CS118 Discussion 1C, Week 10

Zengwen Yuan
Bunche Hall 3156, Friday 2:00—3:50 p.m.
Logistics

• Final Exam: Monday, 6/10, 6:30 pm – 9:30 pm in Franz Hall 1260

• Roughly 20% before midterm, 80% after midterm — refer to study guide for detailed chapters

• Closed book & notes, allow up to 2 double-sided cheat sheets

• Sign up for Project 2 demo!!

• Please complete course evaluation on MyUCLA, thanks!
Wireless and Mobile Network

- Wireless access: Wi-Fi
 - CSMA/CA vs. CSMA/CD
 - RTS/CTS mechanism
- Mobility: MobileIP
 - Home network, visited network
 - Permanent address, care-of-address
 - Indirect (triangle) routing, direct routing
- Wireless and mobility are not necessarily correlated
 - Wireless without mobility?
 - Mobility without wireless?
Wireless network

- Infrastructure mode vs. ad-hoc mode

- Problems:
 - multiple access
 - hidden terminal
 - signal attenuation
802.11: CSMA/CA

- Allow sender to “reserve” channel: avoid collisions of long data frames
- Sender first transmits a small request-to-send (RTS) packet to AP using CSMA
 - RTSs may still collide with each other (but they’re short)
- AP broadcasts clear-to-send (CTS) in response to RTS
- CTS heard by all nodes within AP's range
 - Sender transmits its data frame
 - Other stations defer transmissions
802.11: CSMA/CA

- Start
 - Assemble a Frame
 - Is the Channel Idle?
 - NO: Wait for Random Backoff Time
 - YES: Transmit RTS
 - CTS Received?
 - NO: Using IEEE 802.11 RTS/CTS Exchange
 - YES: Transmit Application Data
 - END
 - Not Using IEEE 802.11 RTS/CTS Exchange

802.11: mobility, security

- Mobility: within same subnet (under the same switch)
- Security:
 - Wired Equivalent Privacy (WEP)
 - weak-n-flawed, not usable
 - 802.1X Access Control
 - Wireless Protected Access (WPA), WPA2
Mobile IP

- Home network, visited network
- Permanent address vs. care-of-address
 - When a mobile moves to a new location:
 - Obtain a new care-of address
 - Informing its home agent of its new IP address
- Indirect routing vs. direct routing
 - Indirect routing: A correspondent sends data to a mobile's home address, the home-agent forward data to the mobile's care-of address
 - Direct routing: correspondent obtains mobile's care-of address, sends packet to mobile directly
Mobile IP: Vocabulary (I)

home network: permanent “home” of mobile (e.g., 128.119.40.0/24)

home agent: entity that will perform mobility functions on behalf of mobile when mobile is away from home

Permanent address: mobile's address in home network, can always be used to reach mobile (e.g., 128.119.40.186)

Correspondent: a computer that wants to communicate with mobile
Mobile IP: Vocabulary (II)

Permanent address: remains constant (e.g., 128.119.40.186)

visited network: network in which mobile currently resides (e.g., 79.129.13.0/24)

Care-of-address: mobile’s address obtained from the visited network (e.g., 79.129.13.2)

Home network

Home agent

Wide area network

Foreign agent: an entity in visited network that provides mobility support
Mobile IP: Indirect Routing (I)

Q: Which address will mobile use as source address?
Mobile IP: Indirect Routing (II)
Mobile IP: Direct Routing

Good: Eliminate triangle routing problem

Bad:
 • Correspondent must be aware of mobility support
 • what if mobile moves from network to network?
Mobile IP: Indirect Routing Summary

- Correspondent sends data to the mobile's home agent
 - Source = CD; destination = P (mobile's permanent address)
- Home agent tunnels data to mobile
 - Outer IP header: Source = P; destination = CA
 - Inner IP header: source = CD; destination = P
- Mobile tunnels data to correspondent
 - Outer header: Source = CA; destination = CD
 - Inner header: source = P; destination = CD
- Supports mobile movement transparently
 - No change to transport protocols
 - Cost: triangle routing
Cellular Network: Basic Components

- **cell**
 - covers geographical region
 - *base station* (BS) analogous to 802.11 AP
 - *mobile users* attach to network through BS
 - *air-interface*: physical and link layer protocol between mobile and BS

- **MSC**
 - connects cells to wide area net
 - manages call setup (more later!)
 - handles mobility (more later!)

- Wired network
 - Public telephone network, Internet
Network security principles

- Confidentiality
- Authentication
- Integrity
- Access and availability
Corresponding security threats

• Eavesdropping

• Impersonation

• Hijacking/MITM Attack (Man-in-the-middle attacks)

• DoS (Denial of Service)
Key-based cryptography

• Symmetric key crypto: DES, AES

• Asymmetric key crypto:
 • Diffie-Hellman [2015 Turing Award], RSA [2002 Turing Award]
 • pubkey, private key
Authentication: digital signatures

- Verifiable, non-forgable

- Hash functions: MD5, SHA-1, ...

- Digital signature: *signed* message digest

- CA (certificate authority)
SSL: Secure Sockets Layer

• A transport layer protocol (it sits between TCP and Application)
 • variation: TLS protocol

• Benefit: confidentiality, integrity, authentication

• Main steps
 • handshake
 • key derivation
 • data transfer
 • connection closure
More things to know

• IPSec (network layer), VPN, Firewall, IDS …

• How to achieve:
 • Encryption
 • Authentication
 • Digital signature
 • Message integrity
Exercise

• What are the security mechanisms to defend against the following network attacks?
 • Data sniffing & interception
 • IP address spoofing
 • Replay attack
 • Man in the middle attack
 • (Distributed) denial of service attack
 • Email spam
 • Illegal access to UCLA networks
 • Network virus
Study guide & Project 2
Week 1

• Big Picture - Different Layers
 • Application
 • Transport
 • Network
 • Link
 • Physical
• Application layer architectures
 • Client-Server
 • P2P
• Socket Programming
• HTTP
 • Headers
 • Request
 • Response
Week 2

- HTTP
 - Persistent vs Non Persistent
 - Pipelining
 - Parallel Connections
 - Stateful and Stateless protocols
 - Cookies
 - Web Caching - CDN

- Email
 - SMTP
 - Securing Email - PGP / GPG
 - Mail Access protocols: POP, IMAP, HTTP
Week 3

- DNS
 - Architecture
 - Records
 - Query/Reply
 - Dig - Example in homework
- CDN - Akamai
- Client-Server vs P2P architecture: Pros and Cons
- Bit-Torrent
- Internet Video
 - Rate Control
 - Error Control
Week 4

- Transport Layer
 - TCP
 - UDP
 - Multiplexing and Demultiplexing
- UDP
 - Headers
 - Checksum
- Reliable Data Transfer
 - Sequence #
 - Acknowledgement
 - Retransmission timer
- TCP
 - Header
 - Handshake and teardown
 - Flow control
Week 5

- Setting TCP Retransmission timer
 - SampleRTT, SRTT, DevRTT, RTO
 - Karn’s Algorithm
- Fast Transmit
- Congestion Control
 - Slow Start
 - Congestion Avoidance
- TCP Throughput
Week 6

• Network Layer
• Routing and Forwarding
• VC and Datagram
• IP Datagram format
• IP Fragmentation
• Subnet
• Special Addresses
• Longest prefix Matching
• NAT - Network Address Translation
• DHCP
Week 7

- IPv6 vs IPv4
- Tunneling
- ICMP
- Traceroute
- Routing Algorithms
 - Link State
 - Distance Vector
- Count to Infinity
- OSPF Protocol
- Hierarchical architecture - Autonomous Systems
- BGP: i-BGP, e-BGP
Week 8

- Named Data Networking (NDN) - Not in exam
- Link Layer: Unicast, Broadcast, Multicast
- Where is LL implemented
- Byte Stuffing — HDLC, PPP, COBS
- Multiple Access Protocols
 - Channel Partitioning — FDM, TDM, CDMA
 - Random Access — Aloha, Slotted Aloha, CSMA
 - Taking Turns — token ring
- Efficiency of Aloha, Slotted Aloha
- Binary Exponential backoff
- 1-persistent, p-persistent, non-persistent CSMA
Week 9

- Ethernet - Bus and Star Topology
- MAC Address
- Ethernet frame structure
- ARP: IP Address to MAC Address
- Plug and Play
- Soft State
- Difference between hub, switch, router
- Switches - Forwarding Table
- Self Learning
- Advantages and Disadvantages of Routers and Switches
Week 10

- Wireless and mobile
- Infrastructure and ad-hoc mode
- Hidden Terminal and Fading
- 802.11 LAN Architecture
- Passive and Active Scanning
- CSMA/CA
- Mobility within subnet
- Indirect and direct routing
- Security Threats
- Cellular Networks
- IPSec
- VPNs