CS118 Discussion 1A, Week 8

Zengwen Yuan
Dodd Hall 78, Friday 10:00—11:50 a.m.
Outline

• Lecture review:
 • Link layer
• Project 2 questions
Link layer: introduction

- understand principles behind link layer services:
 - data framing
 - error detection, correction — CRC (cyclic redundancy check)
 - sharing a broadcast channel: multiple access
 - link layer addressing
- local area networks: Ethernet, VLANs
Delivering packet at link layer

- Basic communication models
 - Unicast
 - Broadcast
 - Multicast

- What, how, why?
Broadcast

- Replicate at source, or in-network
- Flooding (FYI)
 - Reverse path forwarding (RPF)
 - Spanning tree
Multicast (FYI)

- Address range
 - class-D IP: 224.0.0.0 — 239.255.255.255

- Protocols:
 - IGMP
 - DVMRP, PIM
Medium Access Links and Protocols

- Two types: point-to-point, broadcast

- **Broadcast** channel shared by multiple hosts
 - What if we only have unicast channel?
 - What’s the pros and cons for a broadcast channel?

- Three classes of Multiple Access Control (MAC) protocols
 - Channel partitioning: FDMA, TDMA, CDMA
 - Random access: Aloha, CSMA/CD, Ethernet
 - Taking turns: Token ring/passing

- **Pros and cons for each class of protocol?**
Random access: slotted ALOHA

• Assumptions:
 • all frames same size
 • time divided into equal size slots (time to transmit 1 frame)
 • nodes start to transmit only slot beginning
 • nodes are synchronized
 • if 2 or more nodes transmit in slot, all nodes detect collision
Random access: slotted ALOHA

• suppose: N nodes with many frames to send, each transmits in slot with probability p

• \(\Pr(\text{given node has success in a slot}) = p(1-p)^{(N-1)} \)

• \(\Pr(\text{any node has a success}) = Np(1-p)^{(N-1)} \)

• max efficiency: find \(p^* \) that maximizes \(Np(1-p)^{(N-1)} \)

• Take the limit of \(Np^*(1-p^*)^{(N-1)} \) as \(N \) goes to infinity, yields:
 • max efficiency = \(1/e = .37 \)
Random access: ALOHA efficiency

- Slotted ALOHA max efficiency = $1/e = 0.37$
- Unslotted ALOHA max efficiency = $1/2e = 0.18$
CSMA (carrier sense multiple access)

- Listen before transmit:
 - if channel sensed idle: transmit entire frame
 - if channel sensed busy, defer transmission
 - “don’t interrupt others!”

- Channel busy?
 - 1-persistent CSMA: retry immediately
 - p-persistent CSMA: retry immediately with probability p
 - Non-persistent CSMA: retry after a random interval

- Collision?
 - hidden terminal problem
CSMA/CD (collision detection)

- CSMA/CD: carrier sensing, deferral as in CSMA
 - collisions detected within short time
 - colliding transmissions aborted, reducing channel wastage
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: received signal strength overwhelmed by local transmission strength
CSMA/CD (collision detection)

- A: sense channel, wait if necessary, when channel is idle, transmit and monitor the channel

- If detect collision then {
 - abort and send jam signal;
 - update collision-count (n++);
 - delay for K slots (1 slot = 512bits transmission time) goto A
 - } else {finish sending the frame; reset collision-count (n = 0)}

- collision detection: compare transmitted, received signal strengths
ARP: address resolution protocol

- How to determine interface’s MAC address, knowing its IP address?

- ARP table: each IP node (host, router) on LAN has table
 - IP/MAC address mappings for some LAN nodes:
 - \(<\text{IP address}; \text{MAC address}; \text{TTL}>\)
 - called PnP (plug-and-play)
 - soft-state design: information deletes itself after certain time unless being refreshed
ARP: send an IP packet in the same subnet

- A wants to send IP packet to B, but B’s MAC address not in A’s ARP table.

- A broadcasts ARP query packet, containing B's IP address (all nodes on LAN receive ARP query)
 - dest MAC address = FF-FF-FF-FF-FF-FF

- B receives ARP packet, replies to A with its (B's) MAC address
 - frame sent to A’s MAC address (unicast)

- A caches IP-to-MAC address pair in its ARP table until information becomes old (times out)
ARP: send an IP packet across subnets
ARP: send an IP packet across subnets

- Find an entry in the **routing table**
- If entry is saying that packet can be sent directly
 - Lookup MAC for destination IP in **ARP table**
- If entry is saying that packet should be set to the gateway
 - Lookup MAC for the gateway’s IP in **ARP table**
- Create frame with the found MAC and original IP packet as a payload
- Send the frame
ARP: send an IP packet across subnets (cont’d)

- Router or node receives the frame, as it is destined to it
- Router removes Ethernet header, finds IP destination address
 - If IP is itself, deliver to transport layer and higher layers
 - If IP is not self and node is router, repeat the previous steps (lookup routing table, lookup ARP, ...)

18
Ethernet

• Connectionless and unreliable protocol
 • Why doesn’t Ethernet provide reliable data transfer?
• MAC protocol: CSMA/CD + exponential backoff
 • Can we use CSMA/CD in wireless network?
• Switch-based Ethernet
 • No real broadcast channel anymore
 • Self-learning algorithm: support plug-and-play
 • Differences between routing table, switch table and ARP table?
MAC address

- MAC address allocation by IEEE (who assigns IP?)
- MAC address is flat -> portability (IP address is ___?)
- Format: 48 bit address
 - AA-BB-CC-DD-EE-FF
 - Broadcast address: FF-FF-FF-FF-FF-FF-FF
Min frame size: 64 Bytes

- why? (to reliably detect collisions)

Max frame size: 1514 Bytes

- why? (to fairly share the media)
Ethernet CSMA/CD

1. NIC receives datagram from network layer, creates frame.

2. If NIC senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits.

3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame.

4. If NIC detects another transmission while transmitting, aborts and sends jam signal.

5. After aborting, NIC enters binary exponential backoff:
Switch

• Examine each incoming frame’s MAC address, forward to the destination LAN if dest. host is on a different LAN

• store-and-forward

• switch table: self-learning algorithm
 • (MAC address of host, interface to reach host, timestamp)
Router vs. Switch

- Both are store-and-forward devices
 - routers: network layer devices (examine IP headers)
 - switches: link layer devices (examine Ethernet headers)
- Circuit-switch network: connection should be established before forwarding the data
 - At each hop, the circuit path is marked as a label
 - Data forwarding is based on label: $O(1)$ complexity
 - Vulnerable to link/node failures
- Packet-switched network: connectionless, packets are forwarded based on IP header
 - Longest prefix matching: $O(N)$ complexity
 - Robust to link/node failures
- Can we take advantage of both, while preventing any vulnerabilities?
Network devices

- Repeater: PHY layer
 - bits coming in one link go out all other links at same rate

- Hub: link layer
 - packets coming in one port/link, go out all other ports/links

- Switch: link layer