Resolving Policy Conflicts in Multi-Carrier Cellular Access

Zengwen Yuan†,
Qianru Li†, Yuanjie Li†, Songwu Lu†, Chunyi Peng‡, George Varghese†

† UCLA ‡ Purdue University
What is multi-carrier cellular access?

One SIM card, access to *multiple* carriers

- Phone automatically switches to a carrier with good service

Google Project Fi: industry’s leading effort; device-side solution

Animation source: fi.google.com
What are the benefits?

Better carrier access, **without** additional deployments from single carrier
What are the benefits?

Better carrier access, *without* additional deployments from single carrier.
What are the benefits?

Better carrier access, *without* additional deployments from single carrier
Better carrier access, **without** additional deployments from single carrier
What are the benefits?

Better carrier access, *without* additional deployments from single carrier
What are the benefits?

Better carrier access, **without** additional deployments from single carrier.
What are the benefits?

Better carrier access, *without* additional deployments from single carrier
What are the benefits?

Better carrier access, **without** additional deployments from single carrier.
How it works?
How it works?

1. Select a carrier by inter-carrier policy

T-Mobile 3G

Sprint LTE

T-Mobile LTE

Sprint 3G
How it works?

1. Select a carrier by inter-carrier policy
How it works?

1. Select a carrier by inter-carrier policy
How it works?

1. Select a carrier by inter-carrier policy

2. Select a cell by intra-carrier policy
How it works?

1. Select a carrier by inter-carrier policy

2. Select a cell by intra-carrier policy
How it works?

1. Select a carrier by inter-carrier policy
2. Select a cell by intra-carrier policy

Two-tiered selection
Two policies involved

Inter-carrier policy: operated by multi-carrier service providers (i.e. Google)
- i.e. “Choose an appropriate carrier which has 4G”

Intra-carrier policy: configured & kept in each carrier
- i.e. “Connect to a cell with strongest signal strength”
- Example: cell handoff priority
Two policies involved

Inter-carrier policy: operated by multi-carrier service providers

- i.e. “Choose an appropriate **carrier** which has 4G”

Intra-carrier policy: configured & kept in each carrier

- i.e. “Connect to a **cell** with strongest signal strength”
- Example: cell handoff priority
Why policy-based inter-carrier switching

Project Fi’s *de facto* practice

Seen in most real operational networks
 - i.e., cell handoff, BGP routing ...

Benefits: Flexible + Scalable

Non-technical issues
Conflicts between inter- & intra-carrier policy
Conflicts between inter- & intra-carrier policy

T-Mobile
3G
inter-carrier policy: prefers LTE

Sprint
LTE

Sprint
3G

UCLA
Conflicts between inter- & intra-carrier policy

Inter-carrier policy: prefers LTE

Intra-carrier policy: enterprise small cell
Conflicts between inter- & intra-carrier policy

- **Inter-carrier policy:** prefers LTE
- **Intra-carrier policy:** prefers LTE
- **Intra-carrier policy:** enterprise small cell
Conflicts between inter- & intra-carrier policy

- **T-Mobile 3G**: intra-carrier policy: stronger RSS
- **T-Mobile LTE**: inter-carrier policy: prefers LTE
- **Sprint LTE**: prefers LTE
- **Sprint 3G**: intra-carrier policy: enterprise small cell
Policy conflicts lead to persistent loop!

Persistent carrier switching loops under static case

- No mobility
- Invariant network conditions
- Unchanged, deterministic policies

Persistent loops are bad:

- Negative impact (disruption, battery, ...) x Frequent occurrence
- Design issue
In this work

Q1: what are the carrier switching loops?
 1. Identify loop incurred by policy conflicts (similar to BGP)
 2. Theoretical analysis on loop condition
 3. Validation via operational Google Project Fi

Q2: how to resolve loops by policy conflict?
 4. Proposed practical guidelines
 5. Experiment validation on the effectiveness
Roadmap to our analytical framework

Common Policies - Loop Condition - Project Fi Validation - Practical Guidelines - Experiment Results
Policies, loops & validations

Q1: what are the carrier switching loops?
Inter-carrier policies

<table>
<thead>
<tr>
<th>Policy Category</th>
<th>Sub-category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preference-based</td>
<td>Preference assigned to (carrier, RAT)</td>
</tr>
<tr>
<td></td>
<td>Preference assigned to carrier</td>
</tr>
<tr>
<td>Threshold-based</td>
<td>Inter- & intra-policies use different measures</td>
</tr>
<tr>
<td></td>
<td>Inter- & intra-policies use the same measure</td>
</tr>
<tr>
<td>Hybrid Policy</td>
<td>Preference-first; threshold-first</td>
</tr>
</tbody>
</table>
Inter-carrier policies

<table>
<thead>
<tr>
<th>Policy Category</th>
<th>Sub-category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preference-based</td>
<td>Preference assigned to (carrier, RAT)</td>
</tr>
<tr>
<td></td>
<td>Preference assigned to carrier</td>
</tr>
<tr>
<td>Threshold-based</td>
<td>Inter- & intra-policies use different measures</td>
</tr>
<tr>
<td></td>
<td>Inter- & intra-policies use the same measure</td>
</tr>
<tr>
<td>Hybrid Policy</td>
<td>Preference-first; threshold-first</td>
</tr>
</tbody>
</table>
Preference-based policy
Preference-based policy

Policy form:

- Preferences on (carrier, RAT, e.g. 3G/4G) pair
- Switching to a carrier w/ higher preference

<table>
<thead>
<tr>
<th>Carrier, RAT</th>
<th>Pref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-Mobile, LTE</td>
<td>1000</td>
</tr>
<tr>
<td>Sprint, LTE</td>
<td>1000</td>
</tr>
<tr>
<td>T-Mobile, 3G</td>
<td>900</td>
</tr>
<tr>
<td>Sprint, 3G</td>
<td>800</td>
</tr>
</tbody>
</table>
Preference-based policy

Policy form:

• Preferences on (carrier, RAT, e.g. 3G/4G) pair
• Switching to a carrier w/ higher preference

Observation:

• Inter-carrier policy prefers LTE
• Intra-carrier policies prefer 3G

<table>
<thead>
<tr>
<th>Carrier, RAT</th>
<th>Pref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-Mobile, LTE</td>
<td>1000</td>
</tr>
<tr>
<td>Sprint, LTE</td>
<td>1000</td>
</tr>
<tr>
<td>T-Mobile, 3G</td>
<td>900</td>
</tr>
<tr>
<td>Sprint, 3G</td>
<td>800</td>
</tr>
</tbody>
</table>
Preference-based policy

Policy form:
- Preferences on (carrier, RAT, e.g. 3G/4G) pair
- Switching to a carrier w/ higher preference

Observation:
- Inter-carrier policy prefers LTE
- Intra-carrier policies prefer 3G

Intuition: Preference set by inter-carrier policy conflicts with that in intra-carrier policies

<table>
<thead>
<tr>
<th>Carrier, RAT</th>
<th>Pref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-Mobile, LTE</td>
<td>1000</td>
</tr>
<tr>
<td>Sprint, LTE</td>
<td>1000</td>
</tr>
<tr>
<td>T-Mobile, 3G</td>
<td>900</td>
</tr>
<tr>
<td>Sprint, 3G</td>
<td>800</td>
</tr>
</tbody>
</table>
Loop condition

THM 6.1 INTER/INTRA-CARRIER PREFERENCE CONFLICT

A persistent N-carrier loop happens iff.
(a) every carrier has RAT_H assigned with same highest preference; and
(b) every carrier’s intra-carrier policy prefers a different RAT_L over RAT_H.
How Project Fi works: big picture
How Project Fi works: big picture

Step 1. Inter-Carrier Policy Config

Intra-Carrier Policy (Handoff)
How Project Fi works: big picture

1. Inter-Carrier Policy Config

2. Intra-Carrier Policy (Handoff)

User Space

Hardware

Fi SIM card

Google Project Fi Server

LTE

3G

Fi

T

Project Fi
How Project Fi works: big picture

Step 1. Inter-Carrier Policy Config

Step 2. Intra-Carrier Policy (Handoff)

Step 3. Reconfiﬁg SIM
How Project Fi works: big picture

1. Inter-Carrier Policy Config
2. Intra-Carrier Policy (Handoff)
3. Reconfig SIM
4. Reconnect
How Project Fi works: big picture

Step 1. Inter-Carrier Policy Config
Step 2. Intra-Carrier Policy (Handoff)
Step 3. Reconfig SIM
Step 4. Reconnect
Step 5: Crowdsourcing report

Google Project Fi Server

LTE

3G

Project Fi

User Space Hardware

Fi SIM card

Project Fi

Inter-Carrier Policy (Handoff)
How Project Fi works: inside the phone

Monitor: NetworkType
Decision
Policy 1
Conditions

Monitor: GeoLocation
Decision
Policy 2
Conditions

Monitor: ML-based
Decision
Policy 3
Conditions

Switch or not? Target Carrier?

Other Monitors (Roaming etc.)
Validation in Project Fi

Project Fi: Network Type Monitor

- T-Mobile <-> Sprint loop every 10 mins

Trace 2 Persistent loop by RAT-aware preference

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>14:19:47 Switch request to Sprint is approved. Requester: PoorNetwork.</td>
</tr>
<tr>
<td>3</td>
<td>14:20:48 Switch T-Mobile LTE -> Sprint 1xRTT done. result:Success. srcSignalStrength:-101. destSignalStrength:-106.</td>
</tr>
<tr>
<td>4</td>
<td>14:20:49 Switched to a worse network. Switch request back to T-Mobile.</td>
</tr>
<tr>
<td>5</td>
<td>14:21:01 Switch Sprint 1xRTT -> T-Mobile LTE done. result:Success. srcSignalStrength:-106. destSignalStrength:-101.</td>
</tr>
<tr>
<td>6</td>
<td>14:21:01 Locking plugin until 07:57. Current elapsed time: 04:57</td>
</tr>
<tr>
<td>8</td>
<td>14:29:02 Switch request to Sprint is approved. Requester: PoorNetwork.</td>
</tr>
<tr>
<td>9</td>
<td>14:29:58 Switch T-Mobile LTE -> Sprint 1xRTT done. result:Success. srcSignalStrength:-100. destSignalStrength:-105.</td>
</tr>
<tr>
<td>10</td>
<td>14:29:58 Switched to a worse network. Switch request back to T-Mobile.</td>
</tr>
<tr>
<td>11</td>
<td>14:30:10 Switch Sprint 1xRTT -> T-Mobile LTE done. result:Success. srcSignalStrength:-106. destSignalStrength:-200.</td>
</tr>
<tr>
<td>12</td>
<td>14:30:10 Locking plugin until 17:07. Current elapsed time: 14:07</td>
</tr>
<tr>
<td>14</td>
<td>14:39:43 Switch T-Mobile LTE -> Sprint 1xRTT done. result:Success. srcSignalStrength:-100. destSignalStrength:-104.</td>
</tr>
<tr>
<td>15</td>
<td>14:39:44 Switched to a worse network. Switch request back to T-Mobile.</td>
</tr>
<tr>
<td>16</td>
<td>14:40:00 Switch Sprint 1xRTT -> T-Mobile LTE done. result:Success. srcSignalStrength:-104. destSignalStrength:-200.</td>
</tr>
</tbody>
</table>
Validation in Project Fi

Project Fi: Network Type Monitor

- T-Mobile <--> Sprint loop every 10 mins

Google’s remedies

Trace 2 Persistent loop by RAT-aware preference

2 14:19:47 Switch request to Sprint is approved. Requester: PoorNetwork.
3 14:20:48 Switch T-Mobile LTE --> Sprint 1xRTT done. result:Success.
4 srcSignalStrength:-101. destSignalStrength:-106.
5 14:20:49 Switched to a worse network. Switch request back to T-Mobile.
6 14:21:01 Switch Sprint 1xRTT --> T-Mobile LTE done. result:Success.
7 srcSignalStrength:-106. destSignalStrength:-101.
8 14:21:01 Locking plugin until 07:57. Current elapsed time: 04:57
10 14:29:02 Switch request to Sprint is approved. Requester: PoorNetwork.
11 14:29:58 Switch T-Mobile LTE --> Sprint 1xRTT done. result:Success.
12 srcSignalStrength:-100. destSignalStrength:-105.
13 14:29:58 Switched to a worse network. Switch request back to T-Mobile.
14 14:30:10 Switch Sprint 1xRTT --> T-Mobile LTE done. result:Success.
15 srcSignalStrength:-106. destSignalStrength:-200.
16 14:30:10 Locking plugin until 17:07. Current elapsed time: 14:07
18 14:39:43 Switch T-Mobile LTE --> Sprint 1xRTT done. result:Success.
19 srcSignalStrength:-100. destSignalStrength:-104.
20 14:39:44 Switched to a worse network. Switch request back to T-Mobile.
21 14:40:00 Switch Sprint 1xRTT --> T-Mobile LTE done. result:Success.
22 srcSignalStrength:-104. destSignalStrength:-200.
Validation in Project Fi

Project Fi: Network Type Monitor

- T-Mobile <-> Sprint loop every 10 mins

Google’s remedies

- Lockdown timer

Trace 2 Persistent loop by RAT-aware preference

14:19:47 New lock request to Sprint is approved. Requester: PoorNetwork.

14:20:48 Switch T-Mobile LTE -> Sprint 1xRTT done. result:Success.
 srcSignalStrength:-101. destSignalStrength:-106.

14:20:49 Switched to a worse network. Switch request back to T-Mobile.

14:21:01 Switch Sprint 1xRTT -> T-Mobile LTE done. result:Success.
 srcSignalStrength:-107. destSignalStrength:-101.

14:21:01 Locking plugin until 16:07. Current elapsed time: 04:57

14:29:02 Switch request to Sprint is approved. Requester: PoorNetwork.

14:29:58 Switch T-Mobile LTE -> Sprint 1xRTT done. result:Success.
 srcSignalStrength:-100. destSignalStrength:-105.

14:29:58 Switched to a worse network. Switch request back to T-Mobile.

14:30:10 Switch Sprint 1xRTT -> T-Mobile LTE done. result:Success.
 srcSignalStrength:-106. destSignalStrength:-200.

14:30:10 Locking plugin until 18:07. Current elapsed time: 14:07

14:39:43 Switch T-Mobile LTE -> Sprint 1xRTT done. result:Success.
 srcSignalStrength:-100. destSignalStrength:-104.

14:39:44 Switched to a worse network. Switch request back to T-Mobile.

14:40:00 Switch Sprint 1xRTT -> T-Mobile LTE done. result:Success.
 srcSignalStrength:-104. destSignalStrength:-200.
Validation in Project Fi

Project Fi: Network Type Monitor

- T-Mobile <-> Sprint loop every 10 mins

Google’s remedies

- Lockdown timer
- Getting stuck, losing flexibility

Trace 2 Persistent loop by RAT-aware preference

<table>
<thead>
<tr>
<th>Line</th>
<th>Event Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Switch request to Sprint is approved. Requester: PoorNetwork.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Switch T-Mobile LTE -> Sprint 1xRTT done. result:Success. srcSignalStrength:-101. destSignalStrength:-106.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Switch to a worse network. Switch request back to T-Mobile.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Switch T-Mobile LTE done. result:Success. srcSignalStrength:-106. destSignalStrength:-101.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Locking plugin until 17:07. Current elapsed time: 04:57</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Switch request to Sprint is approved. Requester: PoorNetwork.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Switch T-Mobile LTE -> Sprint 1xRTT done. result:Success. srcSignalStrength:-101. destSignalStrength:-106.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Switch to a worse network. Switch request back to T-Mobile.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Switch T-Mobile LTE done. result:Success. srcSignalStrength:-106. destSignalStrength:-200.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Locking plugin until 17:07. Current elapsed time: 14:07</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Switch T-Mobile LTE -> Sprint 1xRTT done. result:Success. srcSignalStrength:-101. destSignalStrength:-104.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Switch to a worse network. Switch request back to T-Mobile.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Switch T-Mobile LTE done. result:Success. srcSignalStrength:-104. destSignalStrength:-200.</td>
<td></td>
</tr>
</tbody>
</table>

- Lock Timer
- Stuck in no service state
Validation in Project Fi

Project Fi: Network Type Monitor
- T-Mobile <-> Sprint loop every 10 mins

Google’s remedies
- Lockdown timer
- Getting stuck, losing flexibility
- Cannot fundamentally eliminate loops

Trace 2 Persistent loop by RAT-aware preference

2. 14:19:47 Switch request to Sprint is approved
 Requester: PoorNetwork.
3. 14:20:48 Switch T-Mobile LTE -> Sprint 1xRTT done. result:Success.
 srcSignalStrength: -101. destSignalStrength: -106.
4. 14:20:49 Switched to a worse network. Switch request back to T-Mobile.
5. 14:21:01 Switch Sprint 1xRTT -> T-Mobile LTE done. result:Success.
 srcSignalStrength: -101. destSignalStrength: -106.
8. 14:29:02 Switch request to Sprint is approved. Requester: PoorNetwork.
 srcSignalStrength: -100. destSignalStrength: -200.
10. 14:29:58 Switched to a worse network. Switch request back to T-Mobile.
11. 14:30:10 Switch Sprint 1xRTT -> T-Mobile LTE done. result:Success.
 srcSignalStrength: -106. destSignalStrength: -200.
 srcSignalStrength: -100. destSignalStrength: -104.
15. 14:39:44 Switched to a worse network. Switch request back to T-Mobile.
16. 14:40:00 Switch Sprint 1xRTT -> T-Mobile LTE done. result:Success.
 srcSignalStrength: -104. destSignalStrength: -200.
Inter-carrier policies

<table>
<thead>
<tr>
<th>Policy Category</th>
<th>Sub-category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preference-based</td>
<td>Preference assigned to (carrier, RAT)</td>
</tr>
<tr>
<td></td>
<td>Preference assigned to carrier</td>
</tr>
<tr>
<td>Threshold-based</td>
<td>Inter- & intra-policies use different measures</td>
</tr>
<tr>
<td>Hybrid Policy</td>
<td>Inter- & intra-policies use the same measure</td>
</tr>
</tbody>
</table>
Threshold-based policy

Inter-carrier policy:
 • i.e., current cell’s latency > 120ms && the optimal latency in other carrier < 100ms

Intra-carrier policies:
 • i.e., stronger RSS && higher inner priority
Threshold-based policy

Inter-carrier policy:

 • i.e., current cell’s latency > 120ms && the optimal latency in other carrier < 100ms

Intra-carrier policies:

 • i.e., stronger RSS && higher inner priority

Intuition: Different measures used by inter-carrier policy could conflict with that used by intra-carrier policies
THM 7.2 MINIMUM-MEASURE RULE

Assume inter-carrier policy’s measure M and intra-carrier policy’s measure Q are independent. The stability is violated if and only if $M(C_i) - M_{\min}(C_i) \leq g(F^*)$ cannot always hold, no matter how per-cell measures change, where $g(F^*)$ is defined as:

$$g(F^*) = \begin{cases}
\phi - \theta, & F^* = F_2, \\
\delta, & F^* = F_3 \text{ or } F_4.
\end{cases}$$
Validation in Project Fi

Project Fi: ML-based monitor

- T-Mobile <-> Sprint loop

Observation:

- Crowdsourced score (latency, throughput, etc.) is independent to intra-carrier’s
- Cannot guarantee conflict-free!

Google’s remedy:

- memorize & limit switching count

Trace 4 Persistent loops caused by inconsistent measures

1. 19:57:00 K2so sorted carriers: T-Mobile, USCC, Sprint.
2. 19:57:00 Switch request to T-Mobile is approved. Requester: K2so.
3. **19:59:02 Switch Sprint 1xRTT->T-Mobile Unknown done** result: TimeOut.

 srcSignalStrength:-103. destSignalStrength:-200.
4. 20:04:20 K2so sorted carriers: T-Mobile, Sprint, USCC.
5. 20:04:21 Switch request to Sprint is approved. Reason: signal loss.
6. **20:05:11 Switch T-Mobile Unknown->Sprint 1xRTT done** result: Success.

 srcSignalStrength:-200. destSignalStrength:-119.
7. 20:04:20 K2so sorted carriers: T-Mobile, Sprint, USCC.
8. 20:05:12 Switch request to T-Mobile is approved. Requester: K2so
9. 20:07:13 Switch Sprint 1xRTT->T-Mobile Unknown done. result: TimeOut.

 srcSignalStrength:-119. destSignalStrength:-200.
10. 20:07:14 Wait for 05:00 before attempting another switch.
11. 20:12:17 Switch request to Sprint is approved. Reason: signal loss.
12. 20:12:45 Switch T-Mobile Unknown->Sprint 1xRTT done.
Inter-carrier policies

<table>
<thead>
<tr>
<th>Policy Category</th>
<th>Sub-category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preference-based</td>
<td>Preference assigned to (carrier, RAT)</td>
</tr>
<tr>
<td></td>
<td>Preference assigned to carrier</td>
</tr>
<tr>
<td>Threshold-based</td>
<td>Inter- & intra-policies use different measures</td>
</tr>
<tr>
<td>Hybrid Policy</td>
<td>Inter- & intra-policies use the same measure</td>
</tr>
<tr>
<td></td>
<td>Preference-first; threshold-first</td>
</tr>
</tbody>
</table>
Guidelines & experiments

Q2: how to resolve loops by policy conflict?
Yes, we can

Goal: stability (break the loop!)

Constraint: cannot change intra-carrier policies

Intuition: revise inter-carrier preferences (inspired by BGP [Rexford-Gao])

- How to revise w/o intra-carrier policy details?
- Can the revision be **flexible**?
Yes, we can

Goal: stability (break the loop!)

Constraint: cannot change intra-carrier policies

Intuition: revise inter-carrier preferences (inspired by BGP [Rexford-Gao])

- How to revise w/o intra-carrier policy details?
- Can the revision be flexible?

Sprint-LTE >= T-Mobile-LTE > T-Mobile-3G > Sprint-3G
Yes, we can

Goal: stability (break the loop!)

Constraint: cannot change intra-carrier policies

Intuition: **revise** inter-carrier preferences (inspired by BGP [Rexford-Gao])

- How to revise w/o intra-carrier policy details?
- Can the revision be **flexible**?

Sprint-LTE \geq T-Mobile-LTE $> \text{T-Mobile-3G} > \text{Sprint-3G}$
Yes, we can

Goal: stability (break the loop!)

Constraint: cannot change intra-carrier policies

Intuition: revise inter-carrier preferences (inspired by BGP [Rexford-Gao])

- How to revise w/o intra-carrier policy details?
- Can the revision be flexible?

Sprint-LTE \geq T-Mobile-LTE $>$ T-Mobile-3G $>$ Sprint-3G

Sprint-LTE $>$ Sprint-3G $>$ T-Mobile-LTE $>$ T-Mobile-3G
Yes, we can

Goal: stability (break the loop!)

Constraint: cannot change intra-carrier policies

Intuition: revise inter-carrier preferences (inspired by BGP [Rexford-Gao])

- How to revise w/o intra-carrier policy details?
- Can the revision be flexible?

Sprint-LTE \geq T-Mobile-LTE $>$ T-Mobile-3G $>$ Sprint-3G

Sprint-LTE $>$ Sprint-3G $>$ T-Mobile-LTE $>$ T-Mobile-3G
Yes, we can

Goal: stability (break the loop!)

Constraint: cannot change intra-carrier policies

Intuition: revise inter-carrier preferences (inspired by BGP [Rexford-Gao])

- How to revise w/o intra-carrier policy details?
- Can the revision be flexible?

Sprint-LTE >= T-Mobile-LTE > T-Mobile-3G > Sprint-3G

Sprint-LTE > Sprint-3G > T-Mobile-LTE > T-Mobile-3G
Yes, we can

Goal: stability (break the loop!)

Constraint: cannot change intra-carrier policies

Intuition: revise inter-carrier preferences (inspired by BGP [Rexford-Gao])

- How to revise w/o intra-carrier policy details?
- Can the revision be flexible?

Sprint-LTE >= T-Mobile-LTE > T-Mobile-3G > Sprint-3G

Sprint-LTE > Sprint-3G > T-Mobile-LTE > T-Mobile-3G
Yes, we can

Goal: stability (break the loop!)

Constraint: cannot change intra-carrier policies

Intuition: *revise* inter-carrier preferences (inspired by BGP [Rexford-Gao])

- How to revise w/o intra-carrier policy details?
- Can the revision be *flexible*?

Guideline 1. Coordination via priority aggregation

Coordinate inter-carrier policy with aggregated intra-carrier priorities to achieve monotonicity in carriers’ preferences.
Threshold policy: how to fix it?

Follow the same principle for guideline

- Do not use loop-prone comparison criteria
- Consider the worst-case measure in target carrier
Threshold policy: how to fix it?

Follow the same principle for guideline

- Do not use loop-prone comparison criteria
- Consider the worst-case measure in target carrier

Guideline 4. Relaxed Minimum Measure

Intuition: Consider the minimum measure in the target carrier; rule out some cells if necessary
Hybrid policy: results still apply!

Combines preference + threshold policy

All previous analytical results apply
Practical stability guidelines

<table>
<thead>
<tr>
<th>Policy</th>
<th>Sub-category</th>
<th>Stability Guideline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preference-based</td>
<td>Assigned to RAT</td>
<td>Guideline 1: Coordinating preferences of inter-policy</td>
</tr>
<tr>
<td></td>
<td>Assigned to carrier</td>
<td>Guideline 2: Avoid preference-unavailability conflicts</td>
</tr>
<tr>
<td></td>
<td>Inconsistent measures</td>
<td>Guideline 3: Consider the worst case of target carriers</td>
</tr>
<tr>
<td>Threshold-based</td>
<td>Inconsistent config</td>
<td>Guideline 4: Coordination via aggregate internal thresholds</td>
</tr>
<tr>
<td>Hybrid</td>
<td></td>
<td>Guidelines 4, 5, 6</td>
</tr>
</tbody>
</table>
Experimental validation

Inter-carrier policy: crawled from Project Fi’s real coverage data

Intra-carrier policy: extracted from MobileInsight dataset, 50GB [1]

- Preference-policy: enumerate all 75 possible orderings of preference
- Threshold-policy: enumerate possible values of thresholds

Experimental validation

Inter-carrier policy: crawled from Project Fi’s real coverage data

Intra-carrier policy: extracted from MobileInsight dataset, 50GB [1]

- Preference-policy: enumerate all 75 possible orderings of preference
- Threshold-policy: enumerate possible values of thresholds

Results

All loops in static case are eliminated

<table>
<thead>
<tr>
<th>Preference Setting</th>
<th>Spatial Loop Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only 3G has highest pref</td>
<td>6.160%</td>
</tr>
<tr>
<td>One carrier’s LTE has highest pref</td>
<td>0.088%</td>
</tr>
<tr>
<td>Both carriers’ LTE have highest pref</td>
<td>0.003%</td>
</tr>
</tbody>
</table>

![Diagram showing loop frequency vs. threshold for different scenarios](Diagram.png)
Related works

Policy-based network config: BGP, SDN, ...
 • different problem/mechanism/methodology

5G and new standards: HetNet, network slicing, ...
 • device-side approach vs. infrastructure-based approach
 • policy may still apply
Conclusion

Multi-carrier cellular access is promising

• Project Fi: great effort from Google; device-side solution; policy-based switching

Problem: carrier switching loop!

• Caused by conflicts between inter-carrier policy and intra-carrier policy

This work: analytical framework on inter-carrier policies

• Loops eliminate by regulating inter-carrier policy (practical guidelines)

Still applicable to 5G/dual-SIM context
Q & A