A Sequential Pattern Query Language for Supporting
Instant Data Mining for e-Services

Reza Sadri
Procom Technology
58 Discovery
Irvine, California 92618

sadri@procom.com

Abstract

Many e-commerce applications, including on-
line auctions, personalization, and targeted
advertising, require mining web-logs, trans-
action trails, and similar sequential patterns.
Often, an “instant” response during an active
trading session is required in critical applica-
tions. Therefore, e-services need efficient tools
to perform fast, scalable searches for sequen-
tial patterns. Here, we describe SQL-TS, an
extension of SQL that 1s highly optimized for
searching patterns in sequences, and discuss
its many uses in e-services.

1 Introduction

ZATAS Technologies Corporation 1s a startup venture
seeking to provide decision support and e-Services for
web-based auctions. Toward this goal, ZAIAS is devel-
oping the technology to (i) monitor multiple ongoing
auctions, (ii) determine the right price for auctioned
goods, and (iii) secure well-priced items by placing
timely bids. The determination of the right price for an
item is based on historical and ongoing auction data,
including those used to evaluate the expertise and bias
of participating bidders. A recursive algorithm is then
used to generate the Z-price as the best estimate of
collective unbiased valuation of buyers [5]. Having de-
termined the Z-price, the system can monitor ongoing
auctions and place a winning bid for well-priced items
matching the specific needs of the user, on a timely
manner.

Time is critical, since premature bids can be coun-
terproductive, and late bids can be in vain. There-

Permaission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice 1s
given that copying 1s by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

Carlo Zaniolo
Computer Science Dept.
University of California

Los Angeles, CA 90095

zaniolo@cs.ucla.edu

Amir Zarkesh Jafar Adibi
ZATAS Technologies Corporation
12435 W. Jefferson Blvd. Suite 202
Los Angeles, CA 90066
azarkesh|jadibi@QU4cast.com.

fore, we have focused on technologies that can sup-
port instant data mining on streams of developing
events, while searching databases for domain-specific
knowledge and historical information using sophisti-
cated queries. Time-series datablades currently sup-
ported in Object-Relational systems were viewed as
too limited for expressing these sophisticated queries,
and their procedural extensions were viewed as unsup-
portive of the fast development turnaround required
by the application domain. Instead, we sought SQL
extensions for complex time series queries, and query
optimization techniques for their efficient execution.
SQL-TS was found a valuable tool in online auction
applications, and also other e-services discussed next.
A second application is mining web access logs. Our
approach focuses on sessions, where a session is de-
fined by a user coming to the site and quickly clicking
through various pages (a session normally ends with a
timeout after 10 or so minutes of inactivity). Typical
applications include analyzing the effects of advertise-
ments and promotions on users, and ‘instant’ profiling
of a user into a cluster to which personalized contents
and promotions can be targeted [1]. Fast response on a
stream of developing events is also critical in security-
oriented applications, in particular in detecting ongo-
ing fraud or attacks by intruders. In the next section,
we present SQL-TS through simple examples from the
domains of online auctions an weblog mining. Then,
we discuss security-related applications; in the last sec-
tion, we briefly summarize the query optimization ap-
proach used in the implementation of SQL-TS.

2 SQL-TS

For instance, say that we have a stream of SQL tuples
as follows (the tuples could come from a database ta-
ble, or they could be processed on the fly as they are
added to the weblog stream):

Sessions(SessNo, ClikTime, PageNo, PageType)

A user visiting the home page of the company starts
a new session that consists of a sequence of pages

clicked; for each session number, SesslNo, the log shows
the sequence of pages visited—where a page is de-
scribed by its timestamp, ClickTime, number, PagelNo
and type PageType (e.g., a content page, a product de-
scription page, or a page used to purchase the item).

The ideal scenario for advertisers is when users (i)
see the advertisement for some item in a content page,
(ii) jump to the ‘product’ page with details on the
item and its price, and finally (iii) clicks the ‘purchase
this item’ page. This advertisers’ dream pattern can
expressed by the following SQL-TS query:

Example 1 Using the FROM clause to define patterns

SELECT B.PageNo, C.ClickTime
FROM Sessions
CLUSTER BY Sesslo
SEQUENCE BY ClickTime
AS (A, B, O
WHERE A.PageType=‘content’
AND B.PageType=‘product’
AND C.PageType=‘purchase’

Thus, our Simple Query Language for Time Series
(SQL-TS) is basically identical to SQL, but for the
following additions to the FROM clause:

e A CLUSTER BY clause specifying that data for dif-
ferent sessions are processed as separate streams.

e A SEQUENCE BY clause specifying that the tuples for
each Sesslo are ordered by ascending ClickTime.

e The pattern AS (A, B, ¢) specifying that (for
each session) we seek the sequence of the three
tuples A,B, ¢ (with no intervening tuple allowed)
which must satisfy the conditions stated in the
WHERE clause.

Observe that in the SELECT clause, we return infor-
mation from both the B tuple and the ¢ tuple. This
information is returned immediately, as soon as the the
pattern is recognized; thus it generates another stream
that can be cascaded into another SQL-TS statement
for processing.

SQL-TS ability of recognizing patterns immediately
as they occur, becomes important in auction monitor-
ing. Assume that we have stream containing the data
on ongoing bids as follows:

auctn_id : id for specific item auctioned
amount : amount of bud
time : timestamp

The objective is to purchase the product for a rea-
sonable price. Then, we wait till the last 15 minutes
before the closing, and we place an offer as soon as the
stream of bids is converging toward a certain price. We
detect convergence by a succession of three bids that
raise the last bid by less than 2%.

SELECT T.auctn_id, T.time, T.amount
FROM bids
CLUSTER BY auctn_id
SEQUENCE BY time
AS (X,Y,Z,T)
WHERE Y.amount - X.amount < .02 * X.amount
AND Z.amount - Y.amount < .02 % Z.amount
AND T.amount - Z.amount < .02 % Z.amount

The previous query is satisfied if the amount in Y is
less than 2% above the amount in X, and also the same
holds between Z and Y. To assure that we are within
15 minutes from closing, we must refer to a database
table where the auctions are described:

auction(auctn_id, item_id, min_bid, deadline, ...)
Our query becomes:

SELECT T.auctn_id, T.time, T.amount
FROM auction AS A,
bids CLUSTER BY auctn_id
SEQUENCE BY time
AS (X,Y,Z,T)
WHERE A.auctn_id = X.auctn_id
AND X.time + 15 Minute > A.deadline
AND Y.amount - X.amount < .02 * X.amount
AND Z.amount - Y.amount < .02 % Z.amount
AND T.amount - Z.amount < .02 % Z.amount

SQL-TS also supports the definition of repeating
patterns using the star construct. For instance, to
determine the number of pages the user has visited
before clicking a ‘product’ page we simply write:

SELECT count (#4)
FROM Sessions
CLUSTER BY Sesslo
SEQUENCE BY ClickTime
AS (*A, B)
WHERE A.PageType <> ‘product’
AND B.PageType = ‘product’

Thus, *A identifies a maximal sequence of clicks to
pages other than ‘product’ pages. Then, count(x4)
counts those pages and returns them to the user. In
addition to traditional SQL aggregates producing final
returns, SQL-TS also supports rollups, running aggre-
gates, moving-window aggregates, online aggregates,
and other advanced aggregates used for time series
analysis [1]. For instance, the following query iden-
tifies sessions where users have accumulated too many
clicks, or spent too much time, without purchasing
anything.

SELECT Y.Sesslo
FROM Sessions
CLUSTER BY Sesslo
SEQUENCE BY ClickTime
AS (*X, Y)
WHERE A.PageType <> ‘purchase’
AND ccount(X) < 100
AND first(X).ClickTime + 20 Minute >
X.ClickTime AND Y.PageType<>‘purchase’

Here, ccount denotes a continuous count that is
therefore increased by one for each new tuple in the
sequence *X. Also, first(X) is a builtin aggregate that
returns the first tuple in the sequence *X.

Thus, the recognition of *X continues while (i) there
is no purchase, (ii) the length of *X consists of less
than 100 clicks, and (iii) the time elapsed is less than
20 minutes. Once any of these conditions fails the se-
quence *X terminates. At the next click (assuming that
this is not a ‘purchase’ page) SesslNo is returned. (Trig-
gering a time-out message to the remote user, who is
asked to login again to continue.) Thus the final ag-
gregates, such as count (*¥X), are applied at the end of
the *X sequence and play no role in defining the length
of the sequence. The continuous count ccount (X) (no
star in the argument!) is instead computed during the
sequence and can part take in the definition of the
sequence itself.

3 Detection of Fraud and Intrusion

Stolen credit cards, theft of cellular phones and user
ids, and similar crime cost e-services billions of dol-
lars. Thus, instant, reliable detection of developing
fraud would be very desirable, although very difficult
to achieve. The three main problems in fraud detection
are Evidence Extraction, Link Discovery and Pattern
Discovery. Here, we only consider the third problem
that often relies on outlier detection. For instance,
typical patterns in credit card fraud relate to unusual
customer shopping behavior such as buying 2-3 TV set
i one day. Scalability is required with respect to the
size and complexity of the pattern and to the amount
of data in the stream—along with frequent access to
the database containing customer information, prod-
uct and historical data. Thus the requirements are
similar to those of application domains previously dis-
cussed.

A simplified example might consists of a credit card
company monitoring the customers’ transactions. The
total daily charges accumulated by a customer are rep-
resented using the following schema:

log (Date, AccountNo, Amount)

Here, Accountlo is the account number, and Amount
is the amount charged to the account at the speci-
fied Date. Then, to track the average spending dur-
ing a specified period and detect when the spending
increases considerably for 2 consecutive days, we can
write:

SELECT Z.AccountNo, Z.Date
FROM spending CLUSTER BY AccountNo
SEQUENCE BY Date
AS (#X, Y, 2)
WHERE COUNT (*X)=30
AND Y.Amount > 5 *
AND Z.Amount > 5 *

AVG (*X. Amount)
AVG (*X. Amount)

Prompt detection and response 1s also critical in
security applications. Consider for instance a large
enterprise, where many workstations are distributed
at various locations, from which a central databases
can be accessed via the company intranet and web
browsers. The central database information is sensi-
tive, and access restrictions are enforced via the usual
login and password mechanisms. Security is a ma-
jor concern, and the organization is seeking effective
means to detect and deter attacks and intrusions in
real time. In particular, repeated login failures occur-
ring within a short time interval indicate a possible at-
tack in progress. Detecting a fast series of unsuccessful
login is simple, when these are issued from the same
workstation. However, a smarter intruder, rather than
trying many times from the same workstation, will
walk to the workstation in the next room and try a few
logins from there—then move to a workstation nearby
and repeat the attempt from there, and so on. The
question is how to detect such a peripatetic intruder.
Since real time information about logins is available,
the challenge is how to detect an ongoing attack by rec-
ognizing a particular spatio-temporal pattern of failed
logins.

The log can be viewed as a temporally ordered re-
lation, with the following schema:

log (Etime, Etype, Build, Loc)

Here, Etime 18 a timestamp 1dentifying the date and
time of the event; Etype is the two-byte code for the
event type (e.g., 1s, 1f, and to, respectively denote lo-
gin success, login failure, and timeout events). Also,
Build is the building code, and Loc is an integer en-
coding the xyz location within a building.

An attack is defined as the succession of three login
failures occurring in physical and temporal proximity
in the same building. (Since buildings have separate
security and locations in different buildings fail the
‘isnear’ test, we can group by building and restrict our
search to events that occur within buildings.) Then,
we have the following SQL-TS query:

SELECT Z.Build, Z.Loc, Z.Etime

FROM 1log CLUSTER BY Building
SEQUENCE BY Etime
AS (*X, *Y, Z)

WHERE ((X.Etype=‘1lf’ AND ccount (X)=1)

OR X.Etype <> ‘1f’
OR near(X.Loc, first(X).Loc)=0)
AND ((Y.Etype=‘lf’ AND ccount(Y)=1 AND
first(X).Etime > first(Y).Etime-7 Minute)
OR Y.Etype <> ‘1f’
OR near(Y.Loc, first(Y).Loc)=0)
AND Z.Etype=‘1f’ AND
Z.Etime - 7 Minute < first(Y).Etime

Observe that the first event in *X, identified by the
condition ccount(X)=1, must be an ‘1f’ event. Then,
the rest of #X simply moves trough events that, either

*U
(less than 2% change)
——>»

8

—
* Z —
(less than 2% change) *W

(less than 2% change)

Figure 1: The relaxed double bottom pattern.

because they are not of type ‘1f’ or occur at worksta-
tions not near that of this first event, are not related
to the initial login failure. Then, *Y detects a second
login failure, near that of first(X) and less than seven
minutes after that. Finally, Z finds that a third ‘1f’
event has occurred at a nearby workstation and within
seven minutes of the last one. At this point, a likely
attack by a peripatetic intruder is detected and the
location of this last workstation is returned to trigger
a security alarm.

4 Efficient Implementation

To achieve fast response on instant data mining
queries, and scalability on large data sets, SQL-TS
relies on an efficient implementation based on a novel
query optimization technique called OPS [3]. OPS
can be viewed as a generalization of the algorithm
proposed by Knuth, Morris and Pratt (KMP) to opti-
mize search [2] for strings. For instance, the query of
Example 1 specifies a search for the sequence of values
‘content, product, purchase’ 1n three successive
records A,B,C. Now, if ‘content’ and ‘product’ are
found in first two records, but ‘purchase’ is not found
in the third one, a naive algorithm would backtrack
to the second record looking for ‘content’. But
this cannot succeed given that, in the previous scan,
the second record was found to contain ‘product’;
thus, the KMP algorithm instead restarts from the
third record. In general, by avoiding unnecessary
backtracking, KMP assures that the cost of finding a
pattern in a given text is linear in the sum of the sizes
of the pattern and text, rather than their product [2].
The OPS algorithm [3] generalizes this idea to work
with arbitrary SQL-TS queries that can be much
more complex than those treated by KMP, since
SQL-TS queries can also contain (i) CLUSTER BY, (ii)
general predicates (such as Z.price < 0.80%Y.price),
(iii) boolean expressions of such predicates, (iv) re-
peating patterns expressed by the star, (v) aggregates
on such repeating patterns. OPS deals effectively
with these added complexities, often with dramatic
improvements. For instance, we expressed in SQL-TS
the relaxed double bottom pattern [1] of Figure 1, and
used it to search the Dow Jones Industrial Averages
for the last 25 years. As shown in Figure 2, twelve

JJJJJJ

Figure 2: Doublebottoms found in the DJIA data are
shown by boxes. The bottom picture is zoomed for the
area pointed by arrow in the top picture and shows one
of the matches.

matches were found. The figure also shows the double
bottom that occurred around June 1990. The OPS
optimization for the relaxed double bottom query,
yields a search 93 times faster than naive search. For
some other queries with complex search patterns, we
obtained 800-fold speedups. The ongoing SQL-TS
implementation builds upon the AXL system, which
is also used to define the many new aggregates types
required by time series [4].

Acknowledgements. The authors are grateful to
Dick Tsur for his encouragement and illuminating dis-
cussions that led to the writing of this paper. This
work was partially supported by the National Science
Foundation under grant: NSF-IIS 0070135.

References

[1] M. Berry and G. Linoff, Data Mining Techniques:
For Marketing, Sales, and Customer Support.
John Wiley, 1997.

[2] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast
pattern matching in strings. SIAM Journal of
Computing, 6(2):323-350, June 1977.

[3] Reza Sadri et al., Optimization of Sequence
Queries in Database Systems. PODS 2001.

[4] H. Wang and C. Zaniolo. Using SQL to Build New
Aggregates and Extenders for Object-Relational
Systems. In Proceedings of 26th International
Conference on Very Large Data Bases, 2000.

[6] ZATAS Technologies Corporation. Recursive Z-
prices over related auctions transaction graph,

White paper 03—01-16-2001, Jan. 2001.

