CS118 Discussion 1A, Week 8

Zengwen Yuan (zyuan [at] cs.ucla.edu)
Boelter Hall 9436, Friday 12:00—1:50 p.m.
Outline

• Project 2

• Lecture review:
 • Routing
 • Link state routing, Distance vector routing, Hierarchical routing, BGP
 • Introduction to link layer
Course Project 2: questions?

- Demo time survey! https://goo.gl/forms/LbNF2dT1GGvFPiPP2
- We want to implement **byte-stream** reliable data transfer
 - WND is in unit of bytes, not packets
- How to realize timeout?
 - **Option 1**: select() with countdown timer
 - **Option 2**: alarm() + signal()
- Should we implement RTT estimation?
 - Depends on if you plan to realize congestion control
Routing: concepts

- Global or decentralized information?
 - global: all routers have complete topology, link cost info
 - algorithm?
Routing: concepts

• Global or decentralized information?

 • global: all routers have complete topology, link cost info

 • “link state” algorithms
Routing: concepts

• Global or decentralized information?
 • global: all routers have complete topology, link cost info
 • “link state” algorithms
 • decentralized: router knows physically-connected neighbors, link costs to neighbors; iterative process of computation, exchange of info with neighbors
 • algorithm?
Routing: concepts

• Global or decentralized information?
 • global: all routers have complete topology, link cost info
 • “link state” algorithms
 • decentralized: router knows physically-connected neighbors, link costs to neighbors; iterative process of computation, exchange of info with neighbors
 • “distance vector” algorithms
Link state routing

- Dijkstra’s algorithm
 - net topology, link costs known to all nodes
 - computes least cost paths from one node (‘source”) to all other nodes
 - iterative: after k iterations, know least cost path to k destinations
Link state routing: algorithm

1. **Initialization:**
 2. \(N' = \{u\} \)
 3. for all nodes \(v \)
 4. if \(v \) adjacent to \(u \)
 5. then \(D(v) = c(u,v) \)
 6. else \(D(v) = \infty \)
 7.
 8. **Loop**
 9. find \(w \) not in \(N' \) such that \(D(w) \) is a minimum
 10. add \(w \) to \(N' \)
 11. update \(D(v) \) for all \(v \) adjacent to \(w \) and not in \(N' \):
 12. **[Link cost update heuristic from Dijkstra algo.]**
 13. until all nodes in \(N' \)

\(c(x, y) \): link cost from node \(x \) to \(y \); \(c(x, y) = \infty \) if not direct neighbors
\(D(v) \): current value of cost of path from source to destination \(v \)
\(p(v) \): predecessor node along path from source to \(v \)
\(N' \): set of nodes whose least cost path definitively known
Link state routing: algorithm

1 Initialization:
2 \[N' = \{u\} \]
3 for all nodes v
4 if v adjacent to u
5 then \[D(v) = c(u,v) \]
6 else \[D(v) = \infty \]

8 Loop
9 find w not in N' such that \[D(w) \] is a minimum
10 add w to N'
11 update \[D(v) \] for all v adjacent to w and not in N':
12 \[D(v) = \min(D(v), D(w) + c(w,v)) \]
13 until all nodes in N'

c(x, y): link cost from node x to y; c(x, y) = \infty if not direct neighbors
D(v): current value of cost of path from source to destination v
p(v): predecessor node along path from source to v
N': set of nodes whose least cost path definitively known
Link state routing: example

- Using link state routing to setup a forwarding table for node u
Let’s work it out

<table>
<thead>
<tr>
<th>N'</th>
<th>$D(v), p(v)$</th>
<th>$D(w), p(w)$</th>
<th>$D(x), p(x)$</th>
<th>$D(y), p(y)$</th>
<th>$D(z), p(z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>2, u</td>
<td>5, u</td>
<td>1, u</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>ux</td>
<td>2, u</td>
<td>4, x</td>
<td></td>
<td>2, x</td>
<td>∞</td>
</tr>
<tr>
<td>uxy</td>
<td>2, u</td>
<td>3, y</td>
<td></td>
<td></td>
<td>4, y</td>
</tr>
<tr>
<td>$uxyv$</td>
<td></td>
<td>3, y</td>
<td></td>
<td></td>
<td>4, y</td>
</tr>
<tr>
<td>$uxyvw$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4, y</td>
</tr>
<tr>
<td>$uxyvwz$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let’s work it out

<table>
<thead>
<tr>
<th>N’</th>
<th>D(v), p(v)</th>
<th>D(w), p(w)</th>
<th>D(x), p(x)</th>
<th>D(y), p(y)</th>
<th>D(z), p(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>2, u</td>
<td>5, u</td>
<td>1, u</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>ux</td>
<td>2, u</td>
<td>4, x</td>
<td></td>
<td>2, x</td>
<td>∞</td>
</tr>
<tr>
<td>uxy</td>
<td></td>
<td></td>
<td>3, y</td>
<td></td>
<td>4, y</td>
</tr>
<tr>
<td>uxyv</td>
<td></td>
<td></td>
<td>3, y</td>
<td></td>
<td>4, y</td>
</tr>
<tr>
<td>uxyvw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4, y</td>
</tr>
<tr>
<td>uxyvwz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Distance vector routing

- Bellman-Ford equation (dynamic programming)

- let

- $dx(y) := \text{cost of least-cost path from } x \text{ to } y$

- then

- $dx(y) = ?$
Distance vector routing

• Bellman-Ford equation (dynamic programming)

• let

• \(dx(y) := \text{cost of least-cost path from } x \text{ to } y \)

• then

• \(dx(y) = \min_v \{ c(x,v) + dv(y) \} \)
Distance vector routing: example

- What’s the cost of least-cost path for $u \rightarrow z$?
Let’s work it out

• clearly:

 • $dv(z) = \, ?, \, dx(z) = \, ?, \, dw(z) = \, ?$
Let’s work it out

- clearly:
 - \(dv(z) = 5, \ dx(z) = 3, \ dw(z) = 3 \)

- According to B-F equation:
 - \(du(z) = \min \{ \ ? \} \)
Let’s work it out

• clearly:

 • $dv(z) = 5$, $dx(z) = 3$, $dw(z) = 3$

• According to B-F equation:

 • $du(z) = \min \{ c(u,v) + dv(z), c(u,x) + dx(z), c(u,w) + dw(z) \}$
Let’s work it out

- clearly:
 - $dv(z) = 5$, $dx(z) = 3$, $dw(z) = 3$

- According to B-F equation:
 - $du(z) = \min \{c(u,v) + dv(z), c(u,x) + dx(z), c(u,w) + dw(z)\}$
 - $= \min \{2 + 5, 1 + 3, 5 + 3\} = 4$
Distance vector routing: key idea

- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from neighbor, it updates its own DV using B-F equation.
Distance vector routing: caveat

• Count-to-infinity problem.

• Can you work out an example?
Distance vector routing: caveat

- Count-to-infinity problem.
- Can you work out an example?
Distance vector routing: caveat

- Count-to-infinity problem.
- Can you work out an example?

- Can you propose a solution?
 - basic idea?
Distance vector routing: split horizon

• Previous solution idea:

 • split horizon

 • if B reaches D through C, B should not tell C that B can reach D

 • Then C will not attempt to go through B to reach D

 • Are we good?
Distance vector routing: split horizon

• Previous solution idea:
 • split horizon
 • if B reaches D through C, B should not tell C that B can reach D
 • Then C will not attempt to go through B to reach D
 • Are we good?
Distance vector routing: poison reverse

- Split horizon + poison reverse

- if A reaches D through C:
 - A tells C that A’s distance to D is infinite
 - Then C will not attempt to go through A to reach D
 - In practice, infinite == 16 hops
Link State v.s. Distance Vector

<table>
<thead>
<tr>
<th></th>
<th>Link state</th>
<th>Distance vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>message complexity</td>
<td>with n nodes, E links, $O(nE)$ msgs sent</td>
<td>exchange between neighbors only (convergence time varies)</td>
</tr>
<tr>
<td>convergence speed</td>
<td>$O(n^2)$ algorithm requires $O(nE)$ msgs</td>
<td>convergence time varies (may be routing loops)</td>
</tr>
<tr>
<td>robustness</td>
<td>node can advertise incorrect link cost; each node computes only its own table</td>
<td>DV node can advertise incorrect path cost; error propagate thru network</td>
</tr>
<tr>
<td>implementation</td>
<td>OSPF</td>
<td>RIP</td>
</tr>
</tbody>
</table>
Hierarchical routing

- aggregate routers into regions
- AS: autonomous systems
- routers in same AS run same routing protocol
- “intra-AS” routing protocol
- routers in different AS can run different intra-AS routing protocol
BGP (Border Gateway Protocol)

• an inter-domain routing protocol

• BGP provides each AS a means to:

 • eBGP: obtain subnet reachability information from neighboring ASs.

 • iBGP: propagate reachability information to all AS-internal routers.

• allows subnet to advertise its existence to rest of Internet: “I am here”
BGP: routing policy

- A, B, C are provider networks
- X, W, Y are customer (of provider networks)
- X is attached to two networks.
 - It does not want to route from B via X to C
 - … so X will not advertise to B a route to C
BGP: routing policy

- A advertises path AW to B
- B advertises path BAW to X
- Should B advertise path BAW to C?

Legend:
- Provider network
- Customer network
BGP: routing policy

- A advertises path AW to B
- B advertises path BAW to X
- Should B advertise path BAW to C?
 - No! B gets no “revenue” for routing CBAW since neither W nor C are B’s customers
 - B wants to force C to route to w via A
 - B wants to route only to/from its customers!
BGP: practice problems

• Explain how loops in paths can be detected in BGP.

• BGP advertisements contain complete paths showing the AS’s the path passes through, and so a router can easily identify a loop because an AS will appear two or more times.
BGP: practice problems

• Suppose that there is another stub network V that is a customer of ISP A. Suppose that B and C have a peering relationship, and A is a customer of both B and C. Suppose that A would like to have the traffic destined to W to come from B only, and the traffic destined to V from either B or C. How should A advertise its routes to B and C? What AS routes does C receive?

 • A should advertise to B two routes: A-W and A-V
 • A should advertise to C only one route: A-V
Multicast: RPF

- Reverse Path Forwarding

- For each node, how to forward A’s multicast packets?
Routing: summary

- Intra-domain routing V.S. inter-domain routing
 - Performance V.S. policy
 - Scalability: hierarchical routing
- Distance-vector routing V.S. link-state routing
 - Fully-distributed algorithm V.S. decentralized algorithm
- Unicast V.S. multicast
Link layer: introduction

• understand principles behind link layer services:

• error detection, correction — CRC (cyclic redundancy check)

• sharing a broadcast channel: multiple access

• link layer addressing

• local area networks: Ethernet, VLANs
Medium Access Links and Protocols

- Condition: broadcast channel shared by multiple hosts
 - What if we only have unicast channel?
 - What’s the pros and cons for a broadcast channel?

- Three classes of MAC protocols
 - Channel partitioning: FDMA, TDMA, CDMA
 - Random access: Aloha, CSMA/CD, Ethernet
 - Taking turns: Token ring/passing

- Pros and cons for each class of protocol?
Random access: slotted ALOHA

• Assumptions:
 • all frames same size
 • time divided into equal size slots (time to transmit 1 frame)
 • nodes start to transmit only slot beginning
 • nodes are synchronized
 • if 2 or more nodes transmit in slot, all nodes detect collision
Random access: slotted ALOHA

• suppose: N nodes with many frames to send, each transmits in slot with probability p

• \(\Pr(\text{given node has success in a slot}) = p(1-p)^{(N-1)} \)

• \(\Pr(\text{any node has a success}) = Np(1-p)^{(N-1)} \)

• max efficiency: find \(p^* \) that maximizes \(Np(1-p)^{(N-1)} \)

• for many nodes, take limit of \(Np^*(1-p^*)^{(N-1)} \) as \(N \) goes to infinity, gives:
 • max efficiency = \(1/e \approx 0.37 \)
Random access: ALOHA efficiency

- Slotted ALOHA max efficiency = $1/e = 0.37$
- Unslotted ALOHA max efficiency = $1/2e = 0.18$
CSMA (carrier sense multiple access)

- Listen before transmit:
 - if channel sensed idle: transmit entire frame
 - if channel sensed busy, defer transmission
 - “don’t interrupt others!”

- Collision?
 - hidden terminal problem
CSMA/CD (collision detection)

- CSMA/CD: carrier sensing, deferral as in CSMA
 - collisions detected within short time
 - colliding transmissions aborted, reducing channel wastage
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: received signal strength overwhelmed by local transmission strength
Three questions

- What’s the difference between IP address and MAC address?
- If we are using ARP, what should destination address, source address and frame type look like?
- If we are using IP, what should destination address, source address and frame type look like?
Ethernet

• Connectionless and unreliable protocol
 • Why doesn’t Ethernet provide reliable data transfer?
• MAC protocol: CSMA/CD + exponential backoff
 • Can we use CSMA/CD in wireless network?
• Switch-based Ethernet
 • No real broadcast channel anymore
 • Self-learning algorithm: support plug-and-play
 • Differences between routing table, switch table and ARP table?