CS118 Discussion 1A, Week 7

Zengwen Yuan
Dodd Hall 78, Friday 10:00—11:50 a.m.
Outline

• Network control plane
 • Routing
 • Link state routing (OSPF)
 • Distance vector routing (RIP)
 • BGP
 • ICMP
• Midterm/Project 2
Distance vector routing

- Bellman-Ford equation (dynamic programming)

- let

- \(dx(y) := \) cost of least-cost path from \(x \) to \(y \)

- then

- \(dx(y) = ? \)
Distance vector routing

- Bellman-Ford equation (dynamic programming)

- let

- \(dx(y) := \text{cost of least-cost path from } x \text{ to } y \)

- then

- \(dx(y) = \min_v \{ c(x,v) + dv(y) \} \)
Distance vector routing: example

• What’s the cost of least-cost path for $u \rightarrow z$?
Let’s work it out

- clearly:
 - $dv(z) = ___, dx(z) = ___, dw(z) = ___$
Let’s work it out

• clearly:

 • $d\nu(z) = 5$, $dx(z) = 3$, $dw(z) = 3$

• According to B-F equation:

 • $du(z) = \min \{ \ ? \}$
Let’s work it out

• clearly:
 • $dv(z) = 5$, $dx(z) = 3$, $dw(z) = 3$

• According to B-F equation:
 • $du(z) = \min \{c(u,v) + dv(z), c(u,x) + dx(z), c(u,w) + dw(z)\}$
Let’s work it out

- clearly:
 - $dv(z) = 5$, $dx(z) = 3$, $dw(z) = 3$

- According to B-F equation:
 - $du(z) = \min \{c(u,v) + dv(z), c(u,x) + dx(z), c(u,w) + dw(z)\}$
 - $= \min \{2 + 5, 1 + 3, 5 + 3\} = 4$
Distance vector routing: key idea

- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from neighbor, it updates its own DV using B-F equation.
Distance vector routing: caveat

- Count-to-infinity problem.
- Can you work out an example?
Distance vector routing: caveat

• Count-to-infinity problem.

• Can you work out an example?
Distance vector routing: caveat

- Count-to-infinity problem.
- Can you work out an example?

![Diagram: A/3 to B/2, then C/1 with an error to D]

- Can you propose a solution?
 - basic idea?
Distance vector routing: split horizon

• Previous solution idea:
 • split horizon
 • if B reaches D through C, B should not tell C that B can reach D
 • Then C will not attempt to go through B to reach D
 • Are we good?
Distance vector routing: split horizon

- Previous solution idea:
 - split horizon
 - if B reaches D through C, B should not tell C that B can reach D
 - Then C will not attempt to go through B to reach D
 - Are we good?
Distance vector routing: poison reverse

- Split horizon + poison reverse

 - if A reaches D through C:
 - A tells C that A’s distance to D is infinite
 - Then C will not attempt to go through A to reach D
 - In practice, infinite == 16 hops
Link State v.s. Distance Vector

<table>
<thead>
<tr>
<th></th>
<th>Link state</th>
<th>Distance vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>message complexity</td>
<td>with n nodes, E links, $O(nE)$ msgs sent</td>
<td>exchange between neighbors only (convergence time varies)</td>
</tr>
<tr>
<td>convergence speed</td>
<td>$O(n^2)$ algorithm requires $O(nE)$ msgs</td>
<td>convergence time varies (may be routing loops)</td>
</tr>
<tr>
<td>robustness</td>
<td>node can advertise incorrect link cost; each node computes only its own table</td>
<td>DV node can advertise incorrect path cost; error propagate thru network</td>
</tr>
<tr>
<td>implementation</td>
<td>OSPF</td>
<td>RIP</td>
</tr>
</tbody>
</table>
Summary

• Link-state routing (Dijkstra) algorithm:
 • each node computes the shortest paths to all the other nodes based on the complete topology map

• Distance Vector (Bellman-Ford) routing algorithm:
 • each node computes the shortest paths to all the other nodes based on its neighbors distance to all destinations
Inter-domain routing

- aggregate routers into regions
- AS: autonomous systems
- routers in same AS run same routing protocol
- “intra-AS” routing protocol
- routers in different AS can run different intra-AS routing protocol
BGP (Border Gateway Protocol)

• An inter-domain routing protocol; allows subnet to advertise its existence to rest of Internet: “I am here”

• BGP provides each AS a means to:

 • eBGP: obtain subnet reachability information from neighboring ASs.

 • iBGP: propagate reachability information to all AS-internal routers.

• How BGP works with intra-domain routing (e.g. OSPF)

Important BGP path advertisement example on Chapter 5 slides 49—50
BGP: routing policy

- A, B, C are provider networks
- X, W, Y are customer (of provider networks)
- X is attached to two networks.
 - It does not want to route from B via X to C
 - ... so X will not advertise to B a route to C

Legend:
- Blue rectangle: provider network
- Blue circle: customer network
BGP: routing policy

- A advertises path AW to B
- B advertises path BAW to X
- Should B advertise path BAW to C?
BGP: routing policy

- A advertises path AW to B
- B advertises path BAW to X

Should B advertise path BAW to C?

- No! B gets no “revenue” for routing CBAW since neither W nor C are B’s customers

- B wants to force C to route to w via A
- B wants to route only to/from its customers!
BGP: practice problems

• Explain how loops in paths can be detected in BGP.

• BGP advertisements contain complete paths showing the AS’s the path passes through, and so a router can easily identify a loop because an AS will appear two or more times.
BGP: practice problems

• Suppose that there is another stub network V that is a customer of ISP A. Suppose that B and C have a peering relationship, and A is a customer of both B and C. Suppose that A would like to have the traffic destined to W to come from B only, and the traffic destined to V from either B or C. How should A advertise its routes to B and C? What AS routes does C receive?

• A should advertise to B two routes: A-W and A-V

• A should advertise to C only one route: A-V

Routing: summary

- Intra-domain routing V.S. inter-domain routing
 - Performance V.S. policy
- Scalability: hierarchical routing
- Distance-vector routing V.S. link-state routing
 - Fully-distributed algorithm V.S. decentralized algorithm
- Unicast V.S. multicast
SDN: software defined networking

- A logically centralized control plane
 - easier network management
 - programmable forwarding table (OpenFlow API)
 - open (non-proprietary) implementation of control plane
- Components
 - data plane switches
 - SDN controller
 - network-control apps

Hot Internet research topic; P4 programmable switch
ICMP: Internet Control Message Protocol

- Used for feedback, status checking, error reporting at IP layer
- ICMP msgs are carried in IP packets
- `ping`: echo request/reply
- `traceroute`: nth packet has TTL = n
$ traceroute 8.8.8.8
traceroute to 8.8.8.8 (8.8.8.8), 64 hops max, 52 byte packets
1 172.30.40.3 (172.30.40.3) 4.055 ms 3.017 ms 3.871 ms
2 wifi-131-179-60-1.host.ucla.edu (131.179.60.1) 2.545 ms 2.288 ms 2.714 ms
3 ra00f1.anderson--cr00f2.csb1.ucla.net (169.232.8.12) 3.653 ms 3.506 ms 3.724 ms
4 cr00f2.csb1--bd11f1.anderson.ucla.net (169.232.4.5) 3.959 ms 4.383 ms 3.483 ms
5 lax-agg6--ucla-10g.cenic.net (137.164.24.134) 3.951 ms 5.480 ms 3.840 ms
6 74.125.49.165 (74.125.49.165) 6.558 ms 3.882 ms 3.890 ms
7 108.170.247.129 (108.170.247.129) 3.192 ms
108.170.247.193 (108.170.247.193) 93.964 ms
108.170.247.161 (108.170.247.161) 3.297 ms
8 108.177.3.127 (108.177.3.127) 3.657 ms
209.85.255.73 (209.85.255.73) 3.571 ms
108.177.3.129 (108.177.3.129) 3.261 ms
9 google-public-dns-a.google.com (8.8.8.8) 5.315 ms 3.770 ms 12.165 ms
Traceroute: example