A Machine Learning Based Approach to Mobile Network Analysis

Zengwen Yuan¹, Yuanjie Li¹, Chunyi Peng², Songwu Lu¹, Haotian Deng², Zhaowei Tan¹, Taqi Raza¹

¹ UCLA ² Purdue University
Overview
Overview

Background
Overview

Background

Why machine learning for mobile network analysis
Overview

Background

Why machine learning for mobile network analysis

Mobile network analysis: state-of-the-art and our approach
Overview

Background

Why machine learning for mobile network analysis

Mobile network analysis: state-of-the-art and our approach

Case study: analyzing latency for mobile networks

• How mobile apps work over LTE
• How to breakdown app-perceived latency
• Challenges and ML scheme
• Primary results from crowdsourcing
Overview

Background

Why machine learning for mobile network analysis

Mobile network analysis: state-of-the-art and our approach

Case study: analyzing latency for mobile networks
 • How mobile apps work over LTE
 • How to breakdown app-perceived latency
 • Challenges and ML scheme
 • Primary results from crowdsourcing

Conclusion
Ubiquitous cellular networks connect everyone, everything
The race to 5G opens many new opportunities

The Next Frontier: 5G to Hit the Mainstream by 2022
Forecast of 5G wireless subscriptions by region (in millions)

- North America
- Asia-Pacific
- Central Europe, Middle East and Africa
- Western Europe
- Latin America

<table>
<thead>
<tr>
<th>Year</th>
<th>North America</th>
<th>Asia-Pacific</th>
<th>Central Europe, Middle East and Africa</th>
<th>Western Europe</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>29</td>
<td>1m</td>
<td></td>
<td></td>
<td>1m</td>
</tr>
<tr>
<td>2020</td>
<td>3</td>
<td>2m</td>
<td></td>
<td></td>
<td>2m</td>
</tr>
<tr>
<td>2021</td>
<td>203</td>
<td></td>
<td></td>
<td></td>
<td>203</td>
</tr>
<tr>
<td>2022</td>
<td>545</td>
<td></td>
<td></td>
<td></td>
<td>545</td>
</tr>
</tbody>
</table>

Source: Ericsson
Yet, access to mobile network analytics is barred

Researcher (you)

Chipset/Mobile OS

No privilege no talk, sorry!

Cellular network (4G LTE)

User space

Mobile Apps

Application Stack

Mobile OS

TCP/IP stack

Baseband

Interface

Internet

Web server

Operators

Oh we cannot tell you unless you sign an NDA...

What’s going on in the 3G/4G/5G network??

Researcher (you)

No privilege no talk, sorry!

Cellular network (4G LTE)

User space

Mobile Apps

Application Stack

Mobile OS

TCP/IP stack

Baseband

Interface

Internet

Web server

Operators

Oh we cannot tell you unless you sign an NDA...

What’s going on in the 3G/4G/5G network??

Researcher (you)

No privilege no talk, sorry!

Cellular network (4G LTE)

User space

Mobile Apps

Application Stack

Mobile OS

TCP/IP stack

Baseband

Interface

Internet

Web server

Operators

Oh we cannot tell you unless you sign an NDA...

What’s going on in the 3G/4G/5G network??

Researcher (you)

No privilege no talk, sorry!

Cellular network (4G LTE)

User space

Mobile Apps

Application Stack

Mobile OS

TCP/IP stack

Baseband

Interface

Internet

Web server

Operators

Oh we cannot tell you unless you sign an NDA...
Yet, access to mobile network analytics is barred

What’s going on in the 3G/4G/5G network??

3G/4G operations remain closed both in device chipsets and network infrastructures :(

Chipset/Mobile OS

No privilege no talk, sorry!

Operators

Oh we cannot tell you unless you sign an NDA...

Researcher (you)
Plus, mobile networks are complex & distributed

More complex functions on both control and data planes

Operations are distributed across layers
Moreover, analytics tasks are app specific
Moreover, analytics tasks are app specific

Analytics for mobile networks is problem-specific, for example:
Moreover, analytics tasks are app specific

Analytics for mobile networks is problem-specific, for example:

- Web browsers:
 - Why the time-to-first-byte (TTFB) is so long?
 - What’s the major component of latency?
 - …
Moreover, analytics tasks are app specific

Analytics for mobile networks is problem-specific, for example:

- **Web browsers:**
 - Why the time-to-first-byte (TTFB) is so long?
 - What’s the major component of latency?
 - ...

- **Instant message apps:**
 - Does the recipient read my message?
 - Is my message delivered in time?
 - ...
State-of-the-art mobile network analytics
State-of-the-art mobile network analytics

Current 4G network analytics is primarily “infrastructure-based“:
State-of-the-art mobile network analytics

Current 4G network analytics is primarily “infrastructure-based”:
State-of-the-art mobile network analytics

Current 4G network analytics is primarily “infrastructure-based”:
Current 4G network analytics is primarily “infrastructure-based”:

Not Scalable
Current 4G network analytics is primarily “infrastructure-based”:

- Not Scalable
- Incomplete View
State-of-the-art mobile network analytics

Current 4G network analytics is primarily “infrastructure-based”:

- Not Scalable
- Incomplete View
- Opaqueness
ML-based approach is a must-have feature for mobile network analytics

- Net-Scaleable
- Incomplete-View
- Opaqueness
ML-based approach is a must-have feature for mobile network analytics

Device-centric ML approach brings new hope

- Not Scalable
- Incomplete View
- Opaqueness
ML-based approach is a must-have feature for mobile network analytics

Device-centric ML approach brings new hope

- Not Scalable
- Incomplete View
- Opaqueness
- Scalability
ML-based approach is a must-have feature for mobile network analytics

Device-centric ML approach brings new hope

- Net-Scalable
- Incomplete View
- Opaqueness
- Scalability
- Device QoE View
ML-based approach is a must-have feature for mobile network analytics

Device-centric ML approach brings new hope

- Scalability
- Device QoE View
- Availability
- Net-Scalable
- Incomplete-View
- Opaqueness
It is probably true that machine learning is a must-have approach, rather than a nice-to-have one, to our field for mobile network analysis.
Our proposal: two-level device-centric ML approach
Our proposal: two-level device-centric ML approach

Local level: sensing mobile network data inside each smartphone

- Via hardware-software coordination (e.g. MobileInsight [ACM MobiCom’16])
- Via higher-layer (application/transport/IP) and lower-layer (cellular-specific) integration
- Via ML-assisted data plane prediction from control plane protocol reconstruction
Our proposal: two-level device-centric ML approach

Local level: sensing mobile network data inside each smartphone
- Via hardware-software coordination (e.g. MobileInsight [ACM MobiCom’16])
- Via higher-layer (application/transport/IP) and lower-layer (cellular-specific) integration
- Via ML-assisted data plane prediction from control plane protocol reconstruction

Global level:
- Crowdsourcing-based dataset
- Cloud-synthesized insights
Local analysis
Local analysis

Step 1: open up the “black-box” operations

• At/above IP network data: TCPDUMP
• Below IP network data: MobileInsight
Local analysis

Step 1: open up the “black-box” operations

- At/above IP network data: TCPDUMP
- Below IP network data: MobileInsight
Local analysis

Step 1: open up the “black-box” operations

- At/above IP network data: TCPDUMP
- Below IP network data: MobileInsight

Step 2: automated data preprocessing

- Data cleansing and integration of two sources
Local analysis

Step 1: open up the “black-box” operations
- At/above IP network data: TCPDUMP
- Below IP network data: MobileInsight

Step 2: automated data preprocessing
- Data cleansing and integration of two sources
Local analysis

Step 1: open up the “black-box” operations

- At/above IP network data: TCPDUMP
- Below IP network data: MobileInsight

Step 2: automated data preprocessing

- Data cleansing and integration of two sources

Step 3: local ML-based analysis

- Control plane for protocol operations
- Data plane for performance
Local analysis

Step 1: open up the “black-box” operations
 • At/above IP network data: TCPIP DUMP
 • Below IP network data: MobileInsight

Step 2: automated data preprocessing
 • Data cleansing and integration of two sources

Step 3: local ML-based analysis
 • Control plane for protocol operations
 • Data plane for performance
Global analysis

Enabled by cloud-based crowdsourcing (e.g. cniCloud [HotWireless’17])

Analytical Insights for:

• Geographical location
• Operators
• Phone models
• ...

Fine-grained logging & sharing

Efficient Data Management

Structured Query

SQL Query

SQL Response
Case study: latency analysis in mobile networks
Every millisecond of latency matters!

Mobile network users want fast access

- 1 second latency in page response → 7% reduction in PageView [KissMetrics 2011]

Developers lose revenue due to long latency

- Every 100 ms costs Amazon 1% ($1.6 bn) in sales
- An extra 400 ms latency drops daily Google searches per user by 0.6%

Latency does matter a lot!
Background: how do mobile apps work over 4G LTE?

What happens under the hood?

How LTE impacts perceived latency on mobile web/IM app?
Background: how do mobile apps work over 4G LTE?

What happens under the hood?

How LTE impacts perceived latency on mobile web/IM app?
Background: how do mobile apps work over 4G LTE?

What happens under the hood?

How LTE impacts perceived latency on mobile web/IM app?
Background: how do mobile apps work over 4G LTE?

What happens under the hood?

How LTE impacts perceived latency on mobile web/IM app?
Background: how do mobile apps work over 4G LTE?

What happens under the hood?

How LTE impacts perceived latency on mobile web/IM app?
Background: how do mobile apps work over 4G LTE?

What happens under the hood?

How LTE impacts perceived latency on mobile web/IM app?
Background: how do mobile apps work over 4G LTE?

What happens under the hood?

How LTE impacts perceived latency on mobile web/IM app?
Background: how do mobile apps work over 4G LTE?

What happens under the hood?

How LTE impacts perceived latency on mobile web/IM app?
Background: how do mobile apps work over 4G LTE?

What happens under the hood?

How LTE impacts perceived latency on mobile web/IM app?
Background: how do mobile apps work over 4G LTE?

What happens under the hood?

How LTE impacts perceived latency on mobile web/IM app?
Background: how do mobile apps work over 4G LTE?

What happens under the hood?

How LTE impacts perceived latency on mobile web/IM app?
Background: how do mobile apps work over 4G LTE?

What happens under the hood?

How LTE impacts perceived latency on mobile web/IM app?
Background: how do mobile apps work over 4G LTE?

What happens under the hood?

How LTE impacts perceived latency on mobile web/IM app?

LTE control-plane operations pose *sizable* latency on mobile apps
Timing breakdown of control plane operations
Timing breakdown of control plane operations

P1a: RRC connection setup request
Timing breakdown of control plane operations

P1a: RRC connection setup request
(Random Access)
Timing breakdown of control plane operations

- P1a: RRC connection setup request
 (Random Access)
- P1b: RRC connection setup
Timing breakdown of control plane operations

- P1a: RRC connection setup request
- (Random Access)
- P1b: RRC connection setup
- P1c: RRC connection setup complete
Timing breakdown of control plane operations

- P1a: RRC connection setup request (Random Access)
- P1b: RRC connection setup
- P1c: RRC connection setup complete
- P2: Service request
Timing breakdown of control plane operations

- P1a: RRC connection setup request
 - (Random Access)
- P1b: RRC connection setup
- P1c: RRC connection setup complete
- P2: Service request
- P3: Authentication (non-mandatory)
Timing breakdown of control plane operations

- P1a: RRC connection setup request
- P1b: RRC connection setup
- P1c: RRC connection setup complete
- P2: Service request
- P3: Authentication (non-mandatory)
- P4: Initial Context Setup
Timing breakdown of control plane operations

P1a. RRC connection setup request
 (Random Access)
P1b. RRC connection setup
P1c. RRC connection setup complete
P2. Service request
P3. Authentication (non-mandatory)
P4. Initial Context Setup
P5a. Security mode command
Timing breakdown of control plane operations

- **P1a**: RRC connection setup request
 - (Random Access)
- **P1b**: RRC connection setup
- **P1c**: RRC connection setup complete
- **P2**: Service request
- **P3**: Authentication (non-mandatory)
- **P4**: Initial Context Setup
- **P5a**: Security mode command
- **P5b**: Security mode complete
Timing breakdown of control plane operations

1. **P1a: RRC connection setup request** (Random Access)
2. **P1b: RRC connection setup**
3. **P1c: RRC connection setup complete**
4. **P2: Service request**
5. **P3: Authentication (non-mandatory)**
6. **P4: Initial Context Setup**
7. **P5a: Security mode command**
8. **P5b: Security mode complete**
9. **P6a: RRC connection reconfig**
Timing breakdown of control plane operations

- P1a: RRC connection setup request
 (Random Access)
- P1b: RRC connection setup
- P1c: RRC connection setup complete
- P2: Service request
- P3: Authentication (non-mandatory)
- P4: Initial Context Setup
- P5a: Security mode command
- P5b: Security mode complete
- P6a: RRC connection reconfig
- P6b: RRC connection reconfig complete
Timing breakdown of control plane operations

- **P1a.** RRC connection setup request
 - (Random Access)
 - **P1b.** RRC connection setup
 - **P1c.** RRC connection setup complete

- **P2.** Service request

- **P3.** Authentication (non-mandatory)

- **P4.** Initial Context Setup

- **P5a.** Security mode command

- **P5b.** Security mode complete

- **P6a.** RRC connection reconfig

- **P6b.** RRC connection reconfig complete

(Data bearer)
Timing breakdown of control plane operations

- P1a: RRC connection setup request
- (Random Access)
- P1b: RRC connection setup
- P1c: RRC connection setup complete
- P2: Service request
- P3: Authentication (non-mandatory)
- P4: Initial Context Setup
- P5a: Security mode command
- P5b: Security mode complete
- P6a: RRC connection reconfig
- P6b: RRC connection reconfig complete
Timing breakdown of control plane operations

- P1a: RRC connection setup request
 - (Random Access)
- P1b: RRC connection setup
- P1c: RRC connection setup complete
- P2: Service request
- P3: Authentication (non-mandatory)
- P4: Initial Context Setup
- P5a: Security mode command
- P5b: Security mode complete
- P6a: RRC connection reconfig
- P6b: RRC connection reconfig complete

UL data

Data bearer

Data bearer
Timing breakdown of control plane operations

- P1a: RRC connection setup request
- P1b: RRC connection setup
- P1c: RRC connection setup complete
- P2: Service request
- P3: Authentication (non-mandatory)
- P4: Initial Context Setup
- P5a: Security mode command
- P5b: Security mode complete
- P6a: RRC connection reconfig
- P6b: RRC connection reconfig complete

UL data → Data bearer
Timing breakdown of control plane operations

1. P1a: RRC connection setup request
 (Random Access)
2. P1b: RRC connection setup
3. P1c: RRC connection setup complete
4. P2: Service request
5. P3: Authentication (non-mandatory)
6. P4: Initial Context Setup
7. P5a: Security mode command
8. P5b: Security mode complete
9. P6a: RRC connection reconfig
10. P6b: RRC connection reconfig complete

UL data

Data bearer
Timing breakdown of control plane operations

P1a: RRC connection setup request
P1b: RRC connection setup
P1c: RRC connection setup complete
P2: Service request
P3: Authentication (non-mandatory)
P4: Initial Context Setup
P5a: Security mode command
P5b: Security mode complete
P6a: RRC connection reconfig
P6b: RRC connection reconfig complete

UL data

Data bearer

Data bearer
Timing breakdown of control plane operations

1. **P1a. Security mode command**
2. **P3. Authentication (non-mandatory)**
3. **P4. Initial Context Setup**

1. **P1b: RRC connection setup**
2. **P1c: RRC connection setup complete**
3. **P2. Service request**
4. **P3. Authentication (non-mandatory)**
5. **P5a. Security mode command**
6. **P5b. Security mode complete**
7. **P6a. RRC connection reconfig**
8. **P6b RRC connection reconfig complete**

T_{radio}

T_{ctrl}

UL data

(Data bearer) Data bearer
Learning latency: latency data sensing

Three-tiered timing data collection:

- App-specific semantic timing (e.g. Navigation Timing API, IM timing model)
- TCP/IP stack timing (from TCPDUMP)
- LTE stack timing (from MobileInsight)
Challenge: timestamp alignment

How to align timestamps at these layers?

- Domain-specific event tracing and mapping
- Machine-learning assisted
Pinpoint latency bottleneck in LTE: An example
Pinpoint latency bottleneck in LTE: An example

Run a small webpage (4 KB) in Chrome on Android

- User is static, under good 4G LTE signal (-95 dBm), T-Mobile
Pinpoint latency bottleneck in LTE: An example

Run a small webpage (4 KB) in Chrome on Android

• User is static, under good 4G LTE signal (-95 dBm), T-Mobile

Total Latency: 473 msec

• Clicking URL → page loading complete, Steps (a)−(f)
Pinpoint latency bottleneck in LTE: An example

Run a small webpage (4 KB) in Chrome on Android

- User is static, under good 4G LTE signal (-95 dBm), T-Mobile

Total Latency: **473 msec**

- Clicking URL → page loading complete, Steps (a)–(f)

Pinpointing the latency bottleneck

- How to breakdown?
Control-plane latency breakdown: local analysis I
Control-plane latency breakdown: local analysis

Major component from Navigation Timing API: DNS lookup, 250 ms out of 473 ms
Control-plane latency breakdown: local analysis I

Major component from Navigation Timing API: DNS lookup, 250 ms out of 473 ms

Is the DNS server slow to handle connection?
Control-plane latency breakdown: local analysis

Major component from Navigation Timing API: DNS lookup, 250 ms out of 473 ms

Is the DNS server slow to handle connection?

Further breakdown: *LTE service request* takes 172 ms before the DNS setup
Control-plane latency breakdown: local analysis

Major component from Navigation Timing API: DNS lookup, 250 ms out of 473 ms

Is the DNS server slow to handle connection?

Further breakdown: *LTE service request* takes 172 ms before the DNS setup

![Diagram showing control-plane latency breakdown]

- Queueing: 8.98 ms
- Stalled: 2.97 ms
- DNS Lookup: 250.04 ms
- Initial Connection: 30.11 ms
- Request Sent: 0.36 ms
- Waiting (TTFB): 137.41 ms
- Content Download: 43.48 ms

UCLA
Further zoom in and breakdown the remaining LTE data access latency (291 ms):

- DNS-Wait Grant: 26 ms
- DNS (IPv6): 17 ms
- DNS-Wait Grant (IPv4): 12 ms
- DNS (IPv4): 16 ms
- APP-OS overhead: 2.02 ms
- TCP SYN-Wait Grant: 11 ms
- TCP SYN-Send Data: 18 ms
- TCP ACK (local processing): 0.02 ms
- HTTP GET (send request): 0.36 ms
- HTTP GET-Wait Grant: 12 ms
- HTTP GET-req sent: 8 ms
- HTTP-server RTT+ DL latency: 110 ms
- LTE-to-TCP overhead: 6.1 ms
- HTTP page DL transmission: 40 ms
- HTTP DL retransmission: 3 ms
Latency mapping for failures: local analysis III

Example: data plane suspension due to radio reconnection and head-of-line blocking during handover
Latency mapping for failures: local analysis III

Example: data plane suspension due to radio reconnection and head-of-line blocking during handover

- Blocking: 5.05 ms
- Request Sent: 0.58 ms
- Waiting Grant: 4 ms
- Uplink Transmission: 130 ms
- Handover Disruption: 263 ms
- Handover Disruption: 36 ms
- Waiting (TTFB, due to parallel TCP connection): 275 ms
- Content Download: 33.16 ms
Machine learning scheme

We leverage domain-specific knowledge for ML-based predictions

Control plane: predict handover using a decision tree classifier

- Features from 3GPP standards
- Predicts handover 100ms before it occurs with >99% accuracy

Data plane: predict NACK/ACK flip at MAC layer
Synthesizer: global crowdsourcing analysis
Synthesizer: global crowdsourcing analysis

Four US carriers + Google Project Fi
Synthesizer: global crowdsourcing analysis

Four US carriers + Google Project Fi

23 phone models, 95,057 data sessions
Synthesizer: global crowdsourcing analysis

Four US carriers + Google Project Fi

23 phone models, 95,057 data sessions

Overall latency: 77 — 2956 ms in 500K samples
Synthesizer: global crowdsourcing analysis

Four US carriers + Google Project Fi

23 phone models, 95,057 data sessions

Overall latency: 77 — 2956 ms in 500K samples
 * Varies among different mobile carriers
Synthesizer: global crowdsourcing analysis

Four US carriers + Google Project Fi

23 phone models, 95,057 data sessions

Overall latency: 77 — 2956 ms in 500K samples
 • Varies among different mobile carriers
 • Insensitive to varying radio link quality

-130 -120 -110 -100 -90 -80 -70 -60 -50 -40
Signal Strength (dBm)

50 100 200 500 1,000 3,000
Total Latency (ms)
Frequent data access setup operations

- every 58.8 sec (median); 133.6 sec (average)
- cause: frequently entering power-saving mode

Short-lived Radio connectivity lifetime

- every 10.8 sec (median); 17.3 sec (average)
- cause: inactivity timer (regulated by standards)
Frequent data access setup operations

- every 58.8 sec (median); 133.6 sec (average)
- cause: frequently entering power-saving mode

Short-lived Radio connectivity lifetime

- every 10.8 sec (median); 17.3 sec (average)
- cause: inactivity timer (regulated by standards)
LTE data access latency: how frequent?

Frequent data access setup operations
- every 58.8 sec (median); 133.6 sec (average)
- cause: frequently entering power-saving mode

Short-lived Radio connectivity lifetime
- every 10.8 sec (median); 17.3 sec (average)
- cause: inactivity timer (regulated by standards)
Overall latency and breakdown for major carriers

- AT&T
- T-Mobile
- Sprint
- Verizon
- Project Fi
Findings Summary

Tradio: Radio connectivity setup

- It contributes 67.5 – 1665.0 ms of the overall LTE access latency.
- On average, it contributes 39.7%, 44.0%, 61.9%, 64.2% and 43.7% of total latency in T-Mobile, AT&T, Verizon, Sprint and Project-Fi, respectively.

Tctrl: Connectivity state transfer

- It contributes 28.75 ms to 2286.25 ms of the overall LTE access latency.
- On average, it contributes 60.3%, 56.0%, 38.1%, 35.8% and 56.3% of total latency in T-Mobile, AT&T, Verizon, Sprint and Project-Fi, respectively.
Impact on mobile Web app: Chrome

Average page loading time for tested webpage: 411 ms

- LTE data access setup: 174 ms
- 42.3% total latency perceived

Similar results for Safari latency on iOS
Impact on instant-messaging: WhatsApp

Average time first data packet being ACKed: 341 ms

- LTE data access setup: 175 ms
- 51.4% total latency perceived
Discussion: reducing LTE latency

Data plane walk-arounds

• Mask the data setup latency by waking device in connected mode in advance

Control plane acceleration

• Speed up connectivity state transfer between the base station and the mobility controller (e.g. DPCM [ACM MobiCom’17])
 • Handover prediction

Other issues

• Extending to other network metrics (e.g. loss, throughput, ...)
• Theoretical bounds
• Privacy issues
Conclusion: ML-based analysis for next-gen mobile networks

Mobile networks are successful and will continue to prosper (5G, self driving, ...)

Mobile network analysis: paradigm shift to **device-centric, ML-based** scheme

- Device-centric: unveil the tightly-guided operation issues over 4G/5G mobile networks
- Two-tiered approach: a more open solution approach for the research community
Backup