Tractable Computation of Expected Kernels

Wenzhe Li*
Tsinghua University

Zhe Zeng*
University of California, Los Angeles

Antonio Vergari
University of California, Los Angeles

Guy Van den Broeck
University of California, Los Angeles
Expected Kernels

Motivation

Given two distributions p and q, and a kernel k, the task is to compute the expected kernel

$$\mathbb{E}_{x \sim p, x' \sim q}[k(x, x')]$$
Expected Kernels

Motivation

Given two distributions p and q, and a kernel k, the task is to compute the expected kernel

$$E_{x \sim p, x' \sim q}[k(x, x')]$$

⇒ In kernel-based frameworks, expected kernels are omnipresent!
Expected Kernels

Motivation

Given two distributions \(p \) and \(q \), and a kernel \(k \), the task is to compute the expected kernel

\[
\mathbb{E}_{x \sim p, x' \sim q}[k(x, x')]
\]

\(\Rightarrow \) In kernel-based frameworks, expected kernels are omnipresent!

Squared Maximum Mean Discrepancy (MMD)

\[
\mathbb{E}_{x \sim p, x' \sim p}[k(x, x')] + \mathbb{E}_{x \sim q, x' \sim q}[k(x, x')] - 2\mathbb{E}_{x \sim p, x' \sim q}[k(x, x')]
\]
Expected Kernels

Motivation

Given two distributions \(p \) and \(q \), and a kernel \(k \), the task is to compute the expected kernel

\[
\mathbb{E}_{x \sim p, x' \sim q}[k(x, x')]
\]

⇒ *In kernel-based frameworks, expected kernels are omnipresent!*

Kernelized Discrete Stein Discrepancy (KDSD)

\[
\mathbb{E}_{x, x' \sim q}[k_p(x, x')]
\]
Expected Kernels

Motivation

Given two distributions \(p \) and \(q \), and a kernel \(k \), the task is to compute the expected kernel

\[
\mathbb{E}_{x \sim p, x' \sim q}[k(x, x')]
\]

\[\Rightarrow \text{In kernel-based frameworks, expected kernels are omnipresent!}\]

Kernelized Support Vector Regressor (SVR) with missing features

\[
\mathbb{E}_{x \sim p}[\sum_i w_i k(x^{(i)}, x) + b]
\]
Challenge

Reliability vs. Flexibility

\[E_{x \sim p, x' \sim q}[k(x, x')] = \int_{x, x'} p(x)q(x')k(x, x') \, dx \, dx' \]

Hard to compute in general.
\[\Rightarrow \text{approximate with Monte Carlo or variational inference} \]

PRO. Efficient computation

CON. no guarantees on error bounds
Challenge
Reliability vs. Flexibility

\[\mathbb{E}_{x \sim p, x' \sim q} [k(x, x')] = \int_{x, x'} p(x) q(x') k(x, x') \, dx \, dx' \]

Hard to compute in general.
\[\Rightarrow \text{approximate with Monte Carlo or variational inference} \]

PRO. Efficient computation

CON. no guarantees on error bounds

\(p, q, k \) fully factorized

PRO. Tractable exact computation

CON. Model being too restrictive
Challenge

Reliability vs. Flexibility

$$
E_{x \sim p, x' \sim q}[k(x, x')] = \int_{x, x'} p(x)q(x')k(x, x') \, dx \, dx'
$$

Hard to compute in general.

⇒ approximate with Monte Carlo or variational inference

trade-off?

<table>
<thead>
<tr>
<th>PRO. Efficient computation</th>
<th>p, q, k fully factorized</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON. no guarantees on error bounds</td>
<td>PRO. Tractable exact computation</td>
</tr>
<tr>
<td>CON. Model being too restrictive</td>
<td></td>
</tr>
</tbody>
</table>

3/22
Circuits

Probabilistic Circuits
deep generative models + deep guarantees

Kernel Circuits
express kernels as circuits

⇒ $\mathbb{E}_{x \sim p, x' \sim q}[k(x, x')]$
A simple tractable distribution is a PC

\[\text{e.g., a multivariate Gaussian} \]
I. A simple tractable distribution is a PC
II. A convex combination of PCs is a PC

⇒ e.g., a mixture model
I. A simple tractable distribution is a PC
II. A convex combination of PCs is a PC
III. A product of PCs is a PC
Probabilistic Circuits (PCs)

Tractable computational graphs
Probabilistic Circuits (PCs)

Tractable computational graphs
Chow-Liu trees
[Chow and Liu 1968]

Junction trees
[Bach and Jordan 2001]

HMMs
[Rabiner and Juang 1986]

C Nets
[Rahman et al. 2014]

SPNs
[Poon et al. 2011]

PSDDs
[Kisa et al. 2014]

PDGs
[Jaeger 2004]
Which structural constraints ensure tractability?
A PC is **decomposable** if all inputs of product units depend on disjoint sets of variables. A PC is **smooth** if all inputs of sum units depend on the same variable sets.

Darwiche and Marquis, “A knowledge compilation map”, 2002
decomposable + smooth PCs = ...

\[MAR \quad \int p(z, y) \, dZ \]

\[CON \quad \frac{\int p(z, y, h) \, dH}{\int \int p(z, y, h) \, dH \, dY} \]

decomposable + smooth PCs = ...

\[\text{MAR} \quad \int p(z, y) \, dZ \]

\[\text{CON} \quad \frac{\int p(z, y, h) \, dH}{\int \int p(z, y, h) \, dH \, dY} \]

What about the expected kernel \(\mathbb{E}_{x \sim p, x' \sim q}[k(x, x')] \)?
Can we represent \textbf{kernels as circuits} to characterize tractability of its queries?
Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel $k(X, X') = \exp \left(-\sum_{i=1}^{4} |X_i - X'_i|^2 \right)$

\[
\begin{align*}
\exp(-|X_1 - X'_1|^2) \land \\
\exp(-|X_2 - X'_2|^2) \land \\
\exp(-|X_3 - X'_3|^2) \land \\
\exp(-|X_4 - X'_4|^2)
\end{align*}
\]
Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel $k(X, X') = \exp \left(-\sum_{i=1}^{4} |X_i - X'_i|^2 \right)$

$\exp(-|X_1 - X'_1|^2) \land \exp(-|X_2 - X'_2|^2) \land \exp(-|X_3 - X'_3|^2) \land \exp(-|X_4 - X'_4|^2)$

decomposable if all inputs of product units depend on disjoint sets of variables
Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel $k(X, X') = \exp \left(-\sum_{i=1}^{4} |X_i - X'_i|^2 \right)$

- Decomposable if all inputs of product units depend on disjoint sets of variables
- Smooth if all inputs of sum units depend on the same variable sets
Kernel Circuits (KCs)

Common kernels can be compactly represented as **decomposable** + **smooth** KCs:

RBF, (exponentiated) Hamming, polynomial ...
Expected Kernel
tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth
Expected Kernel

tractable computation via circuit operations

i) PCs p and q, and KC k are **decomposable** + **smooth**

ii) PCs p and q, and KC k are **compatible**

\Rightarrow decompose in the same way
Expected Kernel

tractable computation via circuit operations

i) PCs p and q, and KC k are **decomposable + smooth**

ii) PCs p and q, and KC k are **compatible**
Expected Kernel

tractable computation via circuit operations

i) PCs p and q, and KC k are **decomposable + smooth**

ii) PCs p and q, and KC k are **compatible**
Expected Kernel

tractable computation via circuit operations

i) PCs p and q, and KC k are **decomposable + smooth**

ii) PCs p and q, and KC k are **compatible**
Expected Kernel

tractable computation via circuit operations

i) PCs p and q, and KC k are **decomposable + smooth**

ii) PCs p and q, and KC k are **compatible**

Then computing expected kernels can be done **tractably** by a forward pass

$$\Rightarrow \mathcal{O}(|p||q||k|)$$
smooth + **decomposable** + **compatible** = **tractable** $E[k]$

[Sum Nodes] $p(X) = \sum_i w_i p_i(X)$, $q(X') = \sum_j w'_j q_j(X')$, and kernel $k(X, X') = \sum_l w''_l k_l(X, X')$:

\[
p(X) = \sum_i w_i p_i(X) = \sum_i w_i \prod_{j=1}^d \exp\left(-\left|X_j - X'_j\right|^2\right) \prod_{j=1}^d p_{i,j}(X_j) \\
q(X') = \sum_j w'_j q_j(X') = \sum_j w'_j \prod_{j=1}^d \exp\left(-\left|X_j - X'_j\right|^2\right) \prod_{j=1}^d q_{j,i}(X'_j) \\
k(X, X') = \sum_l w''_l k_l(X, X') = \sum_l w''_l \prod_{j=1}^d \exp\left(-\left|X_j - X'_j\right|^2\right) \\
\]

\[
X_1, X_2, X_3, X_4, X_1', X_2', X_3', X_4'
\]

\[
p(X) = \sum_i w_i p_i(X) = \sum_i w_i \prod_{j=1}^d \exp\left(-\left|X_j - X'_j\right|^2\right) \prod_{j=1}^d p_{i,j}(X_j) \\
q(X') = \sum_j w'_j q_j(X') = \sum_j w'_j \prod_{j=1}^d \exp\left(-\left|X_j - X'_j\right|^2\right) \prod_{j=1}^d q_{j,i}(X'_j) \\
k(X, X') = \sum_l w''_l k_l(X, X') = \sum_l w''_l \prod_{j=1}^d \exp\left(-\left|X_j - X'_j\right|^2\right) \\
\]

\[
X_1, X_2, X_3, X_4, X_1', X_2', X_3', X_4'
\]
smooth + decomposable + compatible = tractable $E[k]$

[Sum Nodes] $p(X) = \sum_i w_i p_i(X)$, $q(X') = \sum_j w'_j q_j(X')$, and kernel $k(X, X') = \sum_l w''_l k_l(X, X')$:

\[
E[p, q][k(X, X')] = \sum_{i,j,l} w_i w'_j w''_l E[p_i, q_j][k_l(X, X')]
\]

\Rightarrow expectation is “pushed down” to inputs
smooth + **decomposable** + **compatible** = **tractable** $E[k]$

[Product Nodes] $p_x(X) = \prod_i p_i(X_i)$, $q_x(X') = \prod_i q_i(X'_i)$, and kernel $k_x(X, X') = \prod_i k_i(X_i, X'_i)$:
smooth + **decomposable** + **compatible** = **tractable** $E[k]$

[Product Nodes] $p_x(x) = \prod_i p_i(x_i), \quad q_x(x') = \prod_i q_i(x'_i)$, and kernel $k_x(x, x') = \prod_i k_i(x_i, x'_i)$:

$$E_{p_x, q_x} [k_x(x, x')] = \prod_i E_{p_i, q_i} [k_i(x_i, x'_i)] \quad \Rightarrow \quad \text{expectation decomposes into easier ones}$$
smooth + decomposable + compatible = tractable $E[k]$

Algorithm 1 $E_{p_n,q_m}[k_l]$ — Computing the expected kernel

Input: Two compatible PCs p_n and q_m, and a KC k_l that is kernel-compatible with the PC pair p_n and q_m.

1: if m, n, l are input nodes then
2: return $E_{p_n,q_m}[k_l]$
3: else if m, n, l are sum nodes then
4: return $\sum_{i \in \text{in}(n), j \in \text{in}(m), c \in \text{in}(l)} w_i w'_j w''_c E_{p_i,q_j}[k_c]$
5: else if m, n, l are product nodes then
6: return $E_{p_{nL},q_{mL}}[k_L] \cdot E_{p_{nR},q_{mR}}[k_R]$

Computation can be done in one forward pass!

\Rightarrow squared maximum mean discrepancy $MMD[p, q]$ [Gretton et al. 2012]

\Rightarrow + determinism, kernelized discrete Stein discrepancy (KDSD) [Yang et al. 2018]

\Rightarrow support vector regression (SVR) with missing features
Support vector regression with missing features

Given a regressor $f : \mathcal{X} \rightarrow \mathcal{Y}$, in the case when only features $X_o = x_o$ are observed and features X_m are missing, with $X = (X_o, X_m)$, the expected prediction is

$$\mathbb{E}_{X_m \sim p(X_m|x_o)}[f(x_o, X_m)]$$
Support vector regression with missing features

For a kernel support vector regressor \(f(x) = \sum_{i=1}^{m} w_i k(x_i, x) + b \), in the case when only features \(X_o = x_o \) are observed and features \(X_m \) are missing, with \(X = (X_o, X_m) \), the expected prediction is

\[
\mathbb{E}_{x_m \sim p(x_m|x_o)}[f(x_o, x_m)] = \sum_{i=1}^{m} w_i \mathbb{E}_{x_m \sim p(x_m|x_o)}[k(x_i, (x_o, x_m))] + b
\]
Support vector regression with missing features

Expected prediction improves over the baselines
Applications

- Support vector regression with missing features
- Collapsed black-box importance sampling

⇒ What about intractable models?
Takeaways

#1: you can be both tractable and expressive

#2: circuits are a foundation for tractable inference over kernels
More on circuits ...

Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models
starai.cs.ucla.edu/papers/ProbCirc20.pdf

Probabilistic Circuits: Representations, Inference, Learning and Theory
youtube.com/watch?v=2RAG5-L9R70

Probabilistic Circuits
arranger1044.github.io/probabilistic-circuits/

Foundations of Sum-Product Networks for probabilistic modeling
tinyurl.com/w65po5d
References

