
A Formal Approach to the Definition
and the Design of Conceptual Schemata
for Database Systems

CARLO ZANIOLO and MICHEL A. MELKANOFF

University of California at Los Angeles

A formal approach is proposed to the definition and the design of conceptual database diagrams to be
used as conceptual schemata in a system featuring a multilevel schema architecture, and as an aid for
the design of other forms of schemata. We consider E-R (entity-relationship) diagrams, and we
introduce a new representation called CAZ-graphs. A rigorous connection is established between
these diagrams and some formal constraints used to describe relationships in the framework of the
relational data model. These include functional and multivalued dependencies of database relations.
The basis for our schemata is a combined representation for two fundamental structures underlying
every relation: the first defined by its minimal atomic decompositions, the second by its elementary
functional dependencies.

The interaction between these two structures is explored, and we show that, jointly, they can
represent a wide spectrum of database relationships, of which the well-known one-to-one, one-to-
many, and many-to-many associations constitute only a small subset. It is suggested that a main
objective in conceptual schema design is to ensure a complete representation of these two structures.
A procedure is presented to design schemata which obtain this objective while eliminating redundancy.
A simple correspondence between the topological properties of these schemata and the structure of
multivalued dependencies of the original relation is established. Various applications are discussed
and a number of illustrative examples are given.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design--data models;
schema and subschema

General Terms: Design

1. INTRODUCTION

Conceptual schemata in database management systems (DBMSs) are expected
to yield benefits in three domains:

(a) Data Independence. A three schema level architecture, such as the one
proposed by the ANSI/X3/SPARC [31], provides a high degree of physical
and logical data independence. In this architecture the conceptual schema
occupies a central position between the multiple views seen by the users

Authors’ present addresses: C. Zaniolo, Bell Laboratories, Hohndel, NJ 07733; M. A. Melkanoff,
Computer Science Department, University of California, Los Angeles, CA 90024.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1982 ACM 0362-5915/82/0300-024 $00.75

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982, Pages 024-059.

Conceptual Schemata for Database Systems * 25

(external schemata) and the internal schema which describes the physical
organization of the database. The conceptual schema establishes the logical
and functional connections between the internal and external levels.

(b) Design Aid. In a top-down methodology a conceptual schema supplies a
logical representation from which a physical implementation is designed to
maximize performance on typical queries and/or updates.

(c) Liaison to the Enterprise World. A conceptual model, also called an enter-
prise schema, is often advocated as a means for successful communication
between the data processing department and the rest of the enterprise.

In order to realize the benefits just considered, a conceptual schema must
describe the intrinsic logical relationships among external data independent of
the underlying implementation (by external data we denote information of
interest to the enterprise as opposed to data introduced by the data processing
department for the purpose of storing and processing this information). To obtain
this objective, a conceptual schema must satisfy two requirements. The first is
that the schema must be capable of characterizing completely and unambiguously
the various relationships among external data; following GUIDE and SHARE
[19], we refer to this as the complete relatability requirement. The second is that
the schema must be expressive and concise.

The second requirement is most naturally met by using graphical representa-
tions and diagrams. Early forms of graphical schemata such as hierarchies and
networks are generally considered not suited for a conceptual representation
since they combine information about logical structure of data with access path
description, leaving some ambiguity as to the exact nature of the former. Thus
new forms of graphical schemata have been proposed to express the logical
structure of external data in an implementation-independent fashion. Among the
many which were proposed are those presented in [9, 25, 271. Of these, we only
discuss E-R (entity-relationship) diagrams [9], which have gained considerable
acceptance in the field.

A common thrust of these works consists in analyzing and characterizing by
means of examples the various relationships commonly encountered in a DBMS,
and in proposing graphical representations for it. The designer who is cognizant
of the semantics of his data is then expected to recognize similar relationships for
the database at hand and produce a schema which reflects his understanding of
the structure of his data. While these approaches have contributed to the
understanding of data semantics, they have failed to achieve the degree of
definiteness and mathematical rigor which by contrast is available in the frame-
work of the relational approach to database systems. This paper presents a
rigorous approach to the definition and the design of graphical schemata in the
framework of the relational data model. This approach uses and applies various
concepts and analytical tools which were presented in a companion paper [33].

2. BASIC CONCEPTS

We assume that the reader is familiar with the most common concepts pertaining
to relational database theory, including the definition of relations, projections,

ACM ‘ikmsactions on Database Systems, Vol. 7, No. 1, March 1982.

26 9 C. Zaniolo and M. A. Mblkanoff

joins, functional dependencies, and multivalued dependencies. Date’s book [13]
provides the reader with an introduction to these topics, whereas Beeri et al. [5]
supply a sophisticate’s review and a list of more advanced readings. The notation
and terminology used here is the same as that used in [33]. Thus, if R (iI) is a
relation with attribute set a, and r and A are two subsets of a, we write F + A
or I’ - A to denote, respectively, that A is functionally dependent (FD) on r or
that A is multivalued dependent (MD) or I’. We may write r 4 A or r + A to
denote that those dependencies do not hold. If the FD “f: I? + A” holds in R,
then the MD ‘g : I? ++ A” also holds in R; g will be called the MD counterpart
of fi The A-projection of R @)(A c a) will be denoted IIR (A). The natural join of
relations R (9) and S(A) is denoted R(Q) *S(A). When s1 and A are disjoint (i.e.,
their intersection is empty) this natural join reduces to the Cartesian product
R(Q) x S(A). Natural joins are commutative and associative. Thus we can refer
to the natural join of a set of two or more relations without specifying the order
in which this join is computed. By convention, R is the natural join of the
singleton set {R} .

2.1 The Decomposition Approach

We follow the decomposition approach to relational schema design [ll, 15, 331.
In this approach, the design is developed through a sequence of successive
refinement steps as follows:

(i) Generate a first gross description of the database as a set of relations.
(ii) Derive the’ set of functional and multivalued dependencies which hold for

these relations at every instant in time.
(iii) Use these dependencies to recast the initial set of relations into the desired

schema.

This design discipline is certainly laborious, but it deserves our attention because
it is rigorous and it improves our understanding of the structure of conceptual
schemata.

For concreteness, let us consider an example. Assume that we need some
information regarding departments of a given organization. More precisely, we
are interested in the following relationships:

(1) the employees working in a department (an employee works in only one
department);

(2) the salary of each employee (an employee only has one salary);
(3) the name of the department manager (a department only has one manager);
(4) the location of a department (we will assume that a department can only

have one location).

As the first step, we can represent this information in a single table, say DEPT,
with the following attributes:

DN: unique names identifying department;
SAL: annual salaries in dollars;
E#: unique numbers identifying employees;

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982

Conceptual Schemata for Database Systems * 27

MGN: names of managers;
LOC: geographical locations (at which departments are located).

At this point, the designer should consider typical samples of his database
content. In our case, for instance, we could have

DEPT (DN, Ef, SAL, MGN, LOC)
SHOES 4441 20K SMITH LA
SHOES 3321 25K SMITH LA (2.1)
TOYS 1121 30K BROWN SF
TOYS 7321 10K BROWN SF

This materialization of a sample of database content will prompt the designer
to recognize possible ambiguities or oversights in his previous statement of
intension. In our example, for instance, the designer would be prompted to ask
such questions as: “Can two departments have managers with the same name?”
Thus he will be forced to resolve these ambiguities and perhaps to clarify or
modify the initial statement of intension. Other basic issues will also be resolved.
For instance, if the designer wants to represent two distinct locations, say,
location of a department and location at which an employee lives, the obvious
inadequacy of (2.1) to hold these two distinct pieces of information under the
single column LOC will emerge. The designer may therefore be forced to revise
his initial selection of relations. In the situation just discussed, he may either add
one more column denoting locations to DEPT or he may add a completely new
relation. Thus, this materialization ensures that the initial choice of relations is
compatible with the stated intension. Thus an application of syntactically correct
FD and MD rules produces semantically correct results within each relation. For
a further discussion of this subtle but important problem, see [S, 15,331.

After completing step (i), the designer will proceed with step (ii) and formalize
the time-independent constraints on these relations using FDs and MDs.

This operation was discussed at some length in [33], where the concepts of
elementary FD and multiple elementary MD were introduced. An FD of R is
called elementary if it has the form I’ + A, where A P I and R contains no
I” + A where F’ c I’. An MD of R, P + A, is called elementary if A is nonempty
and disjoint from I’ and R does not contain another MD, say, I” --H A’, where
I” c I’ and A’ c A. Therefore, both elementary FDs and elementary MDs have
minimum left side and minimum right side. The right side of an elementary FD
always reduces to a single attribute, but that of an elementary MD contains one
or more attributes. The MD counterpart of an elementary FD is elementary. An
elementary MD of R is called multiple if R contains other elementary MDs with
the same left side; otherwise, it is called single. Elementary FDs and multiple
elementary MDs have a simple structure appealing to intuition and certain formal
properties which may help the designer in carrying out step (ii) [33]. Moreover,
only these dependencies are actually used by the schema design procedures
discussed later in this paper. Thus, we assume that our designer performs step
(ii) by simply listing the elementary FDs and the multiple elementary MDs which
hold in a time-independent manner in the given relations. This discipline, applied

ACM Transactions on Database Systems. Vol. 7, No. 1, March 1982.

28 - C. Zaniolo and M. A. Melkanoff

to relation (2.1), yields the following list:

Dl: E# + SAL

D2: E# + DN

D3: E# + MGN

D4: E# + LOC

D5: DN + MGN

D6: DN + LOC

D7: DN - {E#, SAL)

(2.2)

The multiple elementary MDs for a relation are given as follows: in general, we
list the elementary FDs and the multiple elementary MDs of a relation. For
simplicity, however, we do not actually list the MD counterpart of an elementary
FD. Thus, in (2.2), the MD counterpart of Dl is not explicitly given. However,
since one knows that Dl is an elementary FD, he also knows that its MD
counterpart “E# ++ SAL” is elementary. Some other elementary dependencies
with left-hand side E# are also listed in (2.2); thus one knows that this elemen-
tary MD is also multiple. Each FD (MD) of a relation-can be constructed from
its elementary FDs (MDs) using the rules of reflexivity, additivity, and augmenta-
tion [33].

At the end of step (ii), a set of relations is obtained, each defined by its attribute
set and by its elementary FDs and multiple elementary MDs. Next, the designer
will proceed with step (iii) as described in the following sections. We will always
use the term “relation” in the sense of “description of a relation.” To refer to the
extension of a relation, we use terms such as “content of a relation” or “instance
of a relation.”

2.2 Schema Design

The approach to relational schema definition proposed by Codd is based on the
concept of relational keys and normal forms [ll]. A key for a relation is an
attribute combination which nonredundantly identifies each row of the relation
(i.e., F is a key for R(a) iff I’ + Q and for each A c I?, A -P 52). Every relation
contains one or more keys which are customarily identified by suitable underlining
of the attributes comprising these keys. Thus, a relational schema in the sense of
[ll] and [S] consists of a set of relations and for each relation the specification of
one or more keys. If l? is a key for R, and A an attribute of R not in l?, then the
FD “f: r + A” must hold in R. Following [8], we will say that fis embodied in R.
Thus keys can be regarded as a device to specify the existence of certain FDs in
a relation. The set of FDs specified consists of those directly embodied plus those
derived from them by the FD inference rules [6].

However, keys are not always sufficient to characterize completely the depen-
dencies of a relation. For our example DEPT, for instance, there is only one key:
(E#}. Thus, Dl, D2, D3, and D4 from set (2.2) are embodied in this schema. D5,
D6, and D7, however, are neither embodied nor derivable from the FDs embodied
using the FD inference rules. Thus, a first problem with this schema is that it

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

Conceptual Schemata for Database Systems l 29

fails the complete relatability requirement. A second problem is the presence of
the update anomalies discussed in [ll].

A solution to both previous problems is supplied by a transformation called
decomposition. A relation R (a) will be said to be decomposable into the pair of
projections IlR(&) and IIR (&) when for every instance R(Q) of R(Q) the
following is true:

R (52) = IIR (a) .IIR (s&d.

The following well-known property holds.

PROPOSITION 2.1. r t-, A in R(O) iff R(G) is decomposable into the pair
IIR(fJl)andR(&),where91=I’UAand~2=I’U(~-A).

The MD “I’ ++ A” is called trivial when til = Q or Qz = Q.
Thus, the presence of a nontrivial MD is sufficient and necessary for a relation

to be decomposable into a pair of proper subprojections, without losing informa-
tion on the content of the relation. A relation containing only trivial MDs is
called atomic. It immediately follows that a relation is atomic if, and only if, it
contains no multiple elementary MD. When a relation R (a) containing an MD
“g : I’ ++ A” is replaced by the pair of relations IIR (a,) and ITR (SW, where RI
= I’ U A and Pz = P U (B - A), then we will say that R was decomposed according
to g. DEPT, for instance, is decomposable according to DN + {MGN, LOC) (or,
more precisely, according to its MD counterpart).

As a result of such decomposition, we obtain

IIDEPT (E#, DN, SAL) -

4441 SHOES 20K

3321 SHOES 25K (2.3)

1121 TOYS 30K

7321 TOYS 10K

IlDEPT (DN -’ MGN, LOC)

SHOES SMITH LA (2.4)

TOYS BROWN SF

The natural join of (2.3) and (2.4) returns the original (2.1). This is true not only
for the particular instance shown above, but most important, it holds for every
instance of DEPT as well, since DN -++ {MGN, LOC} expresses a time-
independent constraint. Thus, this decomposition ensures preservation of content.
It also implements the principle of complete relatability since the integrity
constraints and the relationships of interest are now completely represented by
schema (2.3), (2.4). This property is demonstrated by the fact that the various
dependencies in (2.2) are either embodied in the schema or derived from these
using the inference rules for FDs and MDs [6]. Thus, we will say that the above
decomposition has preserved the dependency structure of the original relation.
To illustrate the importance of structure preservation in schema design, one

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

30 * C. Zaniolo and M. A. Melkanoff

could consider decomposing DEPT according to E# + {DN, SAL}. The pair

l-IDEPT(E#, DN, SAL) IIDEPT(E#, MGN, LOC) - -

so obtained preserves the content of the original DEPT but not its structure (e.g.,
DN + LOC is not inferable from this second schema). As a result, this schema
does not correctly define the relationships of interest, and it is affected by obvious
update anomalies.’ Therefore, preservation of both content and structure is
needed for a successful schema design through decomposition. The fundamental
role that preservation of content and structure plays in the design of normal form
schemata is also discussed in [5], where it is viewed as a realization of the
representation principle.

In this paper, we present a decomposition approach to schema design whose
objective is the preservation of both content and structure with minimum
redundancy. However, the style of the schemata discussed here is not the usual
one first proposed in [ll] (third normal form) and later refined in [121 (Boyce-
Codd normal form) and [14] (fourth normal form). The normal form approach
relies on the concept of key; it also assumes that unnecessary proliferation of
relations should be avoided to eliminate complexity and possibly redundancy and
to improve the conciseness and the intuitive appeal of a schema. For these
purposes concepts such as optimal third normal form [ll] and minimum relational
count [B] were introduced. In our example, for instance, further decomposition of
(2.3) and (2.4) will not cause any loss of content or structure, nor will it introduce
update anomalies. Yet in the usual approach, this decomposition will not take
place, since (2.3), (2.4) already constitute a “good” schema; thus one should not
decompose any further.

In this paper, we discuss an approach to schema definition and design where
decomposition is pushed to the limit, that is, to the point at which atomic
relations are obtained. Moreover, we do not use keys to define FDs. Instead, we
combine the representation of atomic subprojections with the representation of
elementary FDs into a graphical form which is both concise and expressive.

The desirability of using schemata built upon semantic units which are as small
as possible has inspired a number of previous works [16,18, 241 (just to mention
a few). A main motivation for our research has been the awareness that the
database intension evolves and changes with time. A DBMS is expected to absorb
and minimize the effects of changes (i.e., the need for conversion and translation).
NOW atomic relations seem less sensitive to mutation in the intension than normal
form relations. With respect to the example proposed, for instance, decomposition
of (2.3) and (2.4) into atomic subrelations yields

1. IIDEPT (E#, DN)

2. IIDEPT (E#, SAL) (2.5)
3. HDEPT (DN, MGN)

4. HDEPT (DN, LOC).

’ These notions also underlie the concept of “independent components” of a relation [24].

ACM Tnmsactions on Database Systems, Vol. 7, No. 1, March 1982.

Conceptual Schemata for Database Systems l 31

Now, assume that the intension of our relation DEPT changes such that more
than one location (LOC) can be associated with a given department. Then the
MD “DN ++ LOC” will hold in (2.4), which is not third normal form any longer
and must be decomposed. Thus, a relationship changing from many-to-one into
many-to-many may force a modification in normal-form schemata. By contrast,
DEPT can be decomposed into (2.5), with complete preservation of content and
structure, even after the previous change has taken place.

3. ELEMENTARY DEPENDENCIES AND DECOMPOSITION

In this section, we define some basic concepts and lay the technical foundation
for the development of the following sections. Specifically, we introduce the
notion of atomic decomposition and atomic component of a relation. Then, we
explore the useful relationships between the structure of a decomposition and the
MD structure of the original relation.

3.1 Atomic Decompositions

The decomposition process is recursive in nature. Once a relation is decomposed
into two subprojections, these will have to be decomposed in turn according to
some valid MD. One concise way to summarize the decomposition of a relation
is to use an unordered binary tree. For instance, the tree of Figure 1 denotes a
decomposition leading to the set of atomic subprojections (2.5). The internal
nodes of the tree denote a decomposition step and are labeled by the dependency
used in the decomposition. The bottom nodes of the tree denote the atomic
subrelations obtained as the end result of the decomposition.

To each internal node of a tree there corresponds a unique projection to the
given relation. The attribute set of this projection is defined as the union of the
attribute set of its two successors. Thus the root of the tree corresponds to the
initial relation. Each internal node is labeled by the MD holding in the corre-
sponding projection and used for its decomposition. In Figure 1, for instance, the
first decomposition step takes place according to D7.

Two projections result from this first step. One, with attribute set {E#, DN,
SAL}, is further decomposed according to E# + DN. The other, with attribute
set {DN, LOC, MGN}, is decomposed using, say, DN + MGN. In general, if such
a binary tree has n internal nodes (decomposition steps) it has n + 1 terminal
nodes (atomic projections). After dealing with a few examples, one realizes that
usually there are many decomposition trees leading to the same set of projections,
even when only multiple elementary MDs are used. Figure 2, for instance, shows
a second decomposition producing the same end result.

Therefore, we need a means to characterize succinctly and uniquely the end
product of a decomposition independent of the particular decomposition sequence
which led to it. For this purpose we now introduce the concept of minimal atomic
decomposition. If): denotes a set of projections of a relation R(Q), then

(i) Z is called a decomposition of R (9) if for every instance of R (a) the natural
join of the projections in X is equal to this instance of R 62).

(ii) A decomposition 2 of R (Cl) is called minimal when no proper subset of 2 is
a decomposition of R (52).

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

32 * C. Zaniolo and M. A. Melkanoff

Fig. 1. A first decompositon for DEPT.

DEPT: E#-SAL

{E* SAL} DN -MGN

?A {DN, MGN} DN - LOC

{DN, ~oc} { WDN}

Fig. 2. A second decomposition for DEPT.

(iii) A decomposition of Z is called atomic if every member of Z is an atomic
relation.

Thus a minimal atomic decomposition is one which satisfies all three of the
previous properties; that is, it is a set of projections which have a well-defined
structure (point iii) and which also preserve the content information of the
original relation (point i) in a nonredundant way (point ii). If Z is a decomposition
of a given relation, then it has the lossless join property discussed in [l]. An
algorithm to decide whether a given set of projections has this property is
described in the referenced work.

Every element of a minimal atomic decomposition of R is called an atomic
component of R. Atomic components can be regarded as the minimal independent
granules by which data can be stored or represented. In a logical view of data,
two atomic components could be treated separately and represented as two
separate view relations, or they could be represented jointly in one relation. Also,
two atomic components can be stored separately in two-distinct record types, or
they can be joined and stored as one record type. In no case, however, can the
designer further refine atomic components into smaller granules which he can
treat as self-contained objects.

In a multilevel schema architecture [31] the data representation chosen and
the design criteria used must be a function of the schema level considered. This
paper focuses on the problem of designing a conceptual schema, built upon
atomic components, to ensure complete relatability with minimum redundancy.
At the internal level, these atomic relations may then be joined together and
rearranged, under various storage organizations, to ensure, say, a better perform-
ance on typical transactions. Likewise, at the external level, the end-user view of
data may also be different and, perhaps, consists of normalized relations. The
problem of designing internal and external schemata in this context, which has
been the subject of previous research [20,32], is outside the scope of this paper.

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

Conceptual Schemata for Database Systems * 33

Fig. 3. A graph representation for an
atomic decomposition of DEPT.

Fig. 4. A second atomic de-
composition for DEPT.

3.2 Structure and Properties of Decompositions

A set of binary relations is most naturally represented by an undirected graph.
Figure 3, for instance, represents atomic decomposition (2.5) for our example
DEPT.

The vertices of the graph correspond to the attributes of the original relation;
the edges correspond to the relations produced by the decomposition. Each edge
is denoted by a unique name, usually positive integers as in Figure 3. Actually,
when the graph is simple (i.e., there is at the most one edge between any two
vertices), then explicit names for the edges are not necessary and can be dropped
(as, for example, in Figure 4).

This kind of graphical representation is very useful in visualizing the alternative
decompositions of a relation. (The problem of choosing among alternative decom-
positions is discussed in Section 4.) Figure 4, for instance, describes an alternative
atomic decomposition of our DEPT (obtainable using the first four FDs in (2.2).)

The main limitation of undirected graphs is that they can only represent binary
relations. In databases we are interested in relations of assorted degree. Even
atomic relations can have three or more attributes. For instance, consider the
following example taken from [33]. We have a relation

RANK (CT, C#, SN, P) (3.1)

which describes the rank order of students at the completion of their courses. A
student is identified by his name (SN). A course is identified by a title (CT) and
also a number (C#); thus C#-CT. The column P denotes the position obtained
by a student in the course he completed. Assuming that two different students
cannot have the same position in one course (no ties), we find that the elementary
FDs and the multiple elementary MDs of this relation are

l.CT+C#

2. CT - (SN, P}

3.C#+CT

4. C# ++ {SN, P}

5. {CT, SN} + P

6. {C#, SN} + P

7. {CT, P} + SN

8. (C#, P} + SN

(3.2)

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

34 * C. Zaniolo and M. A. Melkanoff

Fig. 5. The hypergraph of a
first atomic decomposition of

RANK.

Fig. 6. The hypergraph of a second
atomic decomposition of RANK.

Decomposing according to the multiple elementary MDs listed above, we
obtain two atomic decompositions:

I’ {

1. RANK(C#, SN, P)
2. RANK(CT, C#)

II

I

1. RANK(CT, SN, P)
* 2. RANK(CT, C#)

To represent decompositions such as these, where we have subrelations of degree
higher than 2, we use the graphical conventions currently adopted to represent
hypergraphs. Hypergraphs supply a natural generalization to the concept of
undirected graphs. In this paper we review only a few very basic and very simple
notions on hypergraphs. These notions will enable us to derive some important
results on the structure of minimal atomic decompositions and its relationship to
the MD structure of the original relation. The interested reader is referred to [7]
for a more complete and general treatment of the properties of hypergraphs.

A hypergraph consists of vertices and edges just like an ordinary graph, but the
edges of a hypergraph can contain one or more vertices. Edges with two vertices
are represented by a line connecting these vertices just as in a conventional
graph. An edge with three or more vertices is represented by a contour encircling
its vertices. An edge with only one vertex is represented by a line which begins
and ends at this vertex (a loop). The hypergraph of a set of relations is defined as
one where each relation is represented by a distinct edge having as vertices the
attributes of this relation. Thus the vertex set of the hypergraph of a set of
relations Z is, by definition, equal to the union of the attribute-sets of all relations
in X. Figures 3 and 4 represent the hypergraph of two decompositions of relation
DEPT (when all edges contain exactly two vertices, the representations of
hypergraphs and conventional graphs coincide). Figures 5 and 6 show the hyper-
graphs of the two atomic decompositions of RANK previously given.

Next, we state two simple propositions, whose applications are discussed later.

PROPOSITION 3.1. The vertex set of the hypergraph of a decomposition of R (51)
isS2.

Indeed, if we have a set of projections of R(G) such that the union of their
attribute set is Q’ c a, then by taking their natural join we would obtain a
relation R’(G?‘) which is not equal to R (s2).

In a hypergraph an edge is said to be minimal if it does not contain any other
edge. In the hypergraph of a decomposition Z, an edge contained in another edge
denotes that a member of X is a subprojection of another member in Z. Thus, we
have the following proposition.

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

Conceptual Schemata for Database Systems - 35

PROPOSITION 3.2. The hypergraph of a minimal decomposition of a relation
contains only minimal edges.

We next discuss the very useful notion of connectivity for hypergraphs. Two
edges of a hypergraph are said to be adjacent if they have one or more vertices
in common. The connectivity relationship between the edges of a hypergraph is
defined as follows:

1. An edge is connected to itself.
2. Two adjacent edges are connected.
3. Two edges connected to a common edge are connected.

Thusconnectivity is an equivalence relation which partitions the original hyper-
graph into groups of connected edges; each group is called a connected component
of the hypergraph. Two vertices of a hypergraph are connected if they belong to
the same connected component of the hypergraph. A hypergraph which consists
of one connected component is said to be connected. The hypergraphs considered
in Figures 3-6 are connected. We have the following property:

PROPOSITION 3.3. If the hypergraph of a decomposition of R (s2) consists of r
connected components with vertex sets aI, . . . , a,., then R(Q) - nR (Q,) x . . .
x IIR(S&.).

Indeed, one can construct R (a) by joining the subrelations in each connected
component first, and then take the Cartesian product of these joins.

Let H be a hypergraph with vertex set a. Given r C a we construct H’ from H,
as follows:

1. Remove every edge whose vertices all belong to r.
2. Replace every other edge i with vertices Ai by an edge i with vertices Al, where

A: = Ai - r.

The hypergraph H’ so constructed will be called the subhypergraph of H after
the removal of I’.

We can now prove an important theorem.

PROPOSITION 3.4. Let H be the hypergraph of a decomposition of R(Q) and
HI be any connected component of the subhypergraph of H after the removal of
r, where r C !J. If A 1 denotes the vertex set of HI, then I? ++ A1 in R (a).

PROOF. The proposition is trivially true if HI is the only connected component
of our subhypergraph. Otherwise, let X be a decomposition of R (52). Let X1 be the
subset of Z corresponding to the edges of HI (i.e., the set of those II R (Ai) of Z
such that Ai = Ai - I? is an edge of HI). If Rl(Ql) and Rz(&) denote the natural
join of the projections in X1 and in Xz = I: - X1, respectively, then R1(Ql) -R&&)
= R(a). Thus (% rl S&)++ S& in R(a). Clearly, A1 and I’ are disjoint and A1 c
%. Moreover, for every IIR(Ai) in X1, Ai c Al U r. Thus a1 C Al U r. Thus a1
- r = A,. Also, every lIR(Aj) in ZZ is disjoint from Al. Thus S& and A1 are
disjoint. Thus S& n S& c I’. Therefore, since (a, n S&)-P+ S’&, then I’ ++ !&.
From this, r ++ (& - r). Q.E.D.

ACM Tmmsactions on Database Systems, Vol. 7, No. 1, March 1982.

36 . C. Zaniolo and M. A. Melkanoff

1
4

LOC
Fig. 7. The hypergraph of Figure 3 after removal of E# 0
vertex DN.

SAL MGN

When I’ is the empty set, Proposition 3.4 reduces to Proposition 3.3. Proposi-
tions 3.3 and 3.4 establish important relationships between the connectivity
properties of a decomposition hypergraph of a relation and its MD structure.

If the hypergraph H with vertex set Q has k connected components and the
subhypergraph of H after the removal of I’, where F C B, has more than k
connected components, then r is called an articulation set for H. If F contains
only one vertex, this is called an articulation vertex.

Thus, by inspecting the articulation set of a decomposition hypergraph, one
immediately infers that certain MDs hold in the original relation. Take Figure 3,
for instance. The attribute DN is an articulation vertex whose removal breaks up
the original hypergraph into three connected components, as shown in Figure
7. (As we described previously, loops are used to represent edges with only
one vertex.) In Figure 7, we have three connected components with vertices
{E#, SAL}, {LOC), and {MGN).

Thus by Proposition 3.4 the following MDs hold in DEPT: DN ++ {E#,
SAL}, DN ++ LOC, DN ++ MGN.

Let us now consider the application of these formal results to the problem of
determining the minimality of a decomposition. If X is a decomposition of R (Cl!),
then a projection lIR(Ai) in Z will be called superfhous ifE - {lIR(Ai)} is still
a decomposition of R (a). An edge of a decomposition hypergraph will be called
superfluous when it represents a superfluous subprojection. For instance, if we
decompose RANK using first {CT, SN} + P and then C# -+ CT, we obtain the
decomposition hypergraph

(1: {CT, SN, P}, 2: {C#, CT}, 3: {C#, SN}}.

Here edge 3 is superfluous, since edges 1 and 2 above already define a decompo-
sition for RANK (see Figure 6). Thus a decomposition is minimal if it does not
contain any superlluous subprojection (i.e., its hypergraph contains no superflu-
ous edge). Now Proposition 3.1 prescribes that every edge of a decomposition
hypergraph which contains some vertex not contained in any other edge cannot
be superfluous. For example, in Figure 5, CT is only contained in edge 2; P is only
contained in edge 1. Thus there is no superfluous edge, and we have a minimal
atomic decomposition. By the same reasoning, Figure 6 also describes a minimal
atomic decomposition for RANK.

Let us discuss the applications of Proposition 3.3. This states that given a
relation R which is not the Cartesian product of two subprojections (i.e., there is
no MD with an empty left side), then (1) the hypergraph of a decomposition of
R must be connected, and (2) every edge whose removal will break the hypergraph
in two or more connected components cannot be superfluous. For instance, the
hypergraph of Figure 3 represents a decomposition for DEPT which is known to

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982

Conceptual Schemata for Database Systems 9 37

contain no MD with an empty left side. Now edges 2,3, and 4 each contain some
vertex not contained by other edges; thus they are not superfluous. If we remove
edge 1, the hypergraph is broken into two components; thus 1 cannot be super-
fluous. Figure 3 thus represents a minimal atomic decomposition of DEPT.
Therefore one finds that each edge in Figures 3-6 represents an atomic component
for its relation. In passing, we note that these atomic components will survive
even after some many-to-one relationships change into many-to-many. In DEPT,
for instance, we have previously observed that if a department is associated with
more than one location, then the FD, “DN + LOC” will not be valid any longer.
The MD “DN ++ LOC” will hold instead. Even then, Figure 3 defines a minimal
atomic decomposition and IIDEPT(DN, LOC) remains a valid atomic component
for DEPT.

In conclusion, minimality of an atomic decomposition can usually be deter-
mined by a simple visual inspection of its decomposition hypergraph. This seems
to be true even when more complex decompositions are involved, such as those
which we describe in the next section. These will require application of Proposi-
tion 4.4.

Hypergraph models for a set of relations find other interesting applications, for
example, in connection with the lossless join problem [32]. These are outside the
scope of this paper.

4. SCHEMA DEFINITION AND DESIGN

We now present a novel approach to the definition and the design of graphical
schemata for relational databases. In this approach we characterize the logical
structure of the database in terms of elementary FDs and of atomic components
of database relations. In conformity with the terminology used in [32] and [33],
we refer to the atomic component structure and to the elementary FD structure
of a relation as its A-structure and its Z-structure, respectively.

Our discussion will evolve as follows. In Section 4.1 it is shown that the
combined definition of elementary FDs and atomic components provides an
unambiguous characterization of a wide spectrum of logical relationships between
database attributes. We also examine the rules which constrain the A-structure
of a relation to its Z-structure. In Section 4.2 we present a simple and suggestive
graph representation of the combined A- and Z-structure. In Section 4.3 we
propose an algorithm to design the proper schema using the functional and
multivalued dependencies of a relation. In Section 4.4 we discuss the various
limitations of the proposed algorithm.

4.1 Atomic Components and Elementary FDs

We now examine the various configurations under which elementary FDs and
atomic components combine and interact in a relation. Moreover, we show that
by describing these configurations we can in fact characterize a wide spectrum of
semantic relationships between database attributes, including the well-known
one-to-one, one-to-many, and many-to-many archetypes. Instrumental in our
developments is the concept of scope for an elementary FD [32]. If r + A is an
elementary FD, then r U (A} is said to be its scope. Thus the scope of an
elementary FD includes all the attributes pertaining to this FD.

ACM Tnmsactions on Database Systems, Vol. 7, No. 1, March 1982.

38 * C. Zaniolo and M. A. Melkanoff

Let us now consider the relationships described by atomic components and the
elementary FDs contained therein. Note that an elementary FD can be contained
in an atomic relation only if it has as scope the whole attribute set of this atomic
relation. In a relation R, the presence of a binary relationship between its two
attributes A and B is denoted by the presence of an atomic co.mponent IIR
(A, B) and by the set of elementary FDs with scope {A, B}. If there are two FDs
with scope {A, B}, namely, A + B and B + A, then this is a one-to-one
relationship, also called a one-to-one correspondence. If there is only one such
FD, say, A + B, then this is a many-to-one relationship from A to B. If no such
FD exists, then this a many-to-many relationship. In our example RANK, for
instance, we have a one-to-one correspondence between CT and C# (one course
number per each course, and vice versa). Thus we find an atomic component
IIRANK(CT, C #) containing the two elementary FDs: CT + C# and C# +
CT. In DEPT we find several many-to-one relationships. For instance, many
employees are associated with a given department; however, only one department
is associated with any given employee. This relationship is described by the
presence of an atomic component IIDEPT(E#, DN) containing one FD: E# +
DN. For an example of a many-to-many relationship one could assume that, in
DEPT, one department has more than one location (i.e., DN ++ LOC).
As previously discussed, then DEPT still has IIDEPT(DN, LOC) as an atomic
component. Now, however, there exists no elementary FD with scope
{DN, LOC}. In summary, the combined definition of atomic components and
elementary FDs is sufficient to describe the three basic types of relationships
which occur between two attributes.

Let us consider now how atomic components and elementary FDs describe
associations involving three or more attributes. For instance, consider the re-
lationship between the three attributes C#, SN, and P in relation RANK,
This relationship is denoted by the presence of the atomic component IIRANK
(C#, SN, P) with FDs {C#, SN} + P and {C#, P} + SN. This kind of
relationship (i.e., one involving three or more attributes) cannot be classified
under one of the three basic binary types previously discussed. At best, it can be
viewed as a structured collection of binary subrelations obtained by holding the
remaining attributes constant. Thus, for a ternary relationship one can set each
of three attributes constant and then describe the relationships between the
remaining two attributes. For instance, our relationship between C#, SN, and P
can be described as follows:

1. For a given C# there is a one-to-one correspondence between SN and P.
2. For a given SN there is a many-to-one relationship between C# and P.
3. For a given P there is a many-to-one relationship between C# and SN.

This way of looking at our relationship reminds us of the orthographic projec-
tion technique which allows a three-dimensional object to be represented by
three two-dimensional views. Unfortunately, as the order of a relationship grows,
the number of bidimensional views required by this approach grows exponentially.
However, these two-dimensional views can easily be derived given the elementary
FDs (of an atomic component) whose number never exceeds the number of
attributes in the atomic component.

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

Conceptual Schemata for Database Systems * 39

&+-.jb’. MO TU WD TH FR

8AM Gl Gl

9AM Gl Gl

10 AM G2 G2 G2 G2 G4

11 AM G3 G3 G4

12 AM Gl G3 Gl G3

Fig. 8. Weekly schedule of occupancy of a conference room.

Thus it appears that by supplying both the atomic components and the
elementary FDs of a relation, one can represent unambiguously and concisely a
wide spectrum of logical relationships between two or more attributes. Moreover,
as we study further the possible configurations in which elementary FDs and
atomic components combine and interact, we find that they are capable of
describing relationships whose complex nature is hard to grasp by sheer intuition.
We have just discussed the case in which the scope of an elementary FD and the
attribute set of an atomic component coincide. Now we will analyze the contigu-
rations where one properly contains the other. An elementary FD cannot have
scope properly contained in an atomic component. However, there may exist
atomic components with attribute sets properly contained in an elementary FD.
To illustrate this situation with an example, consider the relation

WS(DAY, TIME, GROUP)

which describes the weekly schedule of occupancy of a conference room, where
various groups meet. Typically, the content of such a relation is represented by
a table such as that shown in Figure 8, where the time and day are respectively
rows and columns, while the entries of the matrix are the names of the groups.

Only one group meets at any given day and time in the room. Thus {DAY,
TIME} + GROUP. Assume also that a group must follow the same schedule for
any day in which it uses the room. Under these conditions the set of hours
assigned to a group does not depend upon the particular day in which the group
uses the room. Thus GROUP --t, TIME and GROUP t, DAY. Indeed, the
natural joint of Il WS(DAY, GROUP) and lIWS(TIME, GROUP) shown below
returns the instance of relation (4.1) filled in as in Figure 8.

II WS(DAY, GROUP) II WS(TIME, GROUP)
MO Gl 8AM Gl
MO G2 9AM Gl
TU G2 12 AM Gl
TU G3 10 AM G2
WD Gl 11 AM G3
WD G2 12 AM G3
TH G2 10 AM G4
TH G3 11AM G4
FR G4

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

40 * C. Zaniolo and M. A. Melkanoff

Thus, if one looks at relation WS, from the viewpoint of the elementary FD
“{DAY, TIME} + GROUP” he may regard it as an indivisible logical association
between these three attributes. According to its atomic components this is not an
indivisible binary association, but rather it consists of two binary relationships.
Other interesting examples of relations having a similar kind of twofold logical
structure are given in [3, 321. These present examples of relations characterized
by elementary FDs of nested scope.

Since we have an atomic component II R (A) where A is not the scope of any
elementary FD, and we can also have an elementary FD with scope A where
II R (A) is not an atomic component, then it is clear that the atomic component
structure of a relation (the A-structure) and its elementary FD structure (the Z-
structure) are in many respects distinct and independent. However, their inde-
pendence is restricted by important limitations, which result from the following
theorems:

PROPOSITION 4.1. The left side of any nontrivial MD of R (L?) contains the
right side attribute of any elementary FD of scope 52.

PROOF. If (52 - {A}) + A is the elementary FD and P t, A is the nontrivial
MD, then we need to prove that A E I. Assume by contradiction that A fZ I’.
Then either A E A or A E A = R - (I’ U A). If A E A by complementation and
augmentation, one obtains: (F U (A - {A})) -++ A. But since F --t) A is not
trivial, (I U (A - {A})) = ((P U A) - {A}) c (a - {A}). Thus (B - {A}) -A
is not elementary, and that is a contradiction since we know that the counterpart
of an elementary FD is elementary [33]. By the same reasoning, we find that A
cannot belong to A. Thus, A E r. Q.E.D.

In our previous relation WS, for instance, we had {DAY, TIME} + GROUP
while GROUP - DAY and GROUP --w TIME.

PROPOSITION 4.2. An n-ary relation R(Q) which contains at least n - 1
elementary FDs with scope Q is atomic.

PROOF. If P +4 A is a MD of R, then according to Proposition 4.1 (F] 2 n -
1. Thus, I -++ A is trivial.

The following theorem establishes an interesting relationship between elemen-
tary FDs and atomic components (defined in Section 3.1 as the members of some
minimal atomic decomposition).

PROPOSITION 4.3. If R(Q) contains some elementary FD with scope A and
II R (A) is atomic, then II R (A) is an atomic component for R.

PROOF. If (A - {A}) + A is one of the elementary FDs with scope A,
then R is decomposable into the pair RR(A) and IIR(Q - {A}). Moreover,
IIR (B - {A}) may be further decomposable, say, in a set of atomic relations Z.
II R (A) is atomic by assumption. Thus Z U (II R (A)} is an atomic decomposition
of R(n), although it need not be minimal. A minimal atomic decomposition for
R (52) can be obtained by removing all superfluous relations from Z U {II R (A)}.
However, this operation cannot remove II R (A) since no relation in Z contains
attribute A. Thus Il R (A) remains as a component of the resulting minimal atomic
decomposition. Q.E.D.

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

Conceptual Schemata for Database Systems * 41

Thus we have an important corollary which supplies the formal basis to our
combined representations of A- and Z-structures:

PROPOSITION 4.4. If R(G) contains n elementary FDs with common scope
L G 0 and n L 1 A 1 - 1, then II R (A) is an atomic component of R (a).

Thus if R has an elementary FD with scope {A, B}, then it also has an atomic
component IIR (A, B); if R has at least two elementary FDs with scope {A, B,
C), then it has an atomic component Il R (A, B, C), etc.

4.2 CAZ-Graphs

We propose that atomic components and elementary FDs should be used as the
primitives for schema definition. Thus a schema for a relation R consists of the
pair (ACOVER, ZCOVER), where

ACOVER denotes a set of atomic components of R, which constitutes a minimal
decomposition for this relation, and

ZCOVER denotes a set of elementary FDs of R which constitutes a minimal
cover for the FDs of this relation.

These two sets, however, cannot be selected independently. Instead, they must
satisfy the mutual constraint, dictated by the admissibility condition [33]. This
ensures that atomic components and elementary FDs are properly combined to
represent the various relationships among attributes, as per the examples in the
previous section. This condition also supplies the basis for the graphical repre-
sentation of schemata and for the schema design algorithm which will be discussed
in this and in the following sections. A pair (ACOVER, ZCOVER) will be called
admissible when it has the following properties:

(i) If ZCOVER contains an elementary FD with scope A, then it also includes
every elementary FD of R with scope A. Moreover, if II R (A) is atomic, then
A is also contained in ACOVER (by Proposition 4.3 this is an atomic
component for R).

(ii) If, moreover, ACOVER contains A, then every elementary FD of R with
scope A is included in ZCOVER.

We suggest that the sets ACOVER, ZCOVER, combined under the admissi-
bility condition, can be used as a conceptual database schema. Figure 9 gives
such a schema for our relation RANK (in the next section we show that this is in
fact a good schema for our relation).

For convenience we have introduced an index (called LABEL) which uniquely
identifies subsets of attributes; the subset of attributes identified by label i will be
denoted hi.

We now introduce a graph representation of our schema. This will be called a
combined A- and Z-graph or, for short, a CAZ-graph. The CAZ-graph, which
represents the schema of a relation, has as vertices the attributes of this relation.
Every arc of the graph has a label attached. An arc can either be of type one-to-
one or type many-to-one, or type many-to-many. The graph representation of a
schema (ACOVER, ZCOVER) is constructed as follows (Direct Mapping):

1. One-to-one arcs: There is a one-to-one arc labeled i between vertices A and
B if ZCOVER contains two FDs with common scope Ai and with right sides A

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

42 * C. Zaniolo and M. A. Melkanoff

LABEL ACOVER ZC!OV+?SR -~

1 (C#, SN} + P
Fig. 9. A schema for RANK.

(C#, P, SN)
(C#, P) 4 SN

C# -+ CT
CT --(C#

and B, respectively. This arc will be represented as follows:

A*:
i

:*B

2. Many-to-one-arcs: There is a many-to-one arc labeled i between A and B if
the following conditions are both satisfied:

(a) ZCOVER contains an FD of scope Ai whose left side contains A and whose
right side is B. (Thus Ai contains both A and B.)

(b) There is no one-to-one edge with label i between A and B.

This arc will be represented as follows:

We shall say that this arc is leading into B.

3. Many-to-many arcs: There is a many-to-many arc labeled i between A and
B if the following conditions are both satisfied:

(a) ACOVER contains Ai which contains both A and B.
(b) There is no one-to-one or one-to-many arc with label i between A and B.

This arc is represented by a plain line as follows:

A.
i

l B

The &U-graph corresponding to the pair (ACOVER, ZCOVER) of Figure 9
is given in Figure 10.

We now give the rules to derive the elementary FDs and the atomic components
defined by a CAZ-graph G. If i is a label of some arc of G, then Gi will denote the
subgraph of G defined by i; Gi is obtained by first removing from G all arcs not
labeled i and then removing all the isolated vertices (i.e., those to which no arc is
attached). For instance, if G is the graph of Figure 10, then Gz reduces to the one-
to-one arc labeled 2 and the two end vertices of this arc. If in Gi there is an arc
between every two vertices, then Gi is called a clique. Thus the direction of the
arcs is immaterial in the definition of the cliques of a graph. Then the set of
elementary FDs, ZCOVER, and the set of atomic components, ACOVER,
defined by the CAZ-graph G can be constructed as follows.

Inverse Mapping. For every label i of G consider Gi, with vertex set Ai, and

(a) if Gi is a clique, then enter & in ACOVER ;
(b) if B is a vertex of Gi connected to every other vertex of Gi by a one-to-one z+.rc

or by a many-to-one-arc leading into B, then enter (Ai - {B)) + B in
ZCOVER.

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

Conceptual Schemata for Database Systems l 43

P
1

C# 2
4

D--

CT Fig. 10. A CA&graph for relation RANK.

I

SN

For instance, if G is the graph of Figure 10, then in G1 we find a vertex SN
connected to P by a one-to-one arc and connected to C# by a one-to-many arc
(leading into SN). Thus {P, C#} + SN. (Note the importance of labels in
defining these FDs. Without labels we could have interpreted the arrows leading
into SN as two distinct FDs: P + SN and C# + SN.) Also, G1 defines {C#, SN}
+ P. In Gz we find C# + CT and CT + C#. G has two cliques: G1 with vertices
{P, SN, C#} , and Gz with vertices {C#, CT}. Therefore, from Figure 10 we have
reconstructed the original pair (ACOVER, ZCOVER) of Figure 9.

Let us now prove that the CAZ-graph representation is unambiguous and
correct. We show that there is a one-to-one correspondence between a pair
(ACOVER, ZCOVER) satisfying the admissibility conditions and its CAZ-graph
G, constructed by the direct mapping rules 1, 2, and 3. If ACOVER, ZCOVER
denote the pair constructed from G by the inverse mapping rules (a) and (b),
then we need to prove that ACOVER = ACOVER and ZCOVER = ZCOVER.
The second equality is an immediate consequence of the definitions. To prove
the first equality, observe that ACOVER 2 ACOVER follows immediately from
the way in which we constructed the many-to-many edges of G. To prove that
ACOVER 2 ACOVER, we must prove that if, for some label i, there is a clique
Gi with vertex set Ai, then II R (Ai) is an atomic component of R. Again, if Gi has
some many-to-many edge, the conclusion follows directly from the definition.
Otherwise, let Gi be a clique where every arc is either one-to-one or many-to-one.
We prove that R contains at least 1 Ai I- 1 elementary FDs with scope Pi. Indeed,
if R has 1 Ai 1 - 2 or fewer such FDs, there are two attributes in Pi, neither of
which is the right side of an elementary FD with scope Pi. Thus these two
attributes are not connected in Gi by a one-to-one or a many-to-one arc; this is a
contradiction.

NOW since R contains at least 1 Ai I - 1 elementary FDs of scope Pi, it follows
from Proposition 4.4 that II R (Ai) is an atomic component for R. Moreover, since
ZCOVER contains some elementary FD with scope A\i, by the admissibility
condition ACOVER must contain II R (Ai). This concludes our proof.

CAZ-graphs exhibit relationships between attributes in a simple fashion. Binary
relationships are represented by an arc whose type defines the nature of the
relationship. An edge with two opposite arrowheads denotes a one-to-one rela-
tionship (e.g., in Figure 10 C# c, CN), an edge with one arrowhead denotes a
many-to-one relationship, and an edge with no arrowhead denotes a many-to-
many relationship. Relationships among three or more attributes are represented
by the orthographic projection technique previously discussed. Each arc denotes
a relationship holding between two attributes when the remaining attributes are
held constant. In Figure 10, for instance, the arc between P and SN denotes that

ACM Transactions on Database System, Vol. 7, NO. 1, March 1982

44 * C. Zaniolo and M. A. Melkanoff

TIME DAY

2 3

Fig. 11. A CAZ-graph representing relation WS.

a one-to-one correspondence exists between P and SN, when C# is held constant.
The arc between C# and P denotes a many-to-one relationship with SN constant,
and the arc between C# and SN denotes a many-to-one relationship with P
constant.

CAZgraphs allow us to represent unambiguously complex relationships such
as that involving elementary FDs of nonatomic scope. For instance, a CA.5graph
representing the structure of our relation WS is given in Figure 11.

4.3 Schema Design

We now present a formal procedure for schema design using the functional and
multivalued dependencies of a relation. The objective of this procedure is to
produce an admissible pair (ACOVER, ZCOVER) which preserves the informa-
tion of the original relation in terms of both content and structure, and represents
it with minimal redundancy. This procedure consists of two steps:

1. a decomposition step which produces the admissible (ACOVER, ZCOVER)
where ZCOVER is the minimal cover for the FDs of the given relation, and

2. a verification step to verify the minimality of the atomic decomposition
ACOVER.

Next, we discuss the decomposition step. The verification step will be discussed
later. The algorithm to perform the decomposition step was presented in [33].
This algorithm basically consists of a recursive procedure which operates as
follows. Say that lI R (a) is the relation at hand with a set P of elementary FDs
and a set (% of multiple elementary MDs; also let FO be the set of elementary
FDs in P having LZ as scope. Then FO is added to ZCOVER and, if IIR(Q) is
atomic (i.e., G,,, is empty), then IIR (a) is entered in ACOVER and the procedure
is completed. If Il R (a) is not atomic, then (?m is searched for an elementary MD
which ensures preservation of structural information. Once such an MD, say,
P * A, is found, then II R (62) is decomposed into IIR (P U A) and
lI R (52 - A). Next these two subrelations are decomposed in turn.

As discussed in [33], the MD “P +-+ 8” ensures preservation of structural
information if the following two conditions are satisfied:

(R U Fz)+ > (P- Fo) (4.1)

(GF u GII U GA+ 2 l&z (4.2)

where

R and FL! denote the FDs in P whose scope is contained in (I’ U A) and
(a - A), respectively.

GF denotes the MD counterparts of the FDs of I;i,

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

Conceptual Schemata for Database Systems * 45

SN

Fig. 12. The CM-graph for DEPT. ‘Fig. 13. A second CAZ-graph for RANK.

Gn and GZZ denote the MDs of G,,, having right sides disjoint from P, and left
sides contained, respectively, in (P U A) and (0 - A).

Conditions (4.1) and (4.2) ensure that the FDs and the MDs of the initial relation
are derivable from the dependencies of the resulting decomposition [33].

Before this recursive procedure is applied to the given relation, the sets
ACOVER and ZCOVER are set to empty. Once the procedure completes,
ACOVER and ZCOVER contain, respectively, a set of atomic subprojections of
a given relation and a set of elementary FDs which satisfy the admissibility
condition. In [33] we prove that ZCOVER so obtained constitutes a minimal
couer for the FDs of R. While ZCOVER alone preserves and minimally represents
the Z-structure of the initial relation, its A-structure is captured by ACOVER
and ZCOVk’R combined.

Efficient algorithms to verify conditions (4.1) and (4.2) can be found in [4] and
[3], respectively. An algorithm for deriving the multiple elementary MDs in
projections of a given relation was presented in [33].

Application of this decomposition algorithm to our example DEPT produces
the CAZ-graph of Figure 12.

As one can easily verify, the result of the decomposition of DEPT does not
depend on the order in which the multiple elementary MDs in (2.2) are tested for
compliance with conditions (4.1) and (4.2) and then used in the decomposition.
However, if one decomposes RANK, he will obtain the graph of Figure 10 or that
of Figure 13, depending on whether CT + C# or C# + CT is considered first.
The fact that there exist two solutions is a logical consequence of the one-to-one
correspondence existing between CT and C#. Clearly, either graph supplies an
acceptable schema and both contain the same information.

The purpose of the second step of our design procedure is to verify the
minimality of the atomic decomposition, ACOVER, provided by the first step.
The use of only multiple elementary MDs in the decomposition supplies an
extremely effective heuristic toward ensuring this minimality. To convince oneself
of this, one could decompose RANK using a single elementary MD instead, for
example, the counterparts of the elementary FDs 5,6, and 7 in (3.2), and obtain
a clearly nonminimal decomposition. Nevertheless, there is no formal assurance
that the decomposition step produces a minimal atomic decomposition. Actually,
we know of a counterexample where a decomposition obtained using multiple
elementary MDs is not minimal. This example, however, involves subrelations
which are losslessly decomposable into three projections but not into two projec-
tions. As we know, the semantic constraints obeyed by these relations cannot be

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

46 * C. Zaniolo and M. A. Melkanoff

modeled by MDs [23]. Whether minimality can be violated for decomposition of
relations which only obey constraints expressible in terms of FDs and MDs is
still an open problem.

Say, therefore, that our conservative designer wants to verify the minimality of
the atomic decomposition Z produced by the first step of the design procedure.
I: is minimal if it does not contain any superfluous relation. We know that the
following members of I: cannot be superfluous: (1) those which contain some
attribute not appearing in any other member of Z and, in the absence of MDs,
with an empty left side; (2) those whose removal would break the connectivity of
the associated hypergraph. For the examples we have considered so far these two
rules were sufficient to infer minimality. In more complex examples, for example,
the one which we consider next, some subrelation which could not be decided to
be nonsuperfluous by the previous two rules could remain. Then for each such
subrelation, say, IIR (A) in Z, one can use the algorithm presented in [l] to decide
whether Z - {R(A)} has the lossless join property. In the presence of MDs,
however, this algorithm may run in exponential time. A second approach is to
use Proposition 3.4, as we are now going to illustrate with the help of an example
taken from [33]. The attributes of interest are as follows:

LIC:
MAKE:
MODEL:
YEAR:
VALUE:
OWNER

DRVL:
VIOL:
DATE:

license numbers of motor vehicles;
manufacturers of motor vehicles;
models of vehicles;
the year in which the vehicle was manufactured;
the current value of the vehicle;
the unique identifier of a person (for simplicity, we give only the
family name; in reality, a composite ID which includes the fast name,
birth date, and iocation, etc., may be needed);
the driving license numbers;
the code numbers for traffic violations:
month, day, and year of violation.

The following information is required:

1. the make, model, and year of any licensed vehicle;
2. the current (blue book) value of a given type of vehicle;
3. the legal owner of a given vehicle;
4. the driving license number of a given person (and the person having a certain

license number);
5. the traffic violation history of any driver; the records consist of pairs: violation

code and date of warrant.

Then we have a relation:

DMV (LIC, MAKE, MODEL, YEAR, VALUE, OWNER, DRVL, VIOL, DATE),

with elementary FDs and multiple elementary MDs:

Dl: LIC + MAKE
D2: LIC + YEAR
D3: LIC + MODEL
D4: LIC + VALUE

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

Conceptual Schemata for Database Systems * 47

LABEL ACOVER

1 (VALUE, MAKE, MODEL, YEAR)
2 {LIC, MAKE)
3 (LIC, YEAR}
4 (LIC, MODEL]
5 (OWNER, DRVL}

6 {OWNER, VIOL, DATE)
7 {LIC, OWNER}

ZCOVER

{MAKE, YEAR, MODEL) -) VALUE
LIC + MAKE
LIC + YEAR
LIC -+ MODEL
OWNER + DRVL
DRVL --f OWNER

None
LIC + OWNER

Fig. 14. A schema for relation DVM.

MAKE

DRVL
l

VALUE VIOL

MODEL OWNER 6 DATE

Fig. 15. CAZ-cover graph for relation DMV.

D5: LIC + OWNER
D6: LIC -+ DRVL
D7: LIC - {VIOL, DATE}
D8: {MAKE, YEAR, MODEL} + VALUE
D9: {MAKE, YEAR, MODEL} --w {LX, OWNER, DRVL, VIOL, DATE}
DlO: OWNER + DRVL
Dll: OWNER * {VIOL, DATE}
D12: OWNER-H {LIC, MAKE, YEAR, MODEL, VALUE}
D13: DRVL + {OWNER}
D14: DRVL + {VIOL, DATE}
D15: DRVL * {LIC, MAKE, YEAR, MODEL, VALUE}

By applying the decomposition algorithm previously discussed we obtain the
schema of Figure 14 [33]. This is represented by the CAZ-graph of Figure 15.

If G is a CAZ-graph defining the set of atomic subrelations ACOVER, then the
hypergraph representation of ACOVER will be called the hypergraph associated
with the cliques of G, denoted H(G). Given a CA&graph, it is easy to visualize
the hypergraph associated with its cliques. For instance, let G be the graph of
Figure 15; H(G) has an edge corresponding to G1 with vertices {MAKE, YEAR,
MODEL, VALUE} and an edge corresponding to GS with vertices {OWNER,
VIOL, DATE}. Moreover, H(G) has some binary edges corresponding to the arcs
labeled 2, 3,4,5, and 7 of Figure 15.

For convenience, we let the label of each clique of G become the name of the
corresponding edge of H(G). We can now observe that edges 1, 5, and 6 of our

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

48 l C. Zaniolo and M. A. Melkanoff

H(G) are not superfluous since they contain some vertex not included in any
other edge. Edge 7 cannot be superfluous since its removal would break the
connectivity of the hypergraph. The question whether edges 2, 3, and 4 are
superfluous can be resolved using Proposition 3.4. Assume that we remove edge
2. Then {YEAR, MODEL} becomes an articulation set for the hypergraph so
obtained; this is broken by the removal of YEAR and MODEL into two connected
components with vertices {MAKE, VALUE} and (LIC, OWNER, DRVL, VIOL,
DATE}. Thus if IIDMV(LIC, MAKE) is superfluous in our decomposition, then,
by Proposition 3.4, {YEAR, MODEL} t, {MAKE, VALUE} in DMV. But
since such an MD does not hold in DMV, IIDMV(LIC, MAKE) cannot be
superfluous. By analogy, one derives the fact that edges 3 and 4 cannot be
superfluous. Therefore, even in this more complex example we were able to verify
the minimality of our atomic decomposition by direct inspection of the connec-
tivity properties of the associated hypergraph; we found no need to resort to the
algorithm presented in [l].

Let us see how the dependency structure of a relation is preserved and
represented by its CAZ-graph. For FDs the situation is clear. The set ZCOVER
defined by the graph supplies a minimal cover for the FDs of the whole
relation. For MDs the situation is more complex; it involves both sets
ACOVER and ZCOVER defined by the graph. A first group of MDs consists of
those derivable as the counterparts of FDs in ZCOVER. A second group of MDs
is derivable from the connectivity properties of the graph, using Proposition 3.4.
In the case of DMV, for instance, the two elementary MDs

Dll: OWNER - {VIOL, DATE)
D12: OWNER - {LIC, MAKE, YEAR, MODEL,. VALUE}

can be derived from the graph of Figure 15 by simply observing that the removal
of OWNER breaks the hypergraph associated with its cliques in three connected
components, with vertices {VIOL, DATE}, {LIC, MAKE, YEAR, MODEL,
VALUE}, and {DRVL} . Thus, Proposition 3.4 produces the desired conclusion.
A third group of MDs is derivable from the MDs of the first two groups by using
the MD inference rules [6].

D7: LIC t-, {VIOL, DATE} and
D14: DRVL - {VIOL, DATE}

are derivable by composing, respectively, LIC +-+ OWNER and DRVL -
OWNER with Dll.

4.4 Discussion

A recent survey [5] has exposed three basic principles supplying a common
conceptual basis to the formal approaches to schema design proposed so far.
These are as follows:

1. the principle of separation;
2. the principle of representation;
3. the principle of minimal redundancy.

In spite of this common conceptual basis, different works on schema design have
used different formulation of these principles and pursued them to a different
ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

Conceptual Schemata for Database Systems * 49

degree. Thus we now assess the performance of our approach in the framework
of these principles.

The principle of separation presides at the choice of “good” primitives for
schemata. Certain relationships should not be represented together by a “big”
relation but should be separated and represented independently by smaller
relations. However, while everyone agrees that “small is good,” the issue “How
small is good enough?” is somewhat controversial. A measure of this controversy
is supplied by the large number of normal forms which are at present roaming
the field. In our approach we have pursued the principle of separation to an
extreme degree by ensuring that independent relationships are always represented
by separate (atomic) relations. Thus, we decompose relations into finer granules
than the normal form approach would: while atomic components are always
fourth normal form, the reverse is not true. The admissibility copdition is
instrumental in implementing this separation principle. To illustrate this point,
assume that we represent our previous example RANK by a schema which does
not satisfy the admissibility condition: assume that in ZCOVER of Figure 9 we
replace {C#, SN} --, P by {CT, SN} + P. No loss of information has thus
occurred since our old ZCOVER and the new ZCOVER have the same FD
closure. After such a change, however, the schema represents the relationship
between {C#, P, SN} in a less natural and less direct fashion. Indeed, to
understand that for a constant C# there is a one-to-one correspondence between
SN and P, one needs to look at a fourth attribute, CT, and, after finding which
FDs hold in this larger context, derive the desired conclusion by transitivity.
Thus the admissibility condition ensures that the representation of certain basic
relationships is complete and self-contained, so that they can be treated indepen-
dently from the context in which they appear. The benefits accrued by using the
admissibility condition in the design of third normal form relations are discussed
in [33].

In the framework of the decomposition approach the principle of representation
prescribes that the final schema represents the same information as the original
relations did. Since we have assumed that these relations with their dependencies
completely describe the logical relationships of interest, the principle of represen-
tation becomes an immediate consequence of the complete relatability principle
discussed in the introduction.

We have applied the representation principle with rigor by requiring that both
content and structure be preserved in the decomposition. Content preservation
has been ensured as per the lossless join concept described in [l]. Preservation of
structural information has been ensured with respect to both FDs and MDs-
thus in a more general context than the one discussed in [24] and [2]. As a result
of this, the elementary FDs of the given relation are either represented by the
resulting CAZ-graph or inferable from it by the FD inference rules. The MDs of
the original relation are instead defined by the graph, either by being the
counterpart of an FD, or by the connectivity property of the graph, or indirectly
through the MD inference rules. Thus it is quite legitimate and natural to speak
of the &U-graphs generated by our design procedure as a cover graph for the
given relations.

The principle of minimal redundancy has been applied here with rigor also
Our schema consists of a set of elementary FDs, ZCOVER, and of a set of atomic

ACM Transactions on Database Systems, Vol. 7, No. 1. March 1982.

50 * C. Zaniolo and M. A. Melkanoff

components, ACOVER. The ZCOVER generated by our decomposition algorithm
was proved minimal in [33]; thus no smaller subset of it is a cover for the FDs of
the initial relation. Moreover, the second step in the design procedure also
guarantees the minimality of ACOVER: no proper subset of it can be joined back
into the original relation. It must be noted here that since this minimality
condition is applied to atomic relations, it becomes a more stringent requirement
than it would be otherwise. To illustrate this point, we can consider a decompo-
sition of DMV containing some nonatomic subrelations. Say, for instance, that
we take the decomposition defined by the graph of Figure 15 and we replace
IIDMV(LIC, MAKE), IIDMV(LIC, YEAR), and IIDMV(LIC, MODEL) by the
pair

IIDMV(LIC, MAKE, YEAR) (4.3)
IIDMV(LIC, YEAR, MODEL). (4.4)

This new decomposition, consisting of the two projections above and of those
defined by the cliques labeled 1, 7, 5, and 6 of Figure 15, is still minimal, as one
can easily verify using Proposition 3.4. Yet in this minimal decomposition there
is a significant amount of redundancy since the binary relationship between LIC
and YEAR is represented in both (4.3) and (4.4).

Thus our design procedure realizes a very high standard for all three basic
principles which are generally considered important in schema design. As a result
of this high standard, the schemata produced by this procedure are “good”
schemata in every respect. In all examples we have considered the natural
relationships of interest were captured and represented in a rather natural
expressive, and nonambiguous fashion. Of course, a price had to be paid for
pursuing such high standards. There exist relations for which all the previous
objectives cannot be met and either the decomposition algorithm or the verifi-
cation step will fail. The decomposition algorithm could fail because there exists
no multiple elementary MD for which the complete relatability conditions (4.1)
or (4.2) are satisfied. Then the designer would be forced to intervene and decide
how to resolve the situation. In the large majority of cases we have considered,
the design procedure we have presented completes automatically without designer
intervention. Therefore, we had available for analysis only a few examples of
plausible semantics for which the design procedure would fail. In these examples
the source of the problem was not the decomposition algorithm itself, but rather
the objective impossibility of finding a solution satisfying all the strict standards
which had been set for separation, preservation, and minimal redundancy. One
way to ensure that the procedure completes automatically in every case would be
to relax some of these standards. For instance, some workers argue that decom-
position into Boyce-Codd normal form or fourth normal form should be per-
formed even when preservation of structural information cannot be obtained [13,
151. On the contrary, a weaker statement of minimal redundancy is accepted in
[8] for the purpose of obtaining third normal form relations. Here, instead, we
decided to follow a different approach: the basic principles for a “good” design
were strictly enforced, and we accepted the fact that on occasion all these
principles cannot be met and a more direct intervention is required by the

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

Conceptual Schemata for Database Systems * 51

designer. This discipline offers two significant advantages. First, it ensures that
schemata automatically generated by the design procedure are sound and well
behaved by the strictest standards of good design principles. Our experience
suggests that the great majority of real-life examples are still handled automati-
cally. A second advantage is that those infrequent situations which are recalci-
trant to the application of these “good” design principles are singled out, and the
designer’s attention is drawn to them. As a result of a deeper look, the designer
may recognize some peculiarities with the relation at hand. Our experience shows
that these may be caused by some particular constraints between the relationships
represented or possibly by a poor choice of the initial relation which was intended
to represent them. Thus a halt in the decomposition procedure will supply some
useful feedback to the designer and stimulate needed corrections. To illustrate
this point, one can consider a relation DICT(F, G, E) which supplies a dictionary
of corresponding technical terms or concepts in French, German, and English
[33]. Assuming that a concept can be described by multiple synonyms but no
terms describe more than one concept, then every attribute in DICT is MD on
every other attribute. It is easy to see that no decomposition which satisfies (4.2)
exists, and the only good solution to this problem is to introduce a new column,
say, C for concept, to identify the concept corresponding to a set of synonyms.
Then the decomposition procedure operates successfully on the new augmented
relation (yielding the schema of [33], Figure 2).

On the contrary, if the designer feels that his initial schema was well suited for
his statement of intension, then he may proceed in the decomposition in the way
he deems most appropriate for the case at hand. For instance, if condition (4.1)
is not satisfied, he may decide to disregard some elementary FD and then choose
a minimal decomposition which preserves the remaining ones, or he may decide
to accept redundancy and decompose the relation into larger subprojections or
into more than two subprojections to ensure that a cover for the FDs of the
relation is preserved. In either case, however, it is clear that there will be some
side constraints not embodied in the schema of which the designer better be
aware.

In conclusion, we suggest that our approach supplies a reasonable compromise
between the desire to have a formal algorithm for automatic schema design and
the requirement that this algorithm in fact deliver a good schema for the
application at hand according to some well-defined design criterion. Nevertheless,
this is a topic which deserves further investigation. For instance, various exten-
sions and improvements to the algorithm are proposed in [28].

When thinking of graphical schemata for databases, one normally envisions
diagrams describing the whole database or at least substantial portions of it.
Clearly, it is possible to describe a whole database by one CAZ-graph. To design
this graph one could start from a “universal relation” which includes all the
attributes and all the relationships of interest. While the “universal relation” is
a useful analytical tool [5], representing every relationship of interest by one
relation is certainly cumbersome and possibly unattainable [32]. Thus, a few
relations of a reasonable size supply a more practical starting point. Then at the
end of the design the CA&graphs of the various relations will be pasted together

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

52 * C. Zaniolo and M. A. Melkanoff

into one graph. If we assume that no interrelational dependency or redundancy
occurs among the initial relations, then the CA&graph so constructed supplies a
good schema according to the three design principles discussed in this section.

5. APPLICATIONS

5.1 E-R Diagrams

A useful correspondence can be established between CAZ-minimal cover graphs
and the entity-relationship (E-R) diagrams which were developed by Chen as
models for database definition and design [9, lo]. E-R diagrams use two types of
nodes: entity nodes depicted by rectangular boxes and relationship nodes depicted
by diamond-shaped boxes. The correspondence between an E-R diagram and a
CAZ-graph, G, can be established as follows: the entity nodes correspond to the
vertices of G while the relationship nodes correspond to its labels. To each partial
subgraph Gj, where j is a label of G, there corresponds in the E-R diagram a set
of arcs connecting the relationship node j to the various vertices of Gj. If A is one
of these nodes, then the arc connecting A with j in the E-R diagram is tagged
“one” if,Gj has either a one-to-one or a one-to-many arc leading into A (i.e., if the
arrowheads lead’into it); this arc is tagged “many” otherwise. In the diagrams,
“one” is actually shown as “1” while “many” is shown as either “N” or ‘M” or
“P”. The transformation of a CAZ-graph into an E-R diagram, and vice versa, is
indeed very intuitive and easily understood from an example. The E-R diagram
corresponding to the cover graph of Figure 15 is given in Figure 16. In this E-R
diagram, each single attribute constitutes a separate entity. Thus, each diamond-
shaped box defines an atomic component of our relation DMV. In other words,
an atomic relationship exists beween the entities adjacent to this diamond. For
instance, the diamond marked “1” denotes an atomic relationship between
MAKE, YEAR, MODEL, and VALUE. Moreover, the tags of the arcs radiating
from a diamond define the elementary FDs having as scope the set of attributes
of the atomic relation denoted by the diamond. The tag “1” at an arc establishes
that the entity at the end of this arc is FD on the remaining entities of the atomic
relationship; moreover, this FD is elementary. For instance, the leftmost diamond
in Figure 16 denotes an atomic relationship between the four attributes MAKE,
YEAR, MODEL, and VALUE. The tag “1” at the end of the leftmost arc shows
that there exists an elementary FD from the first three attributes to the fourth
one. (By analogy with the notation used to denote FDs, therefore, one could use
an arrowhead on the arc to denote an arc of type “one”; then arcs of type “many”
would be left without arrowheads.) In summary, there exists a simple comespon-
dence between E-R diagrams and CA.%graphs, inasmuch as they use the same
primitives to represent relationships. These primitives are atomic components
and elementary FDs, which, in turn, reexpress the structure of FDs and MDs of
a relation. However, there are differences between CA&graphs and the E-R
model which cannot be overlooked. These are discussed next.

A major aim of Chen’s work is to produce a general description of the database
called the enterprise schema. Thus certain conceptual objects of general interest
to the whole enterprise are identified and catalogued. These objects are called
entities, and E-R diagrams are used to give an overall representation of the
ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

Conceptual Schemata for Database Systems * 53

1

P 1

N
N

I

Fig. 16. The E-R diagram representation of the CAZ-graph of Figure 15.

relationships between the entities supported by the database system. The use of
entities, by making the whole picture more succinct and suggestive, supplies a
congenial interface to the management of the enterprise; in brief, it provides the
means to achieve the main objectives of an enterprise schema. However, both
the users in formulating their queries and data manipulation requests and the
database implementor are concerned with a much finer level of detail: they are
primarily concerned with attributes and their values. Thus the upper level entities
are then redefined at a lower level as a collection of attributes.

Throughout this paper we have regarded each single attribute as a separate
entity. The graph of Figure 16 is indeed the E-R diagram for our DMV study
case where each attribute of interest is regarded as an entity. Nothing, however,
restricts the designer from specifying that an entity correspond to a group of
logically related attributes. For our DMV example, for instance, a designer might
want to specify an entity called VEHICLE-TYPE consisting of four attributes;
MAKE, YEAR, MODEL, and VALUE. The various concepts and results pre-
sented in the previous sections regarding the dependency structure of a relation,
its decomposition, and its representation by means of graphic schemata remain
valid and are applicable in this new context as well, In the case at hand, for
instance, one need only replace the four attributes MAKE, YEAR, MODEL, and
VALUE by VEHICLE-TYPE in relation DMV. The combinations of the values

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

54 * C. Zaniolo and M. A. Melkanoff

VEHICLE-TYPE

Fig. 17. The E-R diagram for relation DMV after combining VALUE, MAKE, MODEL,
YEAR into VEHICLE-TYPE.

of these four attributes constitute the values of VEHICLE-TYPE. Thus, one can
proceed to determine the dependencies of the relation so obtained and then to
decompose it into a minimal cover schema using the procedure described in the
last section. The result of this process is described by the E-R diagram in Figure
17. The relationships A5, A6, and A7 of Figure 17 correspond to the ones marked,
respectively, 5,6, and 7 in Figure 16. However, Al234 denotes a new relationship
which has replaced those marked 1,2,3, and 4 in Figure 16.

A formal discipline is thus available for designing E-R models for databases:
The designer starts from a database sample in tabular form. Next he must identify
the entities of interest as aggregates of attributes of this relation and list the
dependencies existing among these attributes. Finally, he will apply the design
procedure given in the last section to obtain an E-R diagram representing the
relationships between these entities. For instance, in [22] we discuss various
choices of entities for our DMV example, and we give the corresponding E-R
diagrams. This approach, therefore, allows the designer to select the aggregates
he wants to use as entities. This is a reasonable policy since the question as to
what constitutes an entity has a subjective answer. Some guidelines are, however,
available to help the designer in his choice. For instance, in [17] it is suggested
that entities should have a unique key attribute and at least one other attribute.
Useful concepts on this issue can also be found in [29]. Finally, the work of [30]
ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982

Conceptual Schemata for Database Systems - 55

suggests that this problem can be attached in the framework of FDs and MDs.
This is the very framework within which we have developed our decomposition
algorithm.

E-R diagrams are also useful as a database design aid. Indeed, Chen describes
how they supply a unified basis for the design of network and hierarchical
schemata as well as relational ones. Thus, we have now a discipline whereby,
given the functional and multivalued dependencies of a relation, a network
schema implementation for it can be derived. This is certainly an encouraging
result for anyone who believes that a common theoretical foundation exists for
the database field.2 Because of their affinity with E-R diagrams, CA.%graphs can
be used as a design aid as well. In [33], we show how a CA&over graph produced
by the decomposition procedure of Section 4.3 can be turned into a 3NF schema
using Bernstein’s algorithm [S]; we also illustrate how this approach may in fact
result in the design of better 3NF schemata.

The E-R diagrams were informally introduced by means of examples and
advocated as being particularly congenial to nonspecialists. We now find that
they are amenable to a much more rigorous definition: they define the atomic
relationships of the database and the elementary functional dependencies having
as scope these relationships. These relationships span conceptual objects called
entities which are specified by the database administrator as combinations of
elementary attributes. The E-R model does not display every atomic relationship,
but only a minimalset which defines a cover in a sense completely analogous to
the minimal cover concept for CAZgraphs defined in the previous section.
However, observe that, while the atomic relationships produced by the decom-
position algorithm are inherently projections of the same relation, no such
constraint needs to be assumed in an E-R diagram (or for that matter, in a CAZ-
graph). Thus, for instance, in Figure 16, there could exist instances of OWNER
which do not participate in some or all of relationships 5, 6, and 7. Then, the
relationships of Figure 16 can be considered the projections of one relation only
if this is allowed to contain null values [21].

The correspondence between CAZ-graphs and E-R diagrams exposes a problem
area which is not discussed in Chen’s paper. This problem is caused by elementary
FDs of nonatomic scope which were discussed at length in Section 4. (See, for
example, relation WS where we have {TIME, DAY) + GROUP while GROUP
- DAY and GROUP --f-, TIME.) In such cases it is not clear which relation-
ships should be displayed in the E-R diagram. One solution is to ignore elementary
FDs which are nonatomic in scope and to represent atomic relations only; vice
versa, one could display the nonatomic elementary FDs by diamonds and neglect
the finer relationships contained therein. Finally, one could display both the
atomic relations and the nonatomic elementary FDs by diamonds in the E-R
diagram. None of these three solutions is clearly superior to the others. Indeed,
each presents some advantages and disadvantages and seems most reasonable,
depending on individual cases [22]. Because of this problem and because E-R
diagrams are not as close to the usual graphs as CAZ-graphs, we have used the
latter in our formal development. Nevertheless, a practitioner could reasonably

* The use of dependencies in analyzing and improving E-R diagrams was also discussed in [26].

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

56 * C. Zaniolo and M. A. Melkanoff

adopt a more pragmatic view by observing that elementary FDs of nonatomic
scope are rare in practice and could thus be treated on an individual basis. With
this proviso E-R diagrams would probably be considered as attractive alternates
to CAZ-graphs.

5.2 Conceptual Schemata

The graphs developed in this paper can be used as a conceptual schema in a
database system architecture such as that proposed by the ANSI/X3/SPARC
study group [31]. The conceptual schema for such a system supplies the central
frame of reference. It also establishes the functional connections linking the
various external schemata that supply a convenient environment for user appli-
cations to the internal schema which is designed to optimize performance on
typical queries and data manipulation requests. To provide data independence,
the conceptual schema must define the logical structure of data independently of
physical implementation. Current network or hierarchical schemata are designed
to reflect not only the logical relationships among data, but also the expected
usage of the data as seen by the database designer. Indeed, there are usually
several possible hierarchical or network realizations of an E-R diagram. Moreover,
the user may want to view the data as hierarchically organized in the external
schema, although the data are actually organized into a plex structure. Thus the
database systems should be capable of supporting multiple data models. A direct
mapping between different models is a formidable problem, and it is even more
difficult when there exists no one-to-one correspondence between the logical
structure of data and the schema as in the previous cases. A more promising
approach consists in using at the conceptual schema level a meta-model which is
easily mapped into other models. Thus the mapping between the external and
internal schema models is realized through an intermediate transformation into
the metamodel. Because they are easy to transform into networks, hierarchies,
and relations, E-R diagrams (or similar graphs) represent an obvious choice for
the metamodel. However, since the system must translate data retrieval and
manipulation of individual data fields, the conceptual schema requires a level of
detail at which each attribute is visible. Thus diagrams such as that of Figure 16,
which display the relationships between each single attribute, should be used.
This solution suggests some obvious considerations regarding the relationships
which should exist between the enterprise schema and the conceptual schema.

Since they are both used as a logical frame of reference for the enterprise, they
should be, as far as possible, identical. Yet they must perform a different function.
The former establishes the enterprise view of data, the latter links the external
schema to the internal schema. The practical requirements dictated by their
different roles could force undesirable differences upon them. On the other hand,
the approach taken in this paper allows the two schemata to realize their
individual goals along a very well-defined pattern. Both the enterprise schema
and the conceptual schema are expressed by the same metamodel. The enterprise
schema is only a summary of the conceptual schema obtained by grouping the
attributes under categories called entities. Translation between the two schemata
is accomplished by means of the shift operation between upper conceptual
domain and lower conceptual domain described by Chen [lo].
ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

Conceptual Schemata for Database Systems l 57

The database diagrams we have described represent a relational schema which
is somewhat different from the one originally proposed by Codd. This is for a
good reason: in Codd’s approach a set of relations of assorted degree defines both
the database schema and the database content. The schema is defined by the
headings of the relations where the keys are underlined, and the database content
is defined by the rows of the tables. This combined framework constitutes one of
the most attractive features of the relational approach. Yet when we consider a
multilevel schema architecture, such as that of [31], we find that database content
need not be materialized at the conceptual schema level. Thus the congeniality
of tables as vehicle for representing the database content becomes a moot quality
for a conceptual schema. Unambiguous and complete definition of the logical
structure of data (complete relatability) is the main requirement at this level, and
it appears that graphical models attain this objective more completely and
concisely than a set of normal form relations with keys. In particular, CA&graphs
are capable of defining both atomic relationships and elementary FDs. These are
not always inferable from the underlining of keys in normalized relations (see [5]
for a discussion of the problems presented in this area by the various normal
forms). Furthermore, a higher degree of data independence results from the use
of small modules as the building blocks of the conceptual schema. In our diagrams
we have used atomic relationships which are the smallest logical granules avail-
able. Thus, any change in one of these atomic relationships would only perturb
the mapping to those external schemata which use that relationship. This is not
true when third (or fourth) normal forms are used. Indeed, a change in any
atomic relationship included in a relation (e.g., a change from many-to-one to
many-to-many) would compromise the third normal form property and cause a
change in the schema; then every relationship contained in a perturbed relation
will also be affected. In conclusion, it appears that the diagrams discussed in this
paper represent a reasonable usage of the relational model as the conceptual
schema in an architectural framework such as that of [31]. This idea is explored
even further in [32], where unnormalized relations are used at the external level,
CA.5graphs are used at the conceptual level, and fourth normal form type of
relations are used at the internal level. It is also shown there how a query
reformulation mechanism can be used to support the mapping from the external
schema into the conceptual schema and thenceforth into the internal schema.

6. CONCLUSIONS

This paper has described a formal approach to the definition and the design of
conceptual database diagrams which are useful in designing various forms of
schemata and, most important, in the role of conceptual schemata for a DBMS
architecture as that proposed by [31].

A number of previous authors have independently recognized and advocated
graphical representations of database relationships as a powerful, convenient, and
implementation-independent vehicle for conceptual data definition. The contri-
bution of this paper consists in establishing a constructive and rigorous connection
between certain types of database diagrams and some formal constraints which
are currently used to describe database relationships in the framework of the
relational data model. The database diagrams discussed here include E-R

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

58 * C. Zaniolo and M. A. Melkanoff

diagrams and a newly introduced representation called a CAZ-graph. The rela-
tional constraints considered include both functional and multivalued
dependencies.

The formal basis of our graphical schemata has been a combined representation
of the two basic structures underlying every database relation: the A-structure
defined by the atomic components of the relation, and the Z-structure defined by
the elementary FDs of the given relation. This paper has contributed to a better
understanding of the properties and the mutual relationships of these two
structures. We have analyzed the various configurations under which atomic
components and elementary FDs can combine in a relation and shown how their
joined representation can describe a wide spectrum of database relationships, of
which the well-known one-to-one, one-to-many, and many-to-many constitute
only a small subset. The basic properties of the minimal atomic decompositions
of a relation have also been investigated; a simple correspondence was established
between the topological properties of these decompositions and the MD structure
of the relation. This correspondence was shown useful in verifying the minimality
of the resulting decompositions.

The proper schema for a given relation must supply a complete but nonredun-
dant representation of its combined A- and Z-structures; thus it consists of (1) a
set of atomic components which form a minimal decomposition for the given
relation, and (2) a minimal cover set of its elementary FDs. A formal procedure
for schema design given the FDs and MDs of the relations was then presented.
Its design objective is to ensure completeness of representation (complete relat-
ability) with minimum redundancy. The basic decomposition steps of the design
procedure were taken from [33], where they were shown to be useful for the
design of third normal form schemata.

Graphical representations of our schemata in the form of CAZ-graphs and E-R
diagrams were then defined and illustrated by a number of examples. Finally, we
discussed the application of these diagrams as a design aid and as a conceptual
schema.

REFERENCES

1. AHO, A.V., BEERI, C., AND ULLMAN, J. The theory of joins in relational databases. In Proc. 18th
Ann. Symp. Foundations of Computer Science, Nov. 1977.

2. ARORA, A. K., AND CARLSON, C. R. The information preserving properties of relational database
transformations. In Proc. 4th Int. Conf. Very Large Data Bases (West Berlin, Germany, Sept.
1978), pp. 352-359.

3. BEERI, C. On the membership problem for functional and multivalued dependencies in relational
databases. ACM Truns. Database Syst. 5,3 (Sept. 1980), 241-259.

4. BEERI, C., AND BERNSTEIN P.A. Computational problems related to the design of normal form
relational schemas, ACM Trans. Database Syst. 4, 1 (March 1979), 30-59.

5. BEERI, C., BERNSTEIN, P.A., AND GOODMAN, N. A sophisticate’s introduction to database
normalization theory. In Proc. 4th Int. Conf. Very Large Data Bases (West Berlin, Germany,
Sept. 1978), pp. 113-124.

6. BEERI, C., FAGIN, R., AND HOWARD, J.H. A complete axiomatization for functional and multi-
valued dependencies in database relations. In Proc. ACM SIGMOD Int. Conf. Management of
Data (Toronto, Canada, Aug. 3-5,1977), pp. 47-61.

7. BERGE, C. Graphs and Hypergruphs. North-Holland, Amsterdam, 1973.
8. BERNSTEIN, P.A. Synthesizing thiid normal form relations from functional dependencies. ACM

Trans. Database Syst. I,4 (Dec. 1976), 277-298.

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

Conceptual Schemata for Database Systems * 59

9. CHEN, P.P. The entity-relationship model-Toward a unified view of data. ACM Trans. Data-
base Syst. I, 1 (March 1976), 9-36.

10. CHEN, P.P. The entity-relationship model-A basis for the enterprise view of data. In Proc.
1977 Nat. Computer Conf. (Dallas, Tex., June 1977).

11. CODD, E.F. Further normalization of the database relational model. Database Systems, Courant
Computer Science Series, vol. 6, Prentice-Hall, Englewood Cliffs, N.J., 1972.

12. CODD, E.F. Recent investigations in relational database systems. In IFZP Conference Proceed-
ings, North-Holland, Amsterdam, 1974, pp. 1017-1021.

13. DATE, C.J. An Introduction to Database Systems, 2nd ed. Addison-Wesley, Reading, Mass.,
1977.

14. FAGIN, R. Multivalued dependencies and a new normal form for relational databases. ACM
Trans. Database Syst. 2,3 (Sept. 1977), 262-278.

15. FAGIN, R. The decomposition versus the synthetic approach to relational database design. In
Proc. 3rd Int. Conf. Very Large Data Bases (Tokyo, Japan, Oct. 1977), ACM, New York, 1977, pp.
441-446.

16. FALKENBERG, E. Concepts for modelling information. In Proc. ZFZP TC-2, Working Conference
on ModelZing in Data Base Management Systems, G. Nijessen (Ed.) North-Holland, Amsterdam,
1976.

17. FLORY, A., AND KOULOUMIDJAN, J. A model and a method for logical database design. In Proc.
4th Conf. Very Large Data Bases (West Berlin, Germany, Sept. 1978), pp. 333-350.

18. HALL, P., OWLETT, J., AND TODD, S. Relations and entities. In Proc. IFIP TC-2, Working
Conference on Modelling in Data Base Management Systems, G. Nijessen (Ed.), North-Holland,
Amsterdam, 1976.

19. JOINT GUIDE AND SHARE DATABASE REQUIREMENT GROUP Requirements for a database
management system. Nov. 1970. (Available from SHARE, Suite 750, 25 Broadway, New York,
NY, 10904.)

20. KATZ, R.H. Database design and translation for multiple data models. Ph.D. thesis, Univ.
California, Berkeley, 1980.

21. LIEN, Y.E. On the semantics of the entity-relationship data model. In Entity-Relationship
Approach to Systems Analysis and Design, P. Chen (Ed.). North-Holland, Amsterdam, 1980.

22. MELKANOFF, M.A., AND ZANIOLO, C. Decomposition of relations and synthesis of entity-rela-
tionship diagrams. In Entity-Relationship Approach to System Analysis and Design, P. Chen
(Ed.). North-Holland, Amsterdam, 1980.

23. NICHOLAS, J.M. Mutual dependencies and some results on undecomposable relations. In Proc.
4th Int. Conf. Very Large Data Bases (West Berlin, Germany, Sept. 1978), pp. 360-367.

24. RISSANEN, J. Independent components of relations. ACM Trans. Database Syst. 2, 4 (Dec.
1977), 317-325.

25. Rousso~ou~os, N., AND MYLOPOULOS, J. Using semantic networks for database management.
In Proc. Conf. Very Large Data Bases (Framingham, Mass., Sept. 1975), pp. 144-172.

26. SAKAY, H. On the optimization of the entity-relationship model. In Proc. 3rd USA-Japan Conf.
(Oct. 1978), pp. 145-149.

27. SCHMID, H.A., AND SWENSON, J.R. On the semantics of the relational data model. In ACM
SIGMOD Workshop Management of Data (San Jose, Calif., May 1975), pp. 211-223.

28. SILVA, M.A., AND MELKANOFF, M.A. Decomposition of universal relation schemas allowing
interrelational dependencies. (Manuscript submitted for publication.)

29. SMITH, J.M., AND SMITH, D.C.P. Database abstractions: Aggregation. Commun. ACM 20, 6
(June 1977), 405-413.

30. SPYRATOS, N., AND BANCILHON, F. Name independence and database abstraction in the rela-
tional model. In Proc. MFCS 78 Symp. (Zakopane, Poland, Sept. 1978).

31. TSICHRITZIS, D., AND KLuG, A. (Eds.) The ANSI/XWSPARC DBMS framework report of the
study group on database management systems. Inf. Syst. 3,3 (1978).

32. ZANIOLO, C. Analysis and design of relational schemata for database systems. Ph.D. thesis,
Computer Sci. Dep. Rep. UCLA-ENG-7669, UCLA, Los Angeles, Calif., July 1976.

33. ZANIOLO, C., AND MELKANOFF, M.A. On the design of relational database schemata. ACM
Trans. Database Syst. 6, 1 (March 1981), l-47.

Received May 1979; revised February 1981; accepted February 1981

ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

