CS118 Discussion 1C, Week 6

Zengwen Yuan
Bunche Hall 3156, Friday 2:00—3:50 p.m.
Outline

• Network Layer — Data Plane

• Overview: data v.s. control plane

• Inside a Router: Routing, Switching, Forwarding, Packet Scheduling, Queues

• IPv4/IPv6, DHCP, NAT

• Project 2 spec

• Midterm logistics
Network layer: overview

- Basic functions for network layer
 - Forwarding/Routing
- Network service model
 - Guaranteed delivery
 - Guaranteed delivery w/ bounded delay
 - In-order packet delivery
 - Guaranteed minimal bandwidth
Network layer: overview

• Connection v.s. connection-less delivery
 • circuit switch/packet switch

• Network layer protocols
 • Addressing and fragmentation: IPv4, IPv6
 • Routing: RIP, OSPF, BGP, DVMRP, PIM
 • Others: DHCP, ICMP, NAT
Network layer: concepts

• Inside a Router:
 • Routing
 • Switching
 • Forwarding
 • Packet Scheduling
 • Queues
IPv4 Header

- **Header length**: 4-byte unit
- **Length**: 1-byte unit
- **Fragmentation**: id + MF/DF + offset (8-byte unit)
- **TTL**: time to live
- **Checksum**
 - Is it redundant?
 - Why is it just checksum for header?
- **Protocol**: identifies the upper layer protocol
- **Source and destination IP addresses**
IP address

- Globally recognizable identifier
- IPv4: 0.0.0.0~255.255.255.255
 - Most IP addresses are globally unique
 - Exception — why?
- Network id, host id
- CIDR address
IP address classes

<table>
<thead>
<tr>
<th>Class</th>
<th>1st Octet Decimal</th>
<th>1st Octet High Order Bits</th>
<th>Network/Host ID (N=Network, H=Host)</th>
<th>Default Subnet Mask</th>
<th>Number of Networks</th>
<th>Hosts per Network (Usable Addresses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 – 126*</td>
<td>0</td>
<td>N.H.H.H</td>
<td>255.0.0.0</td>
<td>126 (2^7 – 2)</td>
<td>16,777,214 (2^24 – 2)</td>
</tr>
<tr>
<td>B</td>
<td>128 – 191</td>
<td>10</td>
<td>N.N.H.H</td>
<td>255.255.0.0</td>
<td>16,382 (2^14 – 2)</td>
<td>65,534 (2^16 – 2)</td>
</tr>
<tr>
<td>C</td>
<td>192 – 223</td>
<td>110</td>
<td>N.N.N.H</td>
<td>255.255.255.0</td>
<td>2,097,150 (2^21 – 2)</td>
<td>254 (2^8 – 2)</td>
</tr>
<tr>
<td>D</td>
<td>224 – 239</td>
<td>1110</td>
<td></td>
<td>Reserved for Multicasting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>240 – 254</td>
<td>1111</td>
<td></td>
<td>Experimental; used for research</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Private Networks</th>
<th>Subnet Mask</th>
<th>Address Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10.0.0.0</td>
<td>255.0.0.0</td>
<td>10.0.0.0 - 10.255.255.255</td>
</tr>
<tr>
<td>B</td>
<td>172.16.0.0 - 172.31.0.0</td>
<td>255.240.0.0</td>
<td>172.16.0.0 - 172.31.255.255</td>
</tr>
<tr>
<td>C</td>
<td>192.168.0.0</td>
<td>255.255.0.0</td>
<td>192.168.0.0 - 192.168.255.255</td>
</tr>
</tbody>
</table>
Hierarchical addressing

- subnet: a portion of addressing space
 - extend bits from the network id
 - `<network address>/<subnet mask>`
- route aggregation
CIDR address

- a.b.c.d/x
 - x: # bits in network ID portion of the address
 - address: a.b.c.d, network mask: $2^32 - 2^{(32-x)}$

CIDR \[\text{11001000 00010111 00010000 00000000} \]
IP prefix \[200.23.16.0/23 \]
netmask \[\text{11111111 11111111 11111110 00000000} \]

255.255.254.0
IP fragmentation and reassembly

- MTU: maximum transmission unit
- identifier
- flag bit: three bit
 - DF (Do not Fragment) = 0
 - MF (More Fragments) = 0?
- offset

example:
- 4000 byte datagram
- MTU = 1500 bytes

one large datagram becomes several smaller datagrams

offset = 1480/8
Switching

• Longest prefix matching

<table>
<thead>
<tr>
<th>Destination Address Range</th>
<th>Link interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001000 00010111 00011000 *******</td>
<td>0</td>
</tr>
<tr>
<td>11001000 00010111 00010*** *******</td>
<td>1</td>
</tr>
<tr>
<td>11001000 00010111 0001**** *******</td>
<td>2</td>
</tr>
<tr>
<td>******* ******* ******* ******* *******</td>
<td>3</td>
</tr>
</tbody>
</table>

• Linear lookup
DHCP: Dynamic Host Configuration Protocol

• Dynamically allocates the following info to a host
 • IP address for the host
 • IP address for default router
 • Subnet mask
 • IP address for DNS caching resolver
• Allows address reuse
DHCP: operations

- Host broadcasts “DHCP discovery” msg [optional]
- DHCP server responds with “DHCP offer” msg [optional]
- Host requests IP address: “DHCP request” msg
- DHCP server sends address: “DHCP ack” msg

Important example on Chapter 4 slides 45—46!
NAT (network address translation)

- Depletion of IPv4 addresses — short-term solution
 - IP tunneling?
- Use private IP addresses
- Side-benefit: security
- How to achieve?
 - `<public IP:port> — <private IP:port>` mapping
NAT: detail

• outgoing packets:
 • replace (source IP address, source port #) of every outgoing packet to (NAT IP address, new port #)

• remote clients/servers will respond using (NAT IP address, new port #) as destination address

• remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair

• incoming packets:
 • replace (destination NAT IP address, destination port #) of every incoming packet with corresponding (source IP address, port #) stored in NAT table
NAT: downside

• Increased complexity
• Single point of failure
• Cannot run services inside a NAT box
IPv6

IPv6 Header Format (RFC 2460)
IPv6/IPv4 differences

- Fixed-length 40 byte header
 - length field excludes header
 - Header Length field eliminated
- Address length: 128 bits
- Priority: usage yet to be finalized
- Flow Label: identify packets in same flow
- Next header: identify upper layer protocol for data
- Options: outside of the basic header, indicated by Next Header field
- Header Checksum: removed
IPv6 address format (optional)

- Can skip leading zeros of each word:
 2607:F010:3f9:0:0:0:4:1

- Can skip one sequence of zero words (compressed representation), e.g., 2607:f010:3f9::4:1

- Can leave the last 32 bits in dot-decimal:
 2607:f010:3f9::0.4.0.1

- Can specify a prefix by /length: 2607:f010:3f9::/64
Special IPv6 addresses (optional)

- ::/128 - Unspecified
- ::1/128 - Loopback
- ::ffff:0:0/96 - IP4-mapped address
- 2002::/16 - 6to4
- ff00::/8 - Multicast
- fe80::/10 - Link-Local Unicast
Project 2 Spec

• Questions?

• Three major parts
 • packet header design
 • data transmission (loss handling)
 • congestion control