
Technician name: TECN 

and in the following information: 

(1) the name of each customer; 
(2) the name of each technician; 
(3) the computer models, and their quantity, used by each customer; 
(4) the set of technicians assigned to a customer (assume that every technician 

assigned to a customer can repair all the computer models owned or rented 
by that customer). 

Thus a composite relation defined on those attributes permits the following 
snapshot of its content: 

FIELD (CUST#, CUSTN, MODEL, MODQ, TEC#, TECN) 
351 WOODS A 3 4562 SMITH 
351 WOODS A 3 3333 FISHER 
351 WOODS B 1 4562 SMITH (4.1) 
351 WOODS B 1 3333 FISHER 
552 IRON C 1 7532 FISHER 
891 LEAD B 1 4562 SMITH 

The statement of intension and the sample content of our relation yield the 
following dependencies (which are not the only ones, however). 

Dl. CUST# + CUSTN 
D2. CUST# - {MODEL, MODQ} 
D3. CUST# -t) {TEC#, TECN} 
D4. {CUST#, MODEL} + MODQ 
D5. TEC# + TECN 
D6. TEC# t, {CUST#, CUSTN, MODEL, MODQ}. 

(4.2) 

4.1 Elementary Dependencies 

A uniform treatment of MDs and FDs can be developed on the basis of their 
augmentation and additivity properties. Let G denote the set of all MDs of R(R) 
where the right side of each MD is not empty and is disjoint from the left side. 
Thus G is a set of ordered pairs (r, A) where l? --t, A in R(a) and A - r = A, 
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A # 0. Moreover, let F be the set of ordered pairs denoting the FDs of R with 
disjoint left and right sides. Obviously, F G G. 

Let us next define the following partial order among ordered pairs of subsets 
offi: 

V’, A) 5 (A, W if I? c h and AC \Ir. (4.3) 

The minimum members of G according to (4.3) are called the elementary MDs of 
R(P). They form a set denoted by G (the maximum members of G are the various 
dichotomies of a). Thus “F ---t) A” is elementary iff I? n A = 0 and.there exists 
no distinct “I” -H A”’ where r’ & r and A’ c A. The set F is also ordered by 
(4.3) in a completely similar fashion. The minimum members of F are called 
elementary FDs.’ They form a set denoted by i? It follows from the distributivity 
property that elementary FDs have the form “r -+ A,” where A f?S r and I” f, 
A for every I” c I?. 

We can now state a theorem which can be regarded as an extension to MXl. 

PROPOSITION 4.1. The MD counterpart of an elementary FD is an elementary 
MD. 

PROOF. By contradiction assume that r 4 A is an elementary FD while 
r --w A is not an elementary MD. Then there must exist a I” ++ A where 
I” C r. But then it follows from MX2 that r’ + A. That would contradict our 
original assumption. Q.E.D. 

PROPOSITION 4.2. P and e are, respectively, the minimal covers for F and G 
according to additivity and augmentation. 

PROOF. Given a (I’, A) E G, we can construct G’ c B as follows: 

G’ = {(r’, h’) E G) (r’, A’) I (r, A)}. 

If \k denotes the union of the right side of the MDs in G’, then by augmentation 
and additivity we infer r t-, P. We want to show that 9 = A. Clearly, * c A. 
We know that the MD I’ --t, (A - ‘k) is in G according to M6. If \k C A, then 
there exists an elementary I”’ t, A” where (r”, A”) 5 (r, A - \k). But (r”, A”) 
must then belong to G’ and 4 > h”. But A” c A - ‘k, a contradiction. Thus G is 
a cover for G according to additivity and augmentation. To prove minimality and 
uniqueness, we only need to observe that in M2 and M7 the implied dependency 
is always greater in terms of (4.3) than its implicant or implicants. But since every 
MD in e is minimal in terms of (4.3), it cannot be derived from other MDs using 
M2 and M7. Thus not only 6 is the minimal cover of G by additivity and an 
augmentation, but it is also the only subset of G which has this property. In a 
similar fashion we can prove that P is the minimal cover of F by additivity and 
augmentation utilizing, however, the distributivity property instead of 
M6. Q.E.D. 

If we consider all the dependencies of a relation (including those where the left 
and the right sides overlap), then it follows from Proposition 4.2 that P and B 

‘The concept of elementary FD, unlike that of elementary MD, is not new. For instance, in [13] we 
find them defined as “elementary functional relationships.” 
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are, respectively, the minimal covers for these FDs and MDs by reflexivity, 
additivity, and augmentation. Since these properties do not constitute a complete 
set of inference rules, however, smaller covers can be constructed.’ The problem 
of including complementation for MDs is considered in the next section. 

Elementary dependencies can be regarded as noncompound associations in- 
volving a minimal set of attributes. Any other nontrivial dependency is, in fact, 
obtained by adding some attributes to an elementary one and/or by combining 
them according to the additivity law. For this reason, when considering the 
various dependencies of a relation, we think more naturally in terms of elementary 
dependencies. All six dependencies listed in (4.2) are elementary. 

4.2 Dependencies with Nested Left Sides 

The properties of MDs with nested left side are very important for understanding 
and analyzing the logical structure of relations. Let us denote by D(I’) the family 
of all nonempty sets A for which I’ ---t-, A. The minimum elements of this family 
according to the ordering defined by set containment is denoted &I’) .’ It follows 
from M6 and M7 that D(I) is closed under union and intersection. Thus D(I’) is 
a partition of St. A singleton set {A} appears in D(I’) for every I? + A. Actually 
if I’* (where r* 2 IJ denotes the set of all attributes in fi which are FD on r, 
then D(r*) = D(r) [2]. 

In the case of the relation FIELD (4.1) we have 

D( {CUST#, MODEL}) = { {CUST#}, {MODEL}, {CUSTN}, {MODQ}, 
{TECf, TECN}} 

D( {CUST#} ) = { {CUST#} , {CUSTN) , {MODEL, MODQ} , {TEC#, TECN}} . 

If A and B are two partitions of the same set, A is said to be at least as fine as 
B when, for each a E A there exists an element b E B such that b 2 a. If, 
furthermore, A # B, then A is said to be finer than B. That is to say that B was 
obtained by merging some of the elements of A. We can now state the following. 

PROPOSITION 4.3. If r > I”, then D(r) is at least as fine a partition of C2 as 
D(r’). 

PROOF. We prove that for any pair A E D(r) and A’ E D(I”) either A’ 1 A or 
A’ fl A = 0. Indeed, augmenting I?’ - A’ and combining into r - A according 
toM6,weobtainl?t, (AnA’).ThuseitherAOA’=AorAOA’=IZl,orwe 
contradict the assumption that A E D(r). Q.E.D. 

The family of all nonempty sets A for which r -++ A is an elementary MD is 
denoted E(r). 

The union of all sets in E(I’) is denoted r-. In general we have 0 C E(r) C 
D(r). In particular, if I’ is such that every MD with left side properly contained 
in r is trivial, then E(I’) = D(I’) - U(r), where U(r) denotes the unit partition 
of r. In relation (4.1), for example, we find that E( (CUST#}) contains all the 

7 For jnstance, in the set of elementary FDs, ( gl :A + B, gz : I3 ---) C, g3 :A + C) , g3 is derivable from 
g, and g2 by transitivity. The analogous property holds for the MD counterpart of these FDs. 
a These concepts are taken from [2] where D(r) is called the dependency basis of r. 
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elements of D( {CUST#} ) except, of course {CUST#} . Thus {CUST#} - = 
{CUSTN, MODEL, MODQ, TEC#, TECN} whereas E( {CUST#, MODEL} ) = 
{ {MODQ}} and {CUST#, MODEL) -= {MODQ} . 

We now have the following important theorem. 

PROPOSITION 4.4. Let r > Y and let A = I7 - r’. Then, ifE(r) is not empty, 
there exists a * E E(Y) such that \E 2 (I’- U A). 

PROOF. Given A E E(r), by Proposition 4.3, there exists a + E D(F) such that 
9 > A. We prove that * > (I?- U A) and that I” t, P is elementary. In order 
to prove that \k Z-A, we can augment and complement the last MD to yield [I’ 
U (A fl \k)] - ‘9 where g (a - Q). Since [I” U (A fl *k) U q] 1 [rl U A], we 
can compose this last MD with (P’ U A) - A, according to M5. Thus we obtain 
[I”U(AO\k)] ++ (A-q). Since\E>A,wehaveA-q=D.TheneitherA 
fl q = A (i.e., k > A), or the assumption that (I” U A) --w A is elementary is 
violated. In order to prove that \k > I’-, observe that if there exists another A’ E 
E(P) where A # A’, then by the previous reasoning there exists a \k’ E D(Y) 
where P’ 1 (A’ U A). Thus I” ++ (\k n k’) where (q n \k’) # 0. This contradicts 
the assumption that \k E B(I”) unless 9 = \k’. Hence \k contains each class in 
E(Y); therefore it also contains I-. To prove that I’ - q is elementary, we 
can use what already has been proved, namely, that if I?” -TV \k, with I”’ c P’, 
then \k > I - P”. Hence it follows that * 2 P’ - I?’ 10, which is a contradiction 
since I?’ and \k are disjoint. Q.E.D. 

Proposition 4.4 has some important implications in the development of a 
methodology for analyzing the dependency structure of a relation. The following 
is a corollary of Proposition 4.4. 

PROPOSITION 4.5. IfE(r) is empty, so is every E(9) with \k 2 r. 

We can also state the following. 

PROPOSITION 4.6. Let G be the set of elementary MDs of a relation R. For 
each nonempty E(r) choose an arbitrary A E E (J?) and remove I’ --f-, A from 
G. Any subset of G so constructed is a minimal cover for the MDs of R according 
to reflexivity, augmentation, additivity, and complementation. 

PROOF. Consider I- where E(P) is not empty. If P- = O, then I? ++ I- is 
trivial. Otherwise, by augmentation and additivity on the elementary MDs with 
the left side properly contained in I, we derive l? t-) (a - I’-). This yields 
I ++ P- by complementation. Now E (I’) is a partition of P-; thus one set in 
E (I’), but not more than one, is inferable by Boolean algebra from the remaining 
1 E(r) 1 - 1 sets and I’-. To prove minimality, say that g1 :l? * A, and 
g2 : P - A2 are two elementary MDs and that Gi2 denotes the set of elementary 
MDs of R with the left side P’ c I’, g, and g2 excluded. By Proposition 4.4, the 
right side, say ‘k, of each MD in Glz must satisfy the following condition: 

* 2 (A, U AZ) or \k n (Al u A2) = 0. (4.4) 

Now if we complement an MD which satisfies (4.4) or we augment it to an MD 
with the left side not greater than I, we obtain an MD whose right side satisfies 
(4.4). Also if we add two MDs where the right side satisfies (4.4), we obtain an 
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MD whose right side satisfies (4.4). Thus it is impossible to construct gl or gz 
from Glz by these rules. Q.E.D 

4.3 Multiple Elementary MDs 

The elementary MDs of a relation can be further subdivided into single elemen- 
tary MDs and mdtiple elementary MDs. Single elementary MDs are defined 
such that no other elementary MD with the same left side exists. Multiple 
elementary MDs are those for which there exist one or more elementary MDs 
with the same left side. Thus multiple elementary MDs always come in groups of 
two or more. For instance, we find that Dl, D2, and D3 in (4.2) define a first 
group of multiple elementary MDs for FIELD. D5 and D6 define a second such 
group. On the other hand D4 is a single elementary MD. 

The distinction between single and multiple elementary MDs is important for 
schema design and for the analysis of the dependencies of relations. Indeed we 
present later a decomposition algorithm for schema design which is driven by the 
elementary FDs and the multiple elementary MDs of the relation, whereas single 
elementary MDs are not used in the decomposition. We also show that this 
method produces decompositions having desirable properties which could be lost 
otherwise. For the present, however, we shall only point out the difference 
between single and multiple MDs in terms of minimal covers. 

Starting with the set of all the MDs of a relation, or any superset of its 
elementary MDs, the following algorithm can be used to obtain the minimal 
covers for the MDs of this relation according to reflexivity, additivity, augmen- 
tation, and complementation. 

Step 1. Eliminate those MDs wherein the right side is empty or has some 
attribute in common with the left side. 

Step 2. Find the minimum MDs in terms of the partial order defined in (4.3). 
Eliminate all other MDs. 

Step 3. Partition the remaining MDs into groups such that all the members of a 
group have the same left side. 

Step 4. Eliminate an arbitrary member from each group. 

According to Proposition 4.2 the set obtained at the end of step 2 consists of all 
the elementary MDs of the relation. Thus by Proposition 4.6, at the end of step 
4, we obtain indeed a minimal cover of the MDs of the relation according to 
reflexivity, additivity, augmentation, and complementation. Now while the results 
obtained are unique up to step 3, step 4 is clearly nondeterministic: For each 
group of n elementary MDs of identical left side there are n possible choices as 
to which member should be eliminated. We present criteria for the proper choice 
of such elimination within the framework of the decomposition algorithm pre- 
sented in the next section. Yet for groups containing only one elementary MD 
(n = l), no choice is necessary. These elementary MDs will always be eliminated 
no matter which cover is chosen. Thus we can carry out step 4 to the extent that 
all single elementary MDs are eliminated while all the multiple elementary MDs 
are retained. In a sense this is equivalent to using the minimal cover approach as 
far as possible, while preserving uniqueness and avoiding premature commitment. 

The concepts of single and multiple MDs can also help the designer obtain 
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more easily a complete characterization of the dependency structure of the 
relation at hand by encouraging him to search for the fewest and simplest 
dependencies rather than have him list a plethora of dependencies and then 
eliminate the redundant ones by minimal cover algorithms. The fact that the 
designer can neglect the single elementary MDs introduces a great simplification. 
In particular, every MD of R(Q) of the type P --w (Q - F) can be discarded. 
(Although this is a trivial MD it can be elementary according to the definition.) 
Moreover, Proposition 4.4 can be particularly useful in the search for multiple 
elementary MDs. Assume, for instance, that we want to find the multiple 
elementary MDs with the left side F after all the elementary MDs with a certain 
left side I?‘, where P’ C F have been found; let these MDs form the set {I” t-, 
Ai 1 1 I i 5 n} . Assume also that elementary MDs with the left side l? form the set 
{F * @I 1 5 j 5 m}. Then by Proposition 4.4 there must exist an i for which 
(1) Ai > A where A = F - I”, and (2) Ai - A > 0i, for every 1 ‘j I m. 

Moreover, if F w ej is multiple, then ej is properly contained in Ai - A. 
Therefore, all multiple elementary MDs with the left side I’ > I?’ can be generated 
as follows. 

(1) Select the elementary MD, say I” - A, with the left side P’ and the right 
side A containing A = F - I”. 

(2) Move the A attributes from the right side of this MD into its left side. (Thus 
set F = l?’ u A and A = A - A.) 

(3) Partition A into subsets Ai, . . . , Ap such that for each 15 k sp, F --H Ah and 
for no A’k c Ak, P +-+ A’k. Determine which of these MDs is elementary (i.e., 
for no I”’ c F, I”’ -++ Ak) . 

Therefore, if there does not exist any elementary I?’ - A with 1 A 1 > 2, then 
no multiple elementary MD with the left side F > I” can exist either. 

Consider our previous example FIELD (4.1), where Dl, D2, D3 are the 
elementary dependencies with the left side {CUST#}. Since the right sides of 
Dl, D2, and D3 contain fewer than three attributes, no multiple elementary MD 
can exist having as the left side a superset of {CUST#}. Dependency D6 instead 
has more than two attributes at the right side. Thus MDs constructed by moving 
some of these attributes into the left side and partitioning the others could be 
multiple and elementary. From the statement of intension of FIELD (4.1), 
however, we conclude that none of the MDs so constructed holds. 

The set of elementary FDs and multiple elementary MDs for FIELD are given 
in (4.2). Notice that whenever an elementary FD such as “CUST# + CUSTN” 
appears, we do not list explicitly its MD counterpart, “CUST# --t, CUSTN,” 
although the latter is a multiple elementary MD and belongs to the set as attested 
by Proposition 4.1 and by the presence in (4.2) of Dl and D2 having the left side 
CUST#. This notational convention is used for conciseness in the remainder of 
this paper. 

5. DECOMPOSITION OF A RELATION 

A general decomposition algorithm for designing relational schemata for data- 
bases is presented in this section. The generality of the algorithm is such that it 
can be used for designing both normal form relations and other types of schemata, 
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such as Chen’s E-R diagrams [8]. Section 6 of this paper discusses the application 
of the algorithm to the design of third normal form schemata. A companion paper 
will discuss its application to the design of graphical schemata, including E-R 
diagrams. 

The decomposition algorithm implements three new concepts: (1) complete 
relatability, (2) admissibility of covers, and (3) validation of results. This section 
introduces the algorithm and discusses points (1) and (2). Point (3) is discussed 
in Section 6. 

5.1 Dependencies in Projections 

The decomposition algorithm is recursive in nature: Once the original relation, 
say R(Q), is decomposed into a pair of projections on smaller attribute sets, these 
must be decomposed in turn. At each step the next decomposition is chosen on 
the basis of the elementary FDs and of the multiple elementary MDs in the 
relation. We have discussed above the problem of determining these dependencies 
in the original relation(s). We now consider the problem of determining the same 
dependencies in the projections successively generated by the decomposition 
algorithm. For FDs, which have both the projectability and reverse projectability 
property, the rule is simple: The set of elementary FDs of IIR (a’), Q’ c a, simply 
consists of all the elementary FDs of R(G) which have both the left and right 
sides contained in Q’. For MDs, the rule is more complex since MDs other than 
those inferable by projectability might appear in a projection. Any MD of IIR (Cl’) 
which is not derivable by projectability from the MDs of R (Q) is said to be latent 
in R(Q). Latent MDs, which represent an interesting, but less common type of 
semantic constraint, are discussed in Section 5.2. 

The algorithm used for constructing the set of multiple elementary MDs in a 
projection is based on the following proposition. 

PROPOSITION 5.1. Let G’ denote the set of MDs of IIR (a’) derived by project- 
ability from the set of multiple elementary MDs of R (a), G? c Q. If R (Q) contains. 
no latent MD, G’ has the following properties: 

(1) G’ contains all the multiple elementary MDs of R (CT). 
(2) Every member of G’ is an elementary MD for ITR (Cl’). 

PROOF. To prove (l), let F - A be a multiple elementary MD of IIR ($I’). 
Since R(Q) has no latent MD, it must contain one or more MD from which 
F - A can be constructed by projectability. Out of these let us select one, say 
F - A, which has a minimal right side (i.e., A rl Q’ = A and R(a) contains no 
I? - A’ such that A’ C A and A’ II Q’ = A). We want to prove that F - A is 
elementary. By contradiction assume that F’ - A’ exists in R (a) with (I”, A’) 
< (I’, A). This last MD projects into IIR (a’) as r’ - (A’ n Q’). NOW (P’, A’ n 
0’) 5 (P, A) by the previous definition. But since F - A is elementary, then 
r’ = P and A’ D Q’ = A. This contradicts the assumption that I’ ---t-$ A has a 
minimal right side. Thus we find that every elementary MD in IIR(Q’) can be 
obtained by projectability from some elementary MD in R(G). Thus if the former 
is also multiple, so is the latter. 
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To prove (2), let P t-) A be the projection of an elementary MD of R(a), say 
I’ -t) A (A = A O a’). We want to prove that IIR (al) contains no elementary 
P’ --H A’ with (I”, A’) < (P, A). We proved above that each elementary MD of 
IIR (a’) can be derived by projectability from an elementary MD of R (a). Thus 
let I” + A’ be an elementary MD in R (a), such that A’ = A’ n a. Since P - 
A and I” t, A’ are both elementary and their right sides are not disjoint, it 
follows from Proposition 4.4 that A’ 2 A U (P - I”). Thus A’ = (A’ n B’) 2 A U 
(P - P’), which contradicts the assumption (P’, A’) < (P, A). Q.E.D. 

In the absence of latent MDs, the following algorithm can be used to derive the 
set of multiple elementary MDs of IIR (n’) (G’ is a set variable, and c,,, is the set 
of multiple elementary MDs of R(Q)): 

Sl. Set G’ to empty. 
S2. For each (P t, A) E G,,, where P c 52’ and {A n B’) # 0 add l? - 

(A n SY) to G’. 
S3. Eliminate all the single MDs from G”. 

At the end of S2, G’ coincides with the set of MDs of IIR (#) derivable by 
projectability from G,; thus it has the two properties enunciated in Proposition 
5.1. Therefore, after the final elimination of single MDs at step S3, G’ coincides 
with the multiple elementary MDs of IIR (f2’). 

As an example of decomposition according to multiple elementary MDs, 
consider our example FIELD (4.1) whose dependencies are defined by (4.2) (no 
latent MD occurs here). Decomposing according to Dl, we obtain 

IIFIELD(CUST#, CUSTN), (5.1) 

IIFIELD(CUST#, MODEL, MODQ, TEC#, TECN). (5.2) 

By the previous rules, we find that the set P for (5.1) consists only of Dl. The set 
& is instead empty; thus (5.1) is atomic. For (5.2) we find P = (D4, D5) and 
e,,, = G’ = (D2, D3, D5, DS’}, where D6’ is TEC# .--t, {CUST#, MODEL, 
MODQ). Applying D2, (5.2) is next decomposed into 

IIFIELD(CUST#, MODEL, MODQ), (5.3) 

IIFIELD(CUST#, TEC#, TECN). (5.4) 

Relation (5.3) is atomic. For (5.4) we have G, = (D5, D6”) where D6” is “TEC# 
++ CUST#.” Note that D3 was eliminated since it is a single elementary MD 
for (5.4). Thus out of the three elementary MDs of the original relation with the 
left side {CUST#}, only two are effectively used in the decomposition. In general, 
out of n elementary MDs with the same left side, n - 1 at most will be actually 
used in the decomposition. The last MD always projects into a single MD and is 
thus eliminated. 

In conclusion, decomposing by multiple MDs is equivalent to decomposing by 
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the MDs of a minimal cover obtained according to reflexivity, augmentation, 
additivity, and complementation (see Proposition 4.6). 

The set of relations generated by the previous decomposition is therefore 

IIFIELD(CUST#, CUSTN), 

IIFIELD(CUST#, MODEL, MODQ), (5.5) 

IIFIELD(TEC#, TECN), 

l-IFIELD(CUST#, TEC#). 

It should be noted that redundancy problems will occur when MDs other than 
multiple elementary ones are used in the decomposition. Assume, for example, 
that the single MD “{CUST#, MODEL} +-+ MODQ,” is used in the decompo- 
sition of FIELD; whether this MD is used to decompose (4.1) directly or to 
decompose its projection (5.2), the subrelation lIFIELD(CUST#, MODEL) is 
obtained in addition to the four subrelations in (5.5). But since this new subre- 
lation is a projection of IlFIELD(CUST#, MODEL, MODQ), already contained 
in (5.5), it adds no new information. 

5.2 Latent MDs 

Every MD of lIR(G’), a’ C a which cannot be obtained by projectability from 
some MDs of R(a) is said to be latent in R (a). This concept is related to, but 
much more restrictive than, that of the embedded MD proposed in [16].’ Since 
latent MDs occur in practice and possess a well-defined semantic interpretation, 
they should be considered by the database designer along with the other MDs. 
Let us fiist clarify their nature by an example. 

Assume the existence of a relation characterized by the following attributes: 

(1) Students identified by their student number (ST#). 
(2) College courses (COURSE). 
(3) Teaching assistants (TA). 
(4) Number of hours that a TA has spent with a student (HRS). 

Moreover, assume the following constraints: 

(a) A course is attended by many students, and one student may attend many 
courses. 

(b) More than one TA may be assisting in a course, and the same TA may be 
helping in more than one course. 

(c) A student may turn for help to any TA assigned to the course. 
(d) The up-to-date total number of hours that a TA has spent with a student is 

inclusive of any course at which the TA meets the student and not subdivided 
by course. 

’ Every r - A which holds for some projection IIR (Q’) is said to be an embedded MD for R(O). 
Thus embedded MDs include both latent MDs and MDs derived by projectability. 
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A small sample of the content of such a relation is given as follows: 

HELP( COURSE, ST#, TA, HRS) 
MATH 10 5512 SMITH 0 
MATH 10 9732 SMITH 12 
MATH 10 4008 SMITH 15 
MATH 10 5512 MARIN 0 
MATH 10 9732 MARIN 0 
MATH 10 4008 MARIN 12 
PHYS 20 4008 MARIN 12 
PHYS 20 7532 MARIN 6 

(5.6) 

Notice, for instance, that MARIN has tutored 4008 in MATH 10 and/qr in PHYS 
20 for a total of 12 hours. Thus in (5.6) we have 

{ST#, TA} + HRS 

{ST#, TA} --t-, COURSE. 

No other elementary FD nor multiple elementary MD exists. Decomposing 
relation (5.6) according to the above dependencies, we find 

l-IHELP(ST#, TA, HOURS) (5.7) 

IIHELP(COURSE, ST#, TA). (5.8) 

Now in (5.8) we witness the appearance of the pair of MDs 

COURSE - ST# 

COURSE w TA, 

which were latent in (5.6). 
Thus (5.8) can further be decomposed into the pair 

IIHELP(COURSE, ST#) 

IIHELP(COURSE, TA). 

The designer can either list the latent MDs of the initial relation or wait until 
they become explicit in the course of the decomposition. The second approach 
would require the designer’s intervention to reassess the dependencies of the 
projections after each decomposition step. Thus the first approach appears 
preferable, since it requires the designer’s intervention only once. After both the 
usual and the latent multiple elementary MDs have been listed along with the 
elementary FDs, it is easy to determine G,,, and P for any projection. This method 
is a reasonable one since latent MDs are the expression of very particular 
semantic constraints which could hardly escape the attention of a careful designer. 
The relation HELP, for instance, is characterized by the obvious constraint that 
HRS must be specified for each TA and student who, respectively, teach and 
take the same course. 
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5.3 Decomposing for Complete Relatability 

The decomposition algorithm proposed in this paper has three (main) objectives: 

(1) decomposing complex relations into simple well-defined primitives, 
(2) preserving information, 
(3) minimizing redundancy. 

The decomposition algorithm is recursive in nature. At each step a relation is 
decomposed into a pair of subprojections according to a multiple elementary MD. 
Then these projections are decomposed in turn, and the process continues until 
a set of atomic relations is obtained. (An atomic relation is one which only 
contains trivial MDs--Section 2.2.) Proposition 3.1 and the associative and 
commutative property of natural joins ensure that the original relation is recon- 
structible as the natural join of this final set of atomic projections. Relation (4.1), 
for instance, is reconstructible as the natural join of the projections indicated in 
(5.5). Thus every decomposition according to MDs is content-preserving. Com- 
plete data relatability, however, demands that the “structure” of the relation be 
preserved along with its content. The structure considered in this paper includes 
three components: (1) the composition of the various relations (i.e., their attribute 
sets); (2) the functional dependencies; (3) the multivalued dependencies. Now 
structural information is preserved when the dependencies of the original relations 
are inferable from the composition of the relations in the resulting decom- 
position and from the dependencies in these relations. Thus a reversibility test 
must be used to verify that no loss of structural information has occurred. (The 
formal rules for performing this test are discussed in the next section.) The 
algorithm selects among the multiple elementary MDs at hand, those which 
ensure the preservation of structural information and uses only these in the 
decomposition. 

The subprojections obtained at the end of a decomposition are atomic relations 
(i.e., they contain only trivial MDs). Thus MDs do not play any visible role in the 
final decomposition; they exhaust their function in the generation of the (proper) 
decomposition. Only the following two elements are visible in the final schema: 
(1) the attribute sets of the resulting atomic subrelations, and (2) a set of 
elementary FDs. Following [27], we call (1) and (2) A-structure and Z-structure, 
respectively. The importance of these two structural components and their 
mutual relationships have been discussed in [27]. In a companion paper we will 
show how their combined representation in the form of special diagrams finds 
application as conceptual database schemata [28]. In this paper we concentrate 
instead on the applications of our decomposition algorithm to improve on the 
state-of-the art approaches to the design of 3NF schemata. These applications 
utilize two novel concepts: (1) the notion of scope of elementary FDs, and (2) the 
notion of admissibility of FD covers. The scope of an elementary FD, I’ -+ A, is 
the set r U {A}, that is, the set of attributes appearing at either side of this 
elementary FD. 

To define the concept of admissibility, let A and 2 denote, respectively, a set 
of atomic projections and a set of elementary FDs for a relation R (!2). The set 2 
is said to be admissible with respect to A when the following two conditions are 
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satisfied: 

(1) If 2 contains an elementary FD with scope A, it must contain every other 
elementary FD of R (52) having scope A. Moreover, if IIR (A) for such a A is 
atomic, then A must contain it as a member. 

(2) If A contains an atomic projection IIR(A), then 2 must contain every 
elementary FD of R (8) having scope A. 

The final product of the decomposition algorithm discussed in this section is a 
set of atomic relations called ACOVER and a set of elementary FDs called 
ZCOVER. The algorithm is designed so that ZCOVER is admissible with respect 
to ACOVER. The advantages of this approach are discussed in detail in Section 
6. Basically, however, the admissibility condition guarantees uniformity of treat- 
ment over the A- and the Z-structure to capture the natural relationships between 
attributes. For instance, we like to regard a one-to-one correspondence, say 
B H C, as a semantically elementary relationship although syntactically it is 
modeled as a composite object (i.e., by the pair of elementary FDs B + C and 
C + B). Thus condition (1) guarantees that B --, C and C + B are treated 
uniformly: If either of these FDs appears in ZCOVER, so does the other; and the 
atomic subprojection IlR(B, C) is included in ACOVER. Conversely, condition 
(2) guarantees that once an atomic subprojection is included in ACOVER, all its 
elementary FDs are included in ZCOVER (every elementary FD in an atomic 
relation has as scope the complete attribute set of the relation). In our example 
FIELD, for instance, inclusion of the atomic subprojection IIFIELD(CUST#, 
MODEL, MODQ) in ACOVER implies that {CUST#, MODEL} + MODQ must 
be included in ZCOVER. 

The previous example shows the simple primitives in terms of which the 
original relations are reduced: Our basic primitives are atomic subprojections 
with all the elementary FDs contained therein. A subprojection with n attributes 
contains at the most n such FDs. In addition to elementary FDs having as scope 
atomic subprojections, the admissibility condition allows us to include in 
ZCOVER elementary FDs with scope, say A, where I’IR(A) is decomposable. 
These FDs will, in fact, be included as needed to ensure that the complete 
relatability condition is satisfied. 

A final objective of Algorithm 5.1 is minimizing redundancy both in terms 
of atomic subprojections and elementary FDs resuhing from the decomposi- 
tion. For this purpose, only multiple elementary MDs are used by Algori- 
thm 5.1. 

This policy is very helpful in minimizing redundancy in the A-structure. The 
main support for this statement comes from empirical evidence. For instance, in 
Section 5.1, we have seen that violation of this policy produces a redundant set 
of atomic subrelations (i.e., one where a relation is derivable from another by 
projection). A number of other examples can be produced to show that this is a 
general behavior not restricted to the particular example FIELD. A formal proof 
of the minimum redundancy property is instead available for the Z-structure: In 
Section 5.5 it is proved that the set ZCOVER produced by Algorithm 5.1 supplies 
an absolute minimum cover for the FDs of the relation. 
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5.4 The Algorithm 

Let us consider next the problem of decomposing a relation according to the 
complete relatability criterion. We solve this problem by selecting among the 
possible decompositions at hand one which ensures preservation of both the FD 
and the MD structure of the given relation. In particular, to preserve the FD 
structure, we construct, through the decomposition, set ZCOVER which consti- 
tutes a (minimal) cover for the FDs of the relation. 

Say that we consider the decomposition of R(Q) into R(SL) and R(!&), where 

R(O) = R(a) * R(W (5.9) 

a21 and I& denote proper subsets of Q, P denotes the elementary FDs of R(Q), and 
Fl and F2 denote the elementary FDs of IIR(SL) and IIR(&). 

The problem of preserving the FD structure of R is solved in two phases. First 
we deal with the elementary FDs having as scope the whole attribute set, R. As 
we prove later (Proposition 5.3), these FDs cannot be implied by Fl and Fz, no 
matter how Rtl and 92 are chosen. Thus we preserve them by explicitly entering 
them in ZCOVER. Then we subtract all the elementary FDs with scope Q from 
F and we address the problem of preserving the remaining FDs. This is done by 
selecting a decomposition where the following condition is satisfied: 

CRCl:F c (R u Fz)+. (5.10) 

As discussed in the previous section, to avoid redundancy, we decompose 
according to multiple elementary MDs. Thus the algorithm selects among these 
a P - A, such that if % = P U A and & = R - P, then both CRC1 and a similar 
complete relatability condition for MDs are satisifed. This complete relatability 
condition for MDs is discussed next. 

The reverse projectability property does not hold for MDs since a I’ - A in 
IIR(B) does not imply I? - A in R(Q). However, the following weaker property 
holds.” 

PROPOSITION 5.2. Joinability: If 

(1) R(i-2 u 9) = S(Sl) . P(9), 
(2) r t, A in S(W), 
(3) A n ilf = 0, 

then r - A in R(SZ u \k). 

PROOF. Let us define first A = Q - (P U A). According to (2) we have 

R(O u \k) = (ns(r u A) * ns(r u A)) * P(q). 
By the properties of the join we obtain 

R(G u *k) = ns(r u A) * [ns(r u A) - P(\k)j. 

” A related result defining the relationship between MDs and embedded MDs was presented in [25]. 
An issue yet unresolved is whether there exist inference rules (from the projections to the join) 
stronger than these. However, see [25] on this topic. 
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By computing the join in the brackets immediately above, we see that R is the 
natural join of the relations with respective attribute sets (P U A) and X = (I’ U 
A U \k). But by assumption (3), (F U A) n X = F. Thus I’ ---w A in R. (Note that 
the join in the brackets need not be a projection of R for this to be true.) Q.E.D. 

Now let Gi and GZ denote the elementary MDs of IIR(%) and IIR(&). 
Moreover, let Gn denote the set of MDs in G1 which have a right side disjoint 
from fiZ, and Gzz denote the set of those MDs in Gz which have a right side 
disjoint from &. Then it is easy to see that the set of MDs of R(Q) which we can 
infer by joinability from G1 U GZ is G 11 U Gz. Moreover, we can use the 
information previously found about the preservation of certain FDs. Assuming 
that condition (5.10) is satisfied, we can add to Gn U G22 the MDs obtained from 
P using MXl and denoted by GF. Then we can compute the MD closure of this 
combined set and check whether every element of G,,, is contained in the closure. 
This condition can be expressed as 

CRC2: Gm G (GF u Gu U Gzz)+. (5.11) 

The conjunction of condition CRC1 and CRC2 supplies our complete relatability 
condition, which we denote by CRC. Note that CRC2 ensures that the MDs of 
R(a) can be derived from the combined FDs and MDs of IIR(G?,) and IIR(!&). 
By contrast, CRC1 ensures that the FDs of R(Q) are derivable from the FDs of 
lIR(SJ) and IIR(&) alone (i.e., without using the Gtl, Gzz, and rule MX2). This 
policy was chosen to ensure that the set ZCOVER generated by Algorithm 5.1 
can be proved to be a minimal cover for the FDs of the relation (a property used 
in the design of 3NF schemata discussed in Section 6). This policy also reflects 
the notion that FDs are “stronger” constraints than MDs and that they should 
stand alone independently of MDs (which do not even appear explicitly in the 
final decomposition). Moreover, it appears doubtful that the utilization of Gll, 
Gz, and MX2 would yield any further FD not already included in (K U Fz)+. We 
make this conjecture on the basis of the structure of the MDs of Gll and GZ2, 
although we cannot offer a formal proof at this time. 

The decomposition Algorithm 5.1 constructs the two sets ZCOVER and 
ACOVER for a given relation R(k). Elements of ZCOVER have the form 
(8 P + A) where F + A is an elementary FD and 8 is a label. The elements of 
ACOVER have the form (8’: A) where RR(A) is an atomic subprojection of R(9) 
and e’ is a label. If A = F U {A} then 8 = ti 

Algorithm 5.1: Decomposition of a Relation RW 

Al. Determine (a) & the elementary FDs of R; 
(b) Go, the multiple elementary MDs of R; 
(c) GL, the multiple elementary MDs latent in R. 

A2. Initialize the set variables ZCOVER, ACOVER to the empty set and the 
integer variable L to 1. 

A3. DECOMPOSE (‘I’) (Invoke the procedure of Figure 1). 
A4. Print ZCOVER and ACOVER. 

The recursive procedure DECOMPOSE (Q) has been formalized in Figure 1 
using Algol-like syntactic constructs. The various declarations were omitted for 
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procedure DECOMPOSE (8) comment a recursive procedure to decompose IIR(O); 
begin STEPl: DETERMINE (F, c,,,); 

STEPS: FLAG c false; 
foreachI’+AEPdo 

if r u (A) = 52 then begin FLAG + true; 
ZCOVERtZCOVERU (L:l-+A}; 
P+P- (r+A); 

end STEPS; 
if G,,, = 0 then STEP3: begin ACOVER +ACOVERU(L:Q};LcL+l;endSTEP3 

else STEP4: begin NOTFOUND + true; 
for each r --H A E 6,,, while NOTFOUND do 
begin&+-I’UA;&+51-A; 
COMPUTE (F,, Fz, f%, GII, Gz); 

if (P c (F,UF2)+A~~C(a~UG11UGzz)+)then 
beglnif FLAG then L + L + 1; 

DECOMPOSE (0, ); 
DECOMPOSE (522); 
NOTFOUND t false; 

end 
end; 

end DECOMPOSE; 

if NOTFOUND then REPORTFAILURE 
end STEP4 

Fig. 1. An Algal-like description for the recursive procedure DECOMPOSE. (Declarations are 
omitted. AU variables but ZCOVER, ACOVER, L, ft, co, &, and Q are local to this procedure.) 

Note that the complete relatability conditions, 

P c (F, u Fd’ A h c (GP U G,, U Gm)+, 

represent the core of the procedure. 

brevity. It is understood that all the variables except ACOVER, ZCOVER, L, Foo, 
f%, &, and Q are local to DECOMPOSE. The procedure consists of four steps. 
At STEP1 the elementary FDs and the multiple elementary MDs of IlR(O), 
Q & ‘k, are determined according to the rules presented in previous sections. (As 
we recall, once the designer has specified the latent MDs along with the multiple 
elementary MDs and the elementary FDs of the original R(q), then STEP1 can 
be performed without his further intervention.) At STEP2 all the FDs in P with 
scope 52 are removed from P and added to ZCOVER using the current value of L 
9s label. Next, if IIR(S2) is atomic (i.e., e, = 0), then STEP3 is executed; 
otherwise STEP4 is executed. At STEP3, Q is entered in the ACOVER with the 
current value of L as label. At STEP4 instead, e,,, is searched for a l? - A 
which ensures complete relatability. Thus after setting !& and %, respectively, 
equal to I’ U A and Q - A, the sets F,, Fz, &, Gll, and Gzz are constructed by a 
procedure called here COMPUTE. Finally, the validity of CRC1 and CRC2 are 
tested; if they are verified, then the procedure is recursively invoked to decompose 
IIR(S&) and llR(G?22). If not, such I’ YW A is found, failure is reported, and 
execution halts. 

The value of the global integer variable L is incremented after a new atomic 
component is formed (STEP3). It is also incremented when IIR(SJ) is found 
decomposable after some elementary FD with scope Q has been detected. (This 
is done at STEP4 on the basis of the information passed down from STEP2 by 
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means of FLAG.) This discipline guarantees that all the FDs of identical scope, 
say A, are entered in ZCOVER under the same label, say d Moreover, if IIR(S2) 
is next found to be atomic, then A is entered in ACOVER under the same label 
R If IIR(Q is instead found decomposable, then its atomic components will 
receive label values L+ 1, e+ 2, . . . . 

Let us consider now the problem of determining Gu and Gp2. By definition Gu 
is the set of MDs in G1 which have a right side disjoint from &. Now if we assume 
that G1 is the set of multiple MDs of l-IR(B), then it follows directly from the 
definition that each MD in G1 having its right side disjoint from QZ must also 
belong to G,. Thus it is possible to evaluate Gn and GZZ without having to 
construct the actual dependencies in IIR(ih) and lYIR(Qtz) explicitly. G11 can be 
obtained by taking those dependencies in G, which have their left side contained 
in Q1 and their right side contained in Qtl - &. Symmetrically, Gzn consists of 
those dependencies in G, which have their left side contained in Btp and their 
right side contained in & - B1. 

A linear time algorithm to decide whether one FD belongs to the closure of a 
set of FDs, F, was given in [5]. This algorithm is linear in the length of the 
representation of F. Efficient algorithms to decide whether a given MD belongs 
to the closure of a set of MDs have been proposed in [3,17,19,23]. In particular, 
the time complexity of the algorithm presented in [ 171 is n log n. Thus Algorithm 
5.1 has an obvious upper bound of O(n4 log n), where n denotes the cardinality 
of G0 U GL. This polynomial bound, however, only applies after Fo,, 6, and GL 
have been computed, since the size of these sets may actually be exponential. 
Fortunately this seems not to be the case in realistic situations, Also, refinements 
to Algorithm 5.1 have been proposed [24] to improve its performance and to 
eliminate the need for listing all the elementary FDs and multiple elementary 
MDs of R. A discussion of these refinements is outside the scope of this paper. 

5.5 Examples 

We shall now apply Algorithm 5.1 to the previous example FIELD. At step Al 
the designer enters the elementary FDs and the multiple elementary MDs of set 
(4.2) (no latent MD exists here). After the initialization at A2 the DECOMPOSE 
routine is entered. Here execution of STEP1 simply returns the dependency set 
(4.2) and STEP2 is of no consequence. Then STEP4 is executed where the 
multiple MD counterpart of Dl, that is, E:CUST# ---t) CUSTN, is tested 
first.” For brevity say that Fp denotes Fl U FZ and Gp denotes GF U GII U GE!. 
Thus for i% we have 

Fp = {Dl, D4, D5}, 
--- 

Gp = {Dl, D4, D5, D2, D3). 

The only dependency missing is D6, which is directly derivable from D5 when we 
form G,+. Thus the complete relatability conditions are satisfied and the algorithm 
next attempts to decompose HIFIELD and the HFIELD(&) where &?I = 

I’ Whenever we have an FD denoted Dn, we denote its MD counterpart (obtained from it by rule 
MXI) by %I. For the sake of brevity the MD counterparts are usually omitted in the original lists of 
dependencies. 
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{CUST#, CUSTN} and & = {CUST#, MODEL, MODQ, TEC#, TECN}. 
III?(&) contains Dl with scope Ri; thus “1: CUST# + CUSTN” is entered in 
ZCOVER. Moreover, IIFIELD(&) contains no multiple MD; thus STEP3 is 
executed, “1: {CUST#, CUSTN} ” is also entered in ACOVER, and the decom- 
position of lIR(&) is complete. As IIFIELD(%) is considered next for decom- 
position and DETERMINE (F, Gm) is executed, the following dependencies are 
found: 

p = {D4, D5}, en, = (D2, D3, D5, D6’) 

where D6’ is obtained from D6 by striking out CUSTN, as per the projectabil- 
ity rule. As D2:CUST# - {MODEL, MODQ} is tested in STEP4, we find 
that FL= l? Also Gp contains all the MDs of G, except D6’, which is obtained 
from D5 when Gt is constructed. Thus the complete relatability condition is once 
again met, and the decomposition of IIFIELD(CUST#, MODEL, MODQ) is 
invoked next. The overall decomposition sequence is therefore the one discussed 
in Section 5.1 leading to (5.5). At the end, ZCOVER and ACOVER are 

ACOVER = (1: {CUST#, CUSTN} ; 2: {CUST#, MODEL, MODQ}; 
3: {TECf, TECN} ; 4: {CUST#, TEC#}} 

ZCOVER = (1: CUST# + CUSTN; 2: {CUST#, MODEL} + MODQ; 
3: {TEC# + TECN}} . 

Let us now consider a relation having multiple atomic decompositions. In this 
instance we have data concerning privately owned motor vehicles and their 
owners. This is the sort of information which the California Department of Motor 
Vehicles may want to maintain. The attributes of interest are 

LIC: license numbers of mo_tor vehicles; 
MAKE: manufacturers of motor vehicles; 
MODEL: models of vehicles; 
YEAR: year in which the vehicle was manufactured; 
VALUE: current value of the vehicle; 
OWNER: unique identifier of a person (for simplicity we give only the family 

name, in reality, a composite of ID which includes the first name, birth 
date, and location, etc., may be needed); 

DRVL: driving license numbers; 
VIOL: code number for traffic violations; 
DATE: month, day, and year of violation. 

The following information is required: 

(1) make, model, and year of any licensed vehicle; 
(2) current (blue book) value of a given type of vehicle; 
(3) legal owner of a given vehicle; 
(4) driving license number of a given person (and the person having a certain 

license number); 
(5) traffic violation history of any driver; the records consist of pairs: violation 

code and date of warrant. 

Thus one may start with the sample content shown in Table II for the DMV 
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Table II. A Sample Situation for the Relation DMV 

DMV ( LIC, MAKE MODEL YEAR VALUE OWNER DRVL VIOL DATE) 
2LL 235 FORD CAPRI 1972 1550 OWEN A771235 22520 4/5/75 

22351 l/9/75 
AFF 255 GM NOVA 1975 2300 OWEN A771235 22520 4/5/75 

22351 l/9/75 
QPR937 FIAT 126 1973 1966 WEST C991837 21803 g/5/74 

22100 2/12/75 
LFV 222 GM VEGA 1976 2550 MANN D331973 6000 O/60/60 

relation. Please note that in Table II the various violations on each driver’s 
record have been grouped together. Such a representation is more concise and 
expressive than a true first normal form representation. Notice, for instance, how 
the MDs, “DRVL --w {VIOL, DATE} ” and “OWNER ---f-) {VIOL, DATE} ” 
are depicted in Table II. Anyone who is accustomed to identifying the patterns 
of transitive FDs in relations would soon recognize its generalized version as it 
appears in the table. In fact we have 

and 
LIC + OWNER 

OWNER t, {VIOL, DATE}, LIC t, {VIOL, DATE) 

according to the transitivity property of MDs. The set of elementary FDs and 
multiple elementary MDs characterizing DMV is therefore 

Dl: LIC + MAKE 
D2: LIC --, YEAR 
D3: LIC + MODEL 
D4: LIC ---, VALUE 
D5: LIC + 3WNER 
D6: LIC + DRVL 
D7: LIC - {VIOL, DATE} 
D8: {MAKE, YEAR, MODEL} + VALUE 
D9: {MAKE, YEAR, MODEL} t, {LIC, OWNER, DRVL, VIOL, DATE) 
DlO: OWNER + DRVL 
Dll: OWNER - {VIOL, DATE} 
D12: OWNER - {LIC, MAKE, YEAR, MODEL, VALUE} 
D13: DRVL + OWNER 
D14: DRVL + {VIOL, DATE}, 
D15: DRVL + {LIC, MAKE, YEAR, MODEL, VALUE}. 

Assume that E: LIC ts MAKE is tested first. There we find that D8 is 
missing from Fp = Fl U E and D9, D12, D15 are missing from G, = (GF U Gll 
U Gz). Thus both CRC1 and CRC2 fail since D8 E FP+ and D9 g Gd (indeed it 
is always true that a nontrivial FD or MD with left side I’ can only be inferred 
from a set of dependencies if that set contains some other dependency having as 
the left side either I’ or a subset of it). The case ofE and D3 is analogous” to 

” Thii may be seen immediately from the fact that MAKE, YEAR, and MODEL behave precisely in 
the same way within the dependencies of DMV. 
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Table III. A Decomposition for Relation DMV 

Label ACOVER ZCOVER 

1 (VALUE, MAKE, MODEL, YEAR) {MAKE, YEAR, MODEL} + VALUE 
2 &IC, MAKE) LIC + MAKE 
3 (LIC, YEAR} LIC --P YEAR 
4 (LIC, MODEL} LIC + MODEL 
5 {OWNER, DRVL) OWNER + DRVL 
5 (OWNER, DRVL} DRVL -+ OWNER 
6 {OWNER, VIOL, DATE) None 
7 (LIC, OWNER] LIC + OWNER 

the case of E: They do not pass the complete relatability test either. If I% is 
used, D8 and D9 are lost again. If D5 is used, DlO, D13 and Dll, D12 are lost. 
Symmetrically, with D6 we lose DlO, D13 and D14, D15. With D7 we lose Dll, 
D12, D14, and D15. In each of the previous cases these dependencies cannot be 
reconstructed by closure. Using D8, however, we find that only D12 and D15 are 
missing from Gp; however, they are derivable by complementation and partition- 
ality from the remaining ones. After DMV is decomposed according to D8, we 
find that DECOMPOSE(Q) applied to IIDMV(MAKE, YEAR, MODEL, 
VALUE) generates the elementary FD, “1: {MAKE, YEAR, MODEL} + 
VALUE” and the atomic component “1: {MAKE, YEAR, MODEL, VALUE} .” 

Thus the decomposition of IIDMV(LIC, MAKE, MODEL, YEAR, OWNER, 
DRV, VIOL, DATE) is attempted next. P and Gm for this subrelation consists of 
Dl, D2, D3, D5, D6, D7, DlO, Dll, D12’, D13, D14, and D15’, where D12’ and 
D15’ denote the MDs constructed from D12 and D15 by projecting out VALUE. 
While Dl could not be used to decompose the original DMV, it can be used now 
in this projection without violating complete relatability. Indeed the only de- 
pendencies missing are D12’ and D15’, which are inferable b3i_complementation 
from the remaining ones. Thus E is used and so are D2 and D3 at the following 
steps. We shall ship these steps and resume our decomposition algorithm after 
the atomic component “4 : {LIC, MODEL} ” has been generated. The subrelation 
at hand is then 

IIDMV(LIC, OWNER, DRVL, VIOL, DATE) 

characterized by dependencies D5, D6, D7, DlO, Dll, D12”, D13, D14, D15” 
where D12” is “OWNER --;w LIC” and D15” is “DRVL - LIC.” If 
“I% : LIC --H OWNER” is used, then DlO, D13 and Dll, D12” are lost.If D6 is 
used, DlO, D13 and D14, D15” are lost. If D7 is used, we lose Dll, D12”, D14, 
and D15”. Thus we find that DlO yields the first acceptable decomposition in the 
sequence. The procedure DECOMPOSE (a), where fi = {OWNER, DRVL} , first 
finds the two elementary FDs with scope ti (i.e., OWNER + DRVL and DRVL 
-+ OWNER) and enters them in ZCOVER under the same label “5,” next it adds 
“5 : {OWNER, DRVL}” to ACOVER. 

As the decomposition of IlDMV(LIC, OWNER, VIOL, DATE) with depend- 
encies D5, D7, Dll, D12” is attempted next, I% and D7 again fail the complete 
relatability test, while Dll passes it. Thus the decomposition ends with the two 
atomic components “6 : {OWNER, VIOL, DATE} ” and “7 : {LIC, OWNER} .” 
Table III summarizes the complete decomposition thus obtained. 
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A relation sometimes possesses more than one ACOVER, ZCOVER pair. This 
typically occurs in the presence of one-to-one correspondence between attributes. 
In relation DMV, for instance, DRVL and OWNER play an interchangeable role. 
Thus the attributes VIOL, DATE on the one hand and the attributes MAKE, 
MODEL, YEAR, VALUE on the other hand can be associated with either one of 
them. Considering all the possible combinations, we find four different cover 
graphs for DMV. The particular cover graph generated by the decomposition 
algorithm depends on the order in which the dependencies are listed. The designer 
can operate accordingly to steer the algorithm into a particular cover. For 
instance, the decomposition shown in Table III is the result of having listed all 
the dependencies with the left side OWNER before the dependencies with the 
left side DRVL. 

5.6 Minimal FD Cover 

The set ZCOVER obtained upon successful completion of Algorithm 5.1 has 
some important properties which are discussed next. 

Let F be a set of FDs and I’ be a set of attributes. The closure set ofr relative 
to F, defined I’ *, is defined recursively as follows: 

(I) r* 2 r. 
(2) If F contains an FD A + A where A c r*, then A E r*. 

Thus to construct r *, we start with r and then keep adding to it the right side of 
those FDs in F which satisfy (2) until no new attribute can be added. An 
important result obtained in [6] states that an FD I? + B belongs to F+ iff 
B E r *. This property allows us to prove the following propositions. 

PROPOSITION 5.3. Let F denote the set of FDs in R(Q). If f E F is elementary 
andhasGasscope,thenf$Z (F- {f})‘. 

PROOF. Let I’ + A with r = 51- {A} be our elementary FD. The closure set 
of I’ relative to F - { f} is equal to l?, since the existence in F - { f> of an FD 
A + B, with B g A and A C r, would contradict the assumption that l7 + A is 
elementary. Q.E.D. 

This proposition justifies the need to enter into ZCOVER every elementary 
FD with scope G when a relation IlR (a) is decomposed as started in Section 5.4. 
A different discipline would not guarantee that ZCOVER at the end of Algorithm 
5.1 is in fact a cover for the FDs of the relation. 

Consider now a decomposition step taken according to a multiple elementary 
MD whereby IYIR(Q) has been decomposed into IIR(al) and rIR(G?2). Let F, R, 
and FZ denote the elementary FDs of nR(S1), HR(%), and llR(&), respectively; 
FO denotes the set of elementary FDs of P having G! as scope. It turns out that 
these three classes of FDs behave independently in terms of the minimal covers. 
In fact, the minimal cover membership problem for an FD in any of these classes 
can be resolved solely on the basis of its own classmates disregarding the FDs in 
the other two classes. This property is trivially true for the FDs in Fo. For K and 
F2 we have the following proposition. 
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PROPOSITION 5.4. If FI, Fz, and F0 are produced by a decomposition step 
according to a multiple elementary MD, then every f E F1 belonging to (K - 
{f} U FZ U Fo)+ also belongs to (R - {f})‘. 

PROOF. Let f = P -+ A and I’* be its closure set relative to (K - {f} U F2 U 

Fo). 

As a first step in constructing I’* we only use the FDs in R - {f} . Thus we 
construct the closure set of I’ relative to F, - {f}, which we denote P’. As the 
second step we only use FDs of FZ and compute the closure set of I” relative to 
F2, denoted I”‘. I”’ can be partitioned into the following three subsets: Pz2 = P” 
- P’, PI2 = I” n K&Z, and I?n = P’ - & Since we have only used the FDs of F2 in 
the second step, we have P2z c & and PIZ + P2z. Now if PZ2 f~ fil is not empty we 
can write PI2 + (I’22 n G) and conclude that no MD with left side & n atp is 
elementary, a contradiction. Thus PZ2 c S& - &; that is, every &I attribute of P” 
was already in P’. Thus A E I”’ n ai iff A E P’. To complete the proof we need 
to show that I”’ = l?*. Observe that since I”’ n G1 = I”, I”’ is also the closure set 
of P relative to F2 U Fl - {f} . M oreover, consideration of the FDs in FO will not 
add any new attribute. Indeed, for each A + B E FO, B 6G I’* because otherwise 
P + B, and “A + B” would not be elementary. Thus I”’ = I’*. Q.E.D. 

We can now state the following important property of Algorithm 5.1. 

PROPOSITION 5.5. The set ZCOVER obtained at successful completion of 
Algorithm 5.1 constitutes a minimal cover for the FDs of R (\k). 

PROOF. Since CRC1 is verified at each decomposition step, ZCOVER is clearly 
a cover. We need to show that it is minimal. Let f: P + A be an arbitrary member 
of ZCOVER. In Algorithm 5.1 this elementary FD was inserted into ZCOVER at 
STEP2, that is, before IIR (r U {A)) was either recognized as being atomic 
(STEPJ) or decomposed (STEP4). In either case if P denotes the set of elemen- 
tary FDs of llR (P U {A} ), then by Proposition 5.3 we know that f tZ (P - { f } )‘. 
Thus if IlR(r U {A}) is the given initial relation, then the proof is complete. 
Otherwise consider an ancestor decomposition step where say I’lR (St) was decom- 
posed into lJR(S&) and I’IR(S&). Without loss of generality we assume that 
IIR(&) either is IIR (I’ U {A}) or it was further decomposed into a set of 
subprojections one of which is I’IR (I? U {A} ). Let FI and FZ be the elementary 
FDs, respectively, of IIR (a,) and IlR (a,), while FO denotes the elementary FDs 
with scope a. According to Proposition 5.4, if f 6G ( Fl - {f) )‘, then f E (F, - { f } 
U FZ U Fo). In other words, a minimal cover of P is the union of Fo, a minimal 
cover of K, and a minimal cover of Fz. The proof now proceeds by 
induction. Q.E.D. 

Also, it should be clear from the previous discussion that the admissible covers 
generated by the decomposition algorithm, when no elementary FD of nonatomic 
scope exists, define the “independent components” of the original relation [22]. 
However, given an elementary FD of nonatomic scope A, [22] does not pursue 
any further decomposition of the A-projection, while we do. Thus the “atomic 
relations” of [22] may be further decomposed in our algorithm. 

ACM Transactions on Database Systems, Vol. 6, No. 1, March 1981. 



38 - C. Zaniolo and M. A. Melkanoff 

6. DESIGN OF NORMAL FORM SCHEMATA 

An interesting application of Algorithm 5.1 is discussed next: We show how it can 
be used to improve the results produced by Bernstein’s algorithm for the design 
of third normal form schemata [6]. This is but one of the many useful applications 
of the concepts and the procedures presented in the previous sections. A com- 
panion paper discusses their application to the analysis and design of graphical 
schema, including, in particular, Chen’s entity-relationship diagrams [8]. 

6.1 Bernstein’s Algorithm for the Design of 3NF Schemata 

A relational schema consists of a set of database relations and the specification 
of one or more candidate keys for each relation. If X is a key of a relation R, and 
A is an attribute of R that is not in X, then “X + A” is said to be embodied in R. 

Bernstein’s approach to the design of 3NF schemata is what is called “syn- 
thetic.” It assumes that the initial description of the database can be formulated 
directly in terms of functional relationships. These are then used to synthesize 
algorithmically a relational schema. A first problem encountered in this approach 
concerns nonfunctional relationships, such as a many-to-many relationship be- 
tween two attributes. This problem is resolved by introducing new attributes. 
Thus a nonfunctional connection f among a group of attributes Al, AZ, . . . , A,, is 
represented as the following FD: f: {Al, AZ, . . . , A,} + 8 where 8 is a newly 
introduced attribute that is unique to f and does not appear in any othr FD. Each 
FD representing a nonfunctional relationship has its own private 0 attribute. For 
instance, a many-to-many relationship between DRIVER and AUTOMOBILE is 
represented by the FD, fi : {DRIVER, AUTOMOBILE} + 01. The domain 
underlying these 8 attributes is the pair (0, l} . Thus corresponding to the pair 
(driver-l, automobile-l), 01 has value 1 if driver-l actually drives automobile-l, 
and the value of 0 otherwise. This technique allows the designer to produce a set 
of FDs, denoted HO, which characterizes both functional and nonfunctional 
relationships of interest. Given HO, Bernstein’s algorithm for designing a 3NF 
schema is stated below. (For simplicity, we have assumed that the FDs in HO are 
elementary.) 

Algorithm 6.1: Bernstein’s Algorithm to Design 3NF Schemata 

(1) (Find covering.) Find a minimal cover H for Ho. 
(2) (Partition.) Partition H into groups such that all of the FDs in each group 

have identical left sides. 
(3) (Merge equivalent keys.) Let J = 0. For each pair of groups, say H1 and HZ, 

with left sides X and Y, respectively, merge HI and Hz together if there is a 
bijection X * Y in H”. For each such bijection, add X+ Y and Y + X to J. 
For each A E Y, if X+ A is in H, then delete it from H. Do the same for each 
Y+BinHwithBEX. 

(4) (Eliminate transitive dependencies.) Find an H’ c H such that (H’ + J)’ = 
(H + J)+ and no proper subset of H’ has this property. Add each FD of J 
into its corresponding group of R. 

(5) (Construct relations). For each group, construct a relation consisting of all 
the attributes appearing in that group. Each set of attributes that appears on 
the left side of any FD in group is a key of the relation. 
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In [6] it is proved that every schema produced by this algorithm has the 
following properties: 

(a) Every relation in the schema is 3NF. 
(b) If F denotes the set of all FDs embodied in the schema relations, then F+ = 

HO’. 
(c) The total number of relations in the schema is minimal (i.e., no schema with 

fewer relations has property (b)). 

These three properties are closely reminiscent of the three objectives presented 
at the beginning of Section 5.3. Property (a) guarantees that the components 
have a well-defined form. Property (b) guarantees that the structural information 
contained in Ho is preserved in the final schema. Property (c) suggests that the 
schema is minimal in the sense that no relation can be dropped without losing 
the last property. Thus the schemata obtained using Bernstein’s algorithm have 
some very desirable properties. Nevertheless, some problems remain. The next 
section illustrates these problems and their resolution through the application of 
Algorithm 5.1. 

6.2 Problems and Solutions 

A first problem in the approach taken in [6] is the treatment of nonfunctional 
relationships. Consider our previous relation DMV. Here we find a pair of 
nonfunctional relationships: one which associates the traffic violation history 
(VIOL, DATE) of a driver with his drivers license number (DRVL), the other 
which associates (VIOL, DATE) with the ID of this person (OWNER). Although 
there may be other nonfunctional relationships, we shall only consider these to 
illustrate our point. As previously explained, these two will be modeled by the 
pair of FDs: 

DXl: {VIOL, DATE, DRVL} + 81, 

DX2: {VIOL, DATE, OWNER} + &. 

In addition to these, the HO will include the previous FDs, that is, Dl, D2, D3, 
D4, D5, D6, D8, DlO, and D13. Thus a minimum cover should be computed next. 
One minimal cover consists of Dl, D2, D3, D5, D8, DlO, D13, DXl, and DX2. 
Using this minimal cover, Algorithm 6.1 produces the following schema (different 
keys within the same relation are denoted by different styles of underlining): 

DMV237( LIC, MAKE, YEAR, MODEL, OWNER) (6.1) 

DMV8(MAKE, YEAR, MODEL, VALUE) (6.2) -- 

DMVlO( OWNER, DRVL) (6.3) ---- 

DMVX(VIOL, DATE, DRVL, OWNER, 81, C,). (6.4) - ----- ---- ---- 

This schema presents two obvious redundancy problems. The first is that (6.4) 
has (6.3) as projection; yet neither of these two relations can be omitted without 
losing information about FDs (property (b)). The second problem is that the 
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columns 81 and Gz in (6.4) are logically equivalent since 81 = 1 implies 02 = 1, 
and vice versa. Thus they could (both) be dropped from this relation. This second 
problem, in particular, occurs independently of the minimal cover selected for 
the previous FDs, since it follows from the treatment of “nonfunctional” relation- 
ships used in [6]. 

Here, however, by using MDs, we can treat nonfunctional relationships in a 
formal and consistent fashion. It is easy to see how Algorithm 5.1 can be used in 
conjunction with Algorithm 6.1 to eliminate the previous problems in the frame- 
work of the decomposition approach. The designer works with functional and 
multivalued dependencies, as described in the previous sections. Then, using 
Algorithm 5.1, he obtains the set of atomic subprojections ACOVER and the set 
of elementary FDs ZCOVER. Next, Algorithm 6.1 is applied using ZCOVER as 
the minimum FD cover H. This produces a minimal set of 3NF relations which 
completely characterize the functional relationships of the initial relation. Indeed, 
each member of ZCOVER, say (i : P + A), is embodied in a 3NF relation thus 
obtained. The same relation also embodies every other FD of equal scope (i.e., 
having the same label i). Finally, we need to include in the schema the nonfunc- 
tional relationships. These are found by looking in ACOVER for those members, 
say (j: A), for which no FD with label j is found in ZCOVER. For each of these 
a separate relation, say Rj(A), with key A, will be generated. Applying this 
discipline to our example DMV, per Table III, we first obtain relations (6.1)-(6.3); 
finally, to represent the nonfunctional relationship for label 6, we use 

DMVG( VIOL, DATE, OWNER). (6.5) -- 

The previous redundancy problem has been cured. 
Since the treatment of nonfunctional relationships was a major motivation of 

our research, the benefits realizable in this area were not too surprising. On the 
other hand the benefits obtainable in the treatment of functional relationships 
were a pleasant surprise. We can illustrate this assertion by means of the following 
example which describes the rank order of students at the completion of their 
courses: 

RANK( CT, C#, SN, 
MATH 443 JONES 
MATH 443 SMITH 
ENGL 012 WANG 
ENGL 012 JONES 
HIST 179 SMITH 
HIST 179 DOE 
HIST 179 BROWN 

w 
1 
2 
1 
2 
1 
2 
3 

(6.6) 

We assume that a student is identified by his name (SN). Both the course title 
(CT) and the course number (C#) are sufficient to identify a course (thus 
C# f-, CT). The column denoted (P) shows the position obtained by a student in 
the courses he completed. Assume now that no two students can have the same 
position in any given course (no ties). The set of elementary FDs characterizing 
this relation is as follows (in the synthetic approach the designer would omit (6.6) 
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and start here): 

Dl: CT + C# 

D2: C# + CT 

D3: {CT, SN} + P 

D4: {C#, SN} + P 

D5: {CT, P} + SN 

D6: {C#, P} + SN. 

(6.7) 

This set has four minimal covers. Assuming that {Dl, D2, D3, DS} is found in the 
first step of Algorithm 6.1 then at the end of the algorithm we obtain the following 
pairs: 

R12(CT, C#) (6.8) 

R36(CT, C#, SN, P). (6.9) 

The candidate keys of (6.8) are 

WI and WI * 

The candidate keys of (6.9) are 

{CT, SW, (-5 SN), {CT, P> and {W PI. 

Indeed the set of FDs embodied in this schema is exactly (6.7). 
A serious redundancy problem characterizes the extension of this pair of 

relations: (6.8) is a projection of (6.9). However, we cannot simply eliminate (6.8) 
from the schema since this relation embodies the two FDs Dl and D2 which are 
not inferable from the keys of (6.9). Thus elimination of (6.8) would cause the 
loss of very important structural information. This observation only restates the 
general property proved in [6] that every schema produced by Algorithm 6.1 has 
a minimal number of relations. Thus no relation can be dropped without losing 
structural information. Apparently, therefore, we are locked in the dilemma of 
either accepting the previous redundancy or losing structural information. For- 
tunately, this is not the case, and a simple solution to this problem is available: 
to use only those FD covers which satisfy the admissibility condition. For 
instance, if the admissible FD cover {Dl, D2, D4, D6) is used, Algorithm 6.1 
produces the schema:13 

RlB(c, 3 (6.10) 

R46(SN, C#, P). (6.11) 

Combinations {CT] and {C#} are the keys for (6.10). The pairs {SN, C#} and 
{C#, P} are the keys for (6.11). The elementary FDs Dl, D2, D4, and D6 are 
embodied in the schema, while D3 and D5 are derived from them by transitivity. 
Thus this schema completely characterizes the intension of the case at hand. 
Moreover, while (6.10) is in fact our old (6.8), (6.11) is a proper subprojection of 
(6.9) since the column CT is missing. Thus the content of (6.10) cannot be derived 

I3 We indicate here the various candidate keys by different underlines (- and ) -..+-- . 
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by projection from (6.11). The redundancy problems affecting the previous 
schema have been removed. Relation (6.7) has a second nonadmissible cover: 
{Dl, D2, D4, D5). This produces the old pair of relations (6.8), (6.9) with their 
well-known problems. Moreover, there exists a second admissible cover: {DI, D2, 
D3, D5). From this, Algorithm 6.1 produces 

R12( CT, C#) -- 
R35( SN, CT, P). 

This schema is free of redundancy problems. 
The above example has illustrated the benefits of using only admissible FD 

cover in designing 3NF relations. These benefits are not restricted to the &sign 
of 3NF schemata, but they extend to other forms of schemata, A companion 
paper discusses their application to the design of graphical schemata including 
E-R diagrams. 

6.3 Validation of Results 

A major effort in current software research is directed toward producing results 
which are verifiable and may be validated in some formal fashion. The state-of- 
the-art methods to design database schemata present some problems in this 
respect. In the framework of the relational model, for instance, we find Codd’s 
pioneering work on 3NF. Codd’s approach was inductive. Some carefully chosen 
examples were first used to illustrate the anomalies effecting unnormalized 
relations; then the definition of 3NF was proposed to remove the anomalies 
affecting those relations. But it was later realized that a number of anomalies 
were not eliminated by 3NF, and BCNF was proposed to cure these further 
anomalies. It was later learned that this second definition did not remove the 
important class of anomalies connected with multivalued dependencies. Again a 
new definition was proposed as a remedy: 4NF, the fourth normal form definition 
[16]. Unfortunately, no proof that the fourth normal form removes all anomalies 
was given; indeed there does not even exist a formal definition of anomaly.14 One 
wonders whether the fourth normal form will also be superseded by a new 
definition. Thus the current concepts of normal forms are somehow beset by the 
dilemma of being a highly formal means to obtain an objective which cannot be 
formalized or verified. Moreover, the range of possible semantic structures and 
constraints is so wide, that there might not exist a single normal form capable of 
generating anomaly-free schemata in every situation. Consider, for example, a 
dictionary of corresponding technical terms in three different languages, say 
French, German, and English: 

DICT(F, G, E) 
fl gl el 
f2 gl el 
fl gl e2 
f2 gl e2 
f3 g2 e3 
f3 g3 e3 

I4 A precise definition of anomaly has recently been proposed in [21]. 
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Assume that one object or concept might be described by more than one 
synonym in each language. One term, however, never describes more than one 
concept. Then the triples of the relation can be partitioned into groups, one per 
concept, each group being in turn a separable relation. For example, the first four 
tuples above form a group which is the Cartesian product {fl, f2) x {gl} x {el, 
e2). This relation is characterized by the following dependencies: 

F+--+G,G-++F,E++F 
(6.12) 

F-E,G-E,Et,G 

with all the anomalies arising thereby (e.g., the addition of a new term as synonym 
of gl requires the insertion of four tuples into the first group). 

None of the three possible decompositions into 4NF cures the previous anom- 
alies. For instance, if we decompose into IIDICT(F, G) and IIDICT(G, E), we 
find that the addition of a synonym of gl requires the insertion of two pairs in the 
first subrelation and two pairs in the second. (Another example of similar 
structures can be constructed by listing in a flat table the various terms which 
describe comparable database concepts under the relational network and hier- 
archical approach jargon.) 

In conclusion, although a given normal form definition might work well for the 
vast majority of cases, there always remains the unusual or unpredictable case 
which is recalcitrant to the canonical treatment. In these cases, the formal 
algorithms for the design of normal form schemata might do more harm than 
good since they replace the designer’s guiding intuition by the illusory assurance 
of mathematical formalism. Indeed, ensuring that the schema is in normal form 
constitutes only a facet of the larger and more complex problem of capturing the 
semantics of the database through the schema. The decomposition algorithm 
proposed in this paper offers a meaningful contribution to the solution of this 
problem. First, we have noted the elusive nature of update anomalies whose 
interpretations depend upon the usage of database relations, as well as the 
syntactic structure of their dependencies. Complete relatability was therefore 
proposed as a design criterion more liable to be verified and consonant with 
logical database design. 

The decomposition procedure presented here validates each decomposition 
step according to the complete relatability criterion. Only when this is met is a 
final decomposition returned to the designer. In every other case the procedure 
halts and through the REPORTFAILURE routine reports and returns control to 
the designer. He can then analyze the unusual circumstances at hand, verify that 
they are not the result of previous oversights on his part, and finally decide on 
the particular solution that the case demands. For instance, each dependency of 
the relation DICT fails to satisfy the CRC2 condition (5.11); thus REPORT- 
FAILURE is invoked. Thereby the designer is made aware that no decomposition 
is acceptable and that a different solution is needed. This could, for instance, be 
the introduction of a new domain, say C for concept, whereby each group of 
DICT receives a unique identifier. The decomposition algorithm can then be used 
to decompose successfully the expanded relation (characterized by the depend- 
encies F + C, G + C, E + C, C -W F, C t, G, and C t) E in addition to 
those of set (6.12)) into the schema of Figure 2. 
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Fig. 2. The structure of a dictionary. 

A second case in which the decomposition algorithm will fail concerns the 
relation: 

DEP(E#, D#, PJ), 

with dependencies: 

Dl: E# + D# 

D2: E# - PJ 

D3: PJ + D# 

D4: PJ - E#. 

This relation describes the employees working in a department and the projects 
assigned to this department, and also the employees working on the various 
projects, A decomposition according to Dl or D2 causes the loss of D3; symmet- 
rically, a decomposition according to D3 or D4 results in a loss of Dl. Only a 
decomposition into the three atomic subrelations (each with the FDs therein 
contained) 

IIDEP(E#, D#) 

IlDEP(E#, PJ) 

IIDEP(PJ, D#) 

(6.13) 

will ensure the preservation of both FD structure and content of the original 
relation. There is a content redundancy, however, associated with this solution, 
since the first (the last) in (6.13) is a projection of the join of the last (the first) 
two. Moreover, these three relations obey an integrity constraint that does not 
follow from the definition of the FDs in (6.13) although it is implied by the FDs 
in the original DEP: An employee can be assigned to a project only if he and the 
project belong to the same department. Thus if (6.13) were to become a schema 
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(e.g., with the addition of keys to define FDs), there would be an additional 
integrity constraint of which the user had better be aware. In this case, too, 
therefore, REPORTFAILURE can be seen as a desirable occurrence which 
forewarns the designer of an uncommon situation of which he had better be 
aware. The problem of when and how interrelational constraints, such as the 
redundancy constraint, should be used to ensure that a decomposition preserves 
both content and structure of the original relation is not totally understood yet 
and deserves further investigation. 

There is also some concern regarding the potentially nondeterministic nature 
of our decomposition algorithm with respect to REPORTFAILURE. The ques- 
tion is whether it is possible, once REPORTFAILURE has occurred, to backtrack 
and apply the dependencies in a different order to obtain a successful completion. 
For the examples we have considered, REPORTFAILURE occurred not because 
of the inadequacy of the algorithm to find the proper solution but rather for an 
objective problem with the situation at hand. For these examples, at least, 
backtracking and retrying does not change the final result since it does not 
remove the problem. In general, however, it is clear that we need a better 
understanding of the failure situations. In particular the issue of whether rules 
stronger than joinability can be used is an important one and deserves further 
investigation. 

7. CONCLUSION 

This paper has presented a formal approach to the analysis of the dependency 
structure of database relations and to the design of relational schemata using 
these dependencies. Our investigation of the state of the art has indicated that 
the concept of complete relatability constitutes a more rigorous criterion for 
designing logical schemata than the removal of anomalies. We also have recog- 
nized that dependencies and minimal covers supply a powerful tool for the 
analysis and design of relational schemata. Since the minimal cover technique 
can only be correctly applied to the dependencies of a given relation, we have 
adopted the decomposition approach whereby the initial relations are refined into 
smaller subcomponents. We have also developed a unified treatment of functional 
and multivalued dependencies. This has led to the concepts of elementary FDs 
and multiple elementary MDs which help the designer in characterizing. the 
dependency structure of relations and supply the basis for our decomposition 
algorithm. This algorithm, by combining search for a minimal cover and decom- 
position, generates schemata which ensure complete relatability. The concepts of 
admissibility of covers and validation of results implemented by the algorithm 
have also been discussed and their importance in schema design underscored. As 
a first application, it has been shown how these results can be used to improve 
the design of 3NF schemata. 
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